Что летает в стратосфере
Что исследуют в стратосфере?
12 апреля мы отправим наш сервер в стратосферу. Скоро мы подробно напишем о технической начинке нашего проекта «Космический ЦОД». А пока хотим рассказать о том, для чего сегодня используют полёты в стратосферу.
Исследовательский стратостат NASA
Из-за совокупности условий, диапазон высот 30—40 км сегодня иногда называют «предкосмосом» и активно используют для проведения всевозможных научных исследований, требующих минимального влияния атмосферы. То есть в верхней стратосфере можно задёшево проводить исследования и испытания, не тратясь на полноценный вывод в космос.
Первый в мире стратостат был построен учёным Огюстом Пикаром для исследования космических лучей. Природа космических лучей вплоть до 1940-х гг. оставалась неясной. Исследования взаимодействия космических лучей с веществом с помощью ядерных фотоэмульсий, поднимаемых на шарах-зондах привели, в частности, к открытию новых элементарных частиц – позитрона (1932), мюона (1936), π-мезона (1947).
В наши дни, несмотря на звание «предкосмоса», чаще всего стратосферу используют для… формирования прогнозов погоды. Согласно современным представлениям, атмосферные процессы, протекающие в стратосфере, очень сильно влияют на погоду на Земле. Поэтому каждые сутки, в 12 и в 24 часа по единому времени, по всей планете запускают сотни метеозондов: это маленькие воздушные шарики, под которыми привязаны небольшие аппаратные блоки, которые по мере подъёма в стратосферу регистрируют температуру и влажность воздуха, скорость и направление ветра. Информация с метеозондов собирается в единую информационную систему и применяется в моделях прогнозирования погоды. К примеру, если сегодня воздушные массы движутся из Африки на северо-северо-восток, то при такой скорости этот атмосферный фронт через пару дней окажется в Европе, и так далее.
Также в стратосфере проводятся исследования, при которых атмосфера мешает, а выходить совсем за её пределы слишком дорого. И мешает атмосфера обычно астрономам. Ещё в 1950-е в США был запущен первый в мире стратосферный телескоп с диаметром главного зеркала 30 см, который сделал непревзойдённые на то время снимки солнечной короны. В 1966-м в СССР для съёмки нашего светила под стратостатом в полёт отправилась 8-тонна платформа с автоматической обсерваторией «Сатурн». Главное зеркало её телескопа было диаметром 50 см (хотя конструктивно он был рассчитан аж на метровое зеркало).
Также в стратосферу летали и летают телескопы, работающие в рентгеновском и инфракрасном диапазонах; для них влияние атмосферы гораздо пагубнее, поскольку она поглощает такие виды излучения.
Ещё из интересных задач можно вспомнить изучение серебристых облаков. Это редкое атмосферное явление, которое появилось порядка 130 лет назад, вскоре после извержения вулкана Кракатау. Серебристые облака образуются на высоте около 80 км, только с мая по сентябрь и только в высоких широтах. Они становятся видны лишь тогда, когда солнце почти село и находится в 6—16° над горизонтом.
Большое подспорье стратосфера оказывает и в освоении космоса. Условия там очень похожи на космические: давление в 100 раз ниже, чем на уровне моря, высокий уровень солнечной радиации, по мере подъёма очень сильный перепад температуры, что тоже характерно для космоса: разница между «солнечной» и «теневой» стороной может достигать 170 градусов.
Карточка, используемая для перевозки бактерий на стратостате
Так во время одного из солнечных затмений NASA провело исследование поведения бактерий в среде похожей на Марс. Атмосфера Марса на поверхности примерно в 100 раз меньше земной, с более прохладными температурами и большим количеством радиации. В нормальных условиях верхняя часть нашей стратосферы похожа на марсианские условия, а во время солнечного затмения сходство с Марсом увеличивается. Луна сдерживает выброс излучения и тепла от Солнца, блокируя определенные ультрафиолетовые лучи, которые менее распространены в атмосфере Марса, и еще больше понижая температуру в стратосфере. В общем, стратосфера — отличная «песочница» для испытания различной техники и материалов.
