Что лучше кулер или водяное охлаждение
Ещё несколько доводов в пользу того, почему водяное охлаждение не нужно вашему ПК
Привет, Хабр! Представляю вашему вниманию перевод статьи из журнала APC.
Перед тем как вы погрузитесь в изучение особенностей СВО, позвольте мне попытаться отговорить вас от этой затеи или, быть может, заставить ещё больше восхититься ею.
Давайте поговорим об одном диссиденте из мира пользовательских ПК. Да, речь пойдёт о водяном охлаждении. В частности, почему это не есть хорошо. На протяжении пяти лет мне довелось собрать около 60 персональных компьютеров. 12 из них имели различные СВО, не считая сборки AIO. Так что я имею достаточно полное представление об этом весьма специфичном хобби. И, увы, могу сказать о том, что водянка – это лажа. Далее я объясню подробно, почему.
01. Цена
02. Компоненты
Даже не знаю, с чего начать. Когда вы задумываетесь о крошечных дорогостоящих компонентах для системы водяного охлаждения, то рассуждаете примерно следующим образом: «Начну сборку с мягких трубок, ведь это проще всего», а потом думаете: «Вот докуплю ещё компрессионные фитинги, и всё будет готово». И хотя технически это возможно, сборка при помощи одних только мягких трубок и стандартных фитингов– не самый простой способ.
И что интересно: чем больше компонентов системы жидкостного охлаждения вы собираете, тем больше опыта приобретёте, и тем более вероятно, что будете склонны пополнять и использовать этот арсенал. И это в свою очередь повышает цену конечной сборки.
03. Приобретение опыта
А потом вам нужно будет применить полученные знания на практике, под которой подразумеваются многочисленные пробы и ошибки, исследования и планирование. И этот процесс кажется бесконечным.
Вот вам основные рекомендации:
04. Сгибание трубок
После предварительных приготовлений вы приступите к сгибанию трубок, что само по себе является мистическим действом. Честно говоря, я всегда задаюсь вопросом, почему это срабатывает каждый раз, когда я делаю это.
Когда речь идёт о сгибании, следует обращать внимание на материал: сделаны ли трубки и на основе ПЭТГ или простого акрилового волокна (трубки, сделанные из ПЭТГ, имеют более низкую точку перегиба, иные нагревательные характеристики, ударостойкие, но менее прозрачные). Затем вам нужно наметить место сгиба, угол, под которым вы хотите согнуть трубки, и приспособление для измерения углов.
Большинство, включая меня, сошлись на мнении, что оптимальный угол сгиба – 90°. Если он будет больше, то секция трубок будет выглядеть неаккуратно и вообще несравнимо с тем, как вы себе представляли это. Если только вы не профессионал в этом деле.
С другой стороны, если вы нацелились добавить больше углов, вам доступно множество инструментов для сгибания трубок. Но, я думаю, скорее всего это кончится тем, что вы будете сгибать трубки об углы стола или о какой-нибудь другой прямоугольный предмет.
И ещё: вы можете посмотреть тысячу видео и прочитать миллион туториалов по сгибанию труб, но лучший способ научиться этому – пытаться делать это самостоятельно.
05. Повышение производительности
Обидно признавать это, но, как показывает практика, заметного прироста производительности ждать не стоит.
Да, безусловно, компоненты будут нагреваться меньше, однако их замкнутость в пределах собственной архитектуры может привести к тому, что они могут сыграть в кремниевую лотерею. Если вы большой фанат оверклокинга, СВО определённо может быть вам полезной, однако её недостаточно, чтобы решить проблемы со стабильностью. В действительности можно ожидать увеличения производительности примерно на 10-15% по сравнению с системами воздушного охлаждения, и это ещё в лучшем случае.
Водянку выгодно будет приобретать владельцам процессоров с функцией авторазгона, таких как Ryzen, особенно с технологией Precision Boost Overdrive и GPU Boost для видеокарт.
Лучшее в технологии жидкостного охлаждения – это возможность уменьшить количество шума, издаваемого вашим компьютером. И это вполне достижимо. Соедините в единую петлю два больших 360 мм. радиатора, процессор и видеокарту, и вы сразу же заметите, что шума от вашего ПК стало гораздо меньше в сравнении с традиционным охлаждением через кулеры и тепловые трубки.
06. Обслуживание
Итак, вы собрали и запустили СВО, она круто выглядит, температура внутри корпуса ниже, а производительность компьютера немного выше. Теперь вам нужно научиться поддерживать её работоспособность. Это значит, что в первую неделю вы должны избавиться от оставшегося в системе воздуха. Для этого вы можете просто выждать какое-то время или же можете наклонять и вращать корпус так, чтобы переместить пузырьки воздуха в резервуар, а потом заполнить его под горлышко ещё большим количеством охлаждающей жидкости. Скорее всего, над последним вариантом вам придётся изрядно поломать голову. Как только справитесь с этим, поздравляем – ваша система работает так, как и было задумано.
Однако со временем без должного ухода охлаждающая жидкость может загрязнить водоблок, что может привести к снижению его производительности и уменьшению тепловой мощности в процессе эксплуатации. Это значит, что каждые 6-12 месяцев (в некоторых случаях больше, если у вас качественный хладагент), вам придётся осушать всю систему, разбирать её, промывать радиатор и водоблок, снова собирать и заполнять водой.
07