Ещё одно интересное направление стратосферных исследований — испытание спутниковых систем связи. Из-за шарообразности Земли дальность прямой радиосвязи на поверхности планеты ограничена примерно 27 км, это расстояние до горизонта. А если поднять передатчик в стратосферу, то он будет «бить» уже на несколько сотен километров, этого вполне достаточно для натурных испытаний.
Также в стратосфере проводят биологические эксперименты: изучают способность различных живых организмов выживать в условиях высокого радиоактивного фона, который всегда сопровождает астронавтов за пределами нашей атмосферы.
А вот сами люди — редкие гости на высоте 30 км. Обычно они здесь бывают только проездом, когда их везёт ракета. В 1950-60-х годах было совершено несколько сверхвысотных стратосферных парашютных прыжков, но за последние 40-50 лет таких было только два. Последний из них, самый нашумевший, это прыжок Феликса Баумгартнера с высоты больше 36 км.
Удовольствие крайне дорогое: нужен большой стратостат, подъёмная капсула, скафандр с системой жизнеобеспечения — всё вместе это стоит миллионы долларов.
Наконец, одно из стратегических направлений в исследованиях — поиск конструкционных материалов, наиболее эффективных с точки зрения объёма, массы и прочности, поскольку одной из самых сложных и дорогостоящих задач в создании орбитальных и планетарных объектов, предназначенных для пребывания людей, является доставка с Земли крупных элементов конструкций. И в стратосфере изучают поведение полимерных композитов, из которых в будущем планируют выдувать (с последующим отверждением) целые помещения на орбите, Луне или Марсе. Учёные выясняли, как материал вёл себя в ходе отверждения, с какой скоростью, какие свойства обрёл. Также из свежего можно вспомнить исследование углеродоволоконного материала.
Конечно, наш новый проект «Космический ЦОД» обойдётся во много-много раз дешевле упомянутых экспериментов. Сейчас полным ходом идёт согласование запуска с ответственными инстанциями. Приехала большая часть оборудования, сервер собран и мы увязываем компоненты друг с другом.
Следите за новостями в блоге 🙂
Приглашаем Вас принять участие в нашем эксперименте и отправить свое сообщение 12 апреля на наш сервер в стратосферу.
Стратосфера: характеристики, функции, температура
Содержание:
Тропосфера простирается от поверхности Земли на высоту до 10 км. Следующий слой, стратосфера, находится на высоте от 10 до 50 км над земной поверхностью.
Высота мезосферы колеблется от 50 до 80 км. Термосфера от 80 до 500 км, и, наконец, экзосфера простирается от 500 до 10 000 км в высоту, что является пределом межпланетного пространства.
Характеристики стратосферы
Место расположения
Стратосфера расположена между тропосферой и мезосферой. Нижняя граница этого слоя зависит от широты или расстояния до экваториальной линии Земли.
Состав
Кроме того, в стратосфере есть слой с высокой концентрацией озона, называемый озоновым слоем или озоносферой, который находится на высоте от 30 до 60 км над поверхностью земли.
Химический состав
Самым важным химическим соединением в стратосфере является озон. От 85 до 90% всего озона, присутствующего в атмосфере Земли, находится в стратосфере.
Озон образуется в стратосфере в результате фотохимической реакции (химической реакции, в которую вмешивается свет), которой подвергается кислород. Большая часть газов в стратосферу поступает из тропосферы.
В стратосфере содержится озон (O3), азот (N2), кислород (O2), оксиды азота, азотная кислота (HNO3), серная кислота (H2ЮЗ4), силикаты и галогенированные соединения, такие как хлорфторуглероды. Некоторые из этих веществ появляются в результате извержений вулканов. Концентрация водяного пара (H2Или в газообразном состоянии) в стратосфере он очень низкий.
В стратосфере вертикальное перемешивание газа происходит очень медленно и практически отсутствует из-за отсутствия турбулентности. По этой причине химические соединения и другие материалы, попадающие в этот слой, остаются в нем надолго.
Температура
Температура в стратосфере имеет обратное поведение по сравнению с температурой тропосферы. В этом слое температура увеличивается с высотой.
Это повышение температуры связано с возникновением химических реакций с выделением тепла, где озон (O3). В стратосфере содержится значительное количество озона, который поглощает высокоэнергетическое ультрафиолетовое излучение Солнца.
Образование озона
В стратосфере молекулярный кислород (O2) диссоциирует под действием ультрафиолетового (УФ) излучения Солнца:
ИЛИ2 + УФ-СВЕТ → O + O
Атомы кислорода (O) обладают высокой реакционной способностью и реагируют с молекулами кислорода (O2) с образованием озона (O3):
При этом выделяется тепло (экзотермическая реакция). Эта химическая реакция является источником тепла в стратосфере и вызывает его высокие температуры в верхних слоях.
Характеристики
Стратосфера выполняет защитную функцию для всех форм жизни, существующих на планете Земля.Озоновый слой предотвращает попадание высокоэнергетического ультрафиолетового (УФ) излучения на поверхность земли.
Озон поглощает ультрафиолетовый свет и разлагается на атомарный кислород (O) и молекулярный кислород (O2), о чем свидетельствует следующая химическая реакция:
В стратосфере процессы образования и разрушения озона находятся в равновесии, которое поддерживает его постоянную концентрацию.
Таким образом, озоновый слой работает как защитный экран от ультрафиолетового излучения, которое является причиной генетических мутаций, рака кожи, разрушения сельскохозяйственных культур и растений в целом.
Разрушение озонового слоя
CFC соединения
С 1970-х годов исследователи выражают серьезную обеспокоенность по поводу разрушительного воздействия хлорфторуглеродов (ХФУ) на озоновый слой.
В 1930 году было введено использование хлорфторуглеродных соединений, получивших коммерческое название фреонов. Среди них CFCl3 (фреон 11), CF2Cl2 (фреон 12), C2F3Cl3 (Фреон 113) и C2F4Cl2 (фреон 114). Эти соединения легко прессуются, относительно инертны и негорючие.
Их начали использовать в качестве хладагентов в кондиционерах и холодильниках, заменив аммиак (NH3) и диоксид серы (SO2) жидкий (высокотоксичный).
Впоследствии ХФУ в больших количествах использовались при производстве одноразовых пластиковых изделий, в качестве пропеллентов для коммерческих продуктов в виде аэрозолей в баллончиках и в качестве чистящих растворителей для карт электронных устройств.
Широкое использование в больших количествах ХФУ создало серьезную экологическую проблему, поскольку те, которые используются в промышленности и при использовании хладагентов, выбрасываются в атмосферу.
В атмосфере эти соединения медленно диффундируют в стратосферу; в этом слое они разлагаются под действием УФ-излучения:
Атомы хлора очень легко реагируют с озоном и разрушают его:
Один атом хлора может разрушить более 100 000 молекул озона.
Оксиды азота
Оксиды азота NO и NO2 Они реагируют, разрушая озон. Присутствие этих оксидов азота в стратосфере происходит из-за газов, выбрасываемых двигателями сверхзвуковых самолетов, выбросов в результате деятельности человека на Земле и вулканической активности.
Истончение и дыры в озоновом слое
В 1980-х годах было обнаружено, что в озоновом слое над районом Южного полюса образовалась дыра. В этой области количество озона сократилось вдвое.
Также было обнаружено, что над Северным полюсом и по всей стратосфере защитный озоновый слой истончился, то есть уменьшился его ширина, потому что количество озона значительно уменьшилось.
Потеря озона в стратосфере имеет серьезные последствия для жизни на планете, и несколько стран признали необходимость и неотложность радикального сокращения или полного отказа от использования ХФУ.
Международные соглашения об ограничении использования ХФУ
В 1978 году многие страны запретили использование ХФУ в качестве пропеллентов в коммерческих аэрозольных продуктах. В 1987 году подавляющее большинство промышленно развитых стран подписали так называемый Монреальский протокол, международное соглашение, в котором были поставлены цели постепенного сокращения производства ХФУ и его полной ликвидации к 2000 году.
Некоторые страны не соблюдают Монреальский протокол, потому что это сокращение и устранение ХФУ повлияет на их экономику, поставив экономические интересы выше сохранения жизни на планете Земля.
Почему в стратосфере не летают самолеты?
Во время полета самолета действуют 4 основные силы: подъемная сила, вес самолета, сопротивление и тяга.
Самолет, которыйони летают в тропосфере
Коммерческие и гражданские самолеты на короткие дистанции летают примерно на 10 000 метров над уровнем моря, то есть у верхней границы тропосферы.
Все самолеты требуют герметизации кабины, которая заключается в нагнетании сжатого воздуха в кабину самолета.
Почему требуется герметизация кабины?
По мере того, как самолет набирает высоту, внешнее атмосферное давление уменьшается, а также уменьшается содержание кислорода.
Если бы в салон не подавался сжатый воздух, пассажиры страдали бы от гипоксии (или горной болезни) с такими симптомами, как усталость, головокружение, головная боль и потеря сознания из-за недостатка кислорода.
Если произошел сбой в подаче сжатого воздуха в кабину или произошла декомпрессия, возникнет аварийная ситуация, когда самолет должен немедленно снизиться, и все его пассажиры должны будут использовать кислородные маски.
Полеты в стратосфере, сверхзвуковые самолеты
На высотах более 10 000 метров в стратосфере плотность газового слоя ниже, и поэтому подъемная сила, способствующая полету, также ниже.
С другой стороны, на таких больших высотах содержание кислорода (O2) в воздухе меньше, и это требуется как для сгорания дизельного топлива, обеспечивающего работу авиационного двигателя, так и для эффективного наддува в салоне.
На высоте более 10 000 метров над поверхностью земли самолет должен двигаться на очень высокой скорости, называемой сверхзвуковой, достигая на уровне моря более 1225 км / час.
Недостатки сверхзвуковых самолетов, разработанных на сегодняшний день
Сверхзвуковые полеты производят так называемые звуковые удары, которые представляют собой очень громкие звуки, похожие на гром. Эти шумы негативно влияют на животных и людей.
Кроме того, этим сверхзвуковым самолетам необходимо использовать больше топлива и, следовательно, производить больше загрязняющих веществ в воздухе, чем самолетам, которые летают на меньшей высоте.
Для изготовления сверхзвуковых самолетов требуются гораздо более мощные двигатели и дорогие специальные материалы. Коммерческие полеты были настолько дорогостоящими, что их выполнение было нерентабельным.
Ссылки
Распад семьи: причины, последствия, решения
Что находится в стратосфере?
Объясним сначала, что такое стратосфера? И что она из себя представляет?
Стратосфера содержит около 90 процентов всего озона планеты, а остальная часть находится в тропосфере, части атмосферы, которая сразу следует сразу после стратосферы, то есть это 10 процентов озона. Озон — состоящая из трёхатомных молекул O3 аллотропная модификация кислорода. При нормальных условиях — голубой газ. При сжижении превращается в жидкость цвета индиго. В твёрдом виде представляет собой тёмно-синие, практически чёрные кристаллы.
Толщина нашего озона на высоте около тридцати километров будет составлять толщину от 1,7 миллиметров до 4 миллиметров, этого достаточно для защиты нашей фауны и флоры, где мы живем и обитаем. Также озон содержится и на поверхности земли. В одних случаях он губителен, а в других нет. Для людей болеющих болезнями легких он полезен, найти озон можно в сосновых борах, сосны вырабатывают соединения О3. Озон губителен для урожая и роста лесов, поэтому при увеличении озона на земле происходит упадок сельскохозяйственной культуры и выработка простого кислорода, который необходим для всех живых существ.
В двадцать первом веке появилась такая проблема как истощение озонового слоя. Это происходит над материком Антарктидой, там содержание озона в стратосфере всего лишь 60 процентов – это называют озоновой дырой. Озоновая дыра пропускает различные лучи из космоса, которые убивают все живое на земле.
Полёты в стратосферу начались в 30-х годах XX века. Широко известен полёт на первом стратостате (FNRS-1), который совершили Огюст Пикар и Пауль Кипфер 27 мая 1931 года на высоту 16,2 км. В СССР полёты Пикара вызвали большой интерес, и в 1933—1934 годах были построены стратостаты «СССР-1» и «Осоавиахим-1».
30 сентября 1933 «СССР-1» конструкции К. Д. Годунова совершил полёт на высоту 19 км, установив новый мировой рекорд. Вместе с Годуновым стратостат пилотировали Э. К. Бирнбаум и выдающийся советский воздухоплаватель Г. А. Прокофьев. Современные боевые и сверхзвуковые коммерческие самолёты летают в стратосфере на высотах до 20 км ввиду более стабильных летных условий (хотя динамический потолок может быть значительно выше).
Высотные метеозонды поднимаются до 40 км; рекорд для беспилотного аэростата составляет 51,8 км. В последнее время в военных кругах США большое внимание уделяют освоению слоёв стратосферы выше 20 км, часто называемых «предкосмосом» (англ. «near space»). Предполагается, что беспилотные дирижабли и самолёты на солнечной энергии (наподобие NASA Pathfinder) смогут длительное время находиться на высоте порядка 30 км и обеспечивать наблюдением и связью очень большие территории, оставаясь при этом малоуязвимыми для средств ПВО; такие аппараты будут во много раз дешевле спутников.
eponim2008
Жизнь замечательных имен
Короткие истории о вещах и о людях, давших им свое имя
Что такое стратосфера?
Более 80% земного воздуха сосредоточено на высотах до 10 – 15 километров, в так называемой «тропосфере». В тропосфере «делается» вся земная погода. Здесь происходит движение воздушных масс, которые в зависимости от их скорости могут быть ласковым бризом, а могут стать ужасным ураганом. Здесь происходит образование облаков, которые потом выпадают на землю снегом и проливаются дождем. В общем, самое интересное в земной погоде происходит здесь.
Выше тропосферы, на высотах от 11 до 50 километров находится слой атмосферы, который называется стратосферой. Воздух здесь разрежен до такой степени, что без специального скафандра (высотного костюма) человеку не выжить. Во-первых, не хватит кислорода для дыхания. А во-вторых, при таком низком давлении кровь закипает при температуре человеческого тела. Это ведет к закупорке сосудов и к практически мгновенной смерти. Поэтому люди поднялись в стратосферу только в 1930-х годах. 27 мая 1931 года швейцарцы Огюст Пикар и Пауль Кипфер поднялись на высоту 16.2 км. Для этого они использовали воздушный шар, наполненный водородом, к которому была прикреплена специальная герметичная кабина, гондола. Аппарат этот назвали стратостатом.
Не следует думать, что полет в стратосферу был веселой прогулкой. Стратостат наполняли легко воспламеняющимся газом водородом. Уже поэтому полет на этом аппарате называли «танго с пороховой бочкой». Конструкция гондолы тоже была не совершенна.
О том, что полеты в стратосферу были настоящим подвигом, говорит и трагический полет советских стратонавтов. 30 января 1934 года в стратосферу поднялся советский стратостат «Осоавиахим-1» с тремя членами экипажа в гондоле. Стратостат поднялся на рекордную высоту в 22 км, но при спуске произошла катастрофа. Воздушный шар заледенел, гондола оторвалась на высоте в несколько километров. Экипаж погиб.
Так что, как видим, изучение стратосферы началось относительно недавно. Что же выяснили ученые?
Главным открытием, вероятно, следует считать открытие озонового слоя, который размещается в стратосфере на высоте от 15 – 20 (над полюсами) до 55 – 60 км (над экватором). Озон – это кислород, молекулы которого состоят не из 2, как обычно, а из 3 атомов. Озон образуется на высоте около 30 км в результате бомбардировки кислорода космическими лучами. Озоновый слой очень тонок, всего несколько миллиметров. Между тем, этой толщины достаточно для защиты земной поверхности от губительного для жизни ультрафиолетового излучения Солнца. Если бы не озоновый слой, никакой жизни на нашей планете не существовало бы.
Сумасшедшие фантасты то и дело придумывают апокалиптические сценарии. На высоту в 20 километров запускается ракета с контейнером водорода. Контейнер раскрывается, водород реагирует с озоном, образуя воду, которая тут же застывает на космическом холоде и градом осыпается вниз. А в это время внизу – уже мертвая пустыня. Все выжжено жестоким ультрафилетом. На безжизненную земную поверхность из стратосферы уже обрушивается растаявшая вода, смывая все остатки того, что мы называем (то есть, называли) жизнью.
Все, конечно, не так просто и радостно, как излагается. Озоновый слой – спасибо космическому излучению – постоянно возобновляется. Одного баллона водорода для его уничтожения не хватит. Однако, и технические возможности человечества возрастают. Так что осторожность проявлять не мешает.
В свое время ученые «подняли шум», когда обнаружили, что вещества, называемые «фреонами» и содержащие в своем составе фтор, бурно реагируют с озоном. Фреоны – газы, для человека безвредные, которые раньше широко использовались в холодильных установках и в баллончиках-распылителях. Но при производстве этих газов в промышленных масштабах и в массовых количествах их концентрация в атмосфере могло бы возрасти настолько, чтобы привела бы к уничтожению озонового слоя и инициировала тем самым всемирную катастрофу. Никому на земле не захотелось оказаться в положении цыпленка-табака на раскаленной сковородке. Поэтому фреоны, в настоящее время к использованию запрещены.
Другую опасность для озонового слоя представляют космические корабли, которые при взлете «протыкают» в нем дыры. Конечно, дыры эти очень быстро затягиваются, однако над космодромами активность ультрафиолетовых лучей гораздо выше. И ясно почему.
Стратосфера, таким образом, защищает жизнь на Земле. С другой стороны, это – дверь в открытый космос. Когда самолеты стали подниматься в стратосферу, летчики увидели и черное звездное небо днем, и отчетливую шарообразность земли.
Собственно говоря, стратосферу и начали изучать, как будущее поле военных действий. Уже во время Первой мировой войны у немцев появились чрезвычайно мощные пушки. Одну из них называли «Толстой Бертой» по имени Берты фон Крупп, жены немецкого «стального короля», на заводах которого и были созданы могучие орудия. Эти пушки позволяли обстреливать города и крепости противника очень мощными снарядами с очень большого расстояния, так сказать, из-за горизонта. Ни сама пушка, ни ее команда, тем, кого обстреливали, видна не была. Снаряды падали неизвестно откуда. В верхней части своей траектории эти снаряды уже поднимались в стратосферу, где плотность воздуха совсем другая, чем у поверхности земли. Поэтому уже имевшиеся артиллерийские таблицы для стрельбы с закрытых позиций (напоминавшие немного знаменитые таблицы Брадиса) уже не «работали», а для расчета новых таблиц следовало знать плотность воздуха на больших высотах. Так что одно из первых научных измерений, производимых стратонавтами, было измерение плотности воздуха и ее зависимость от высоты над Землей.
Присматривались к стратосфере и летчики. Идеальное место для полетов бомбардировщиков! Снаряды от зениток на такую высоту не долетают. Да и не увидать с земли столь высоко летящий самолет. Так что если кто думает, что дальние перелеты, которые практиковались в СССР в 1930-х годах, делались только ради рекордов, он ошибается. Совершались эти полеты на дальних бомбардировщиках, типа АНТ которые делало в то время конструкторское бюро А.Н.Туполева, и на рекордных по тогдашним временам высотах. В полете летчики тепло одевались и пользовались кислородными масками. Но вот опасны ли на этих высотах космические лучи, никто не знал. Поэтому первые стратонавты производили также и измерение интенсивности космического излучения.
В стратосферу стали запускать беспилотные воздушные шары-зонды. Они поднимались на высоты 40-50 километров, измеряли параметры атмосферы, после чего приборные отсеки отстреливались и спускались на землю.
Благодаря исследованиям стратосферы в середине 1950-х годов, когда стали разрабатывать космические полеты, конструкторы и ученые уже имели представление о том, в каких условиях придется летать космическим кораблям и что угрожает их пилотам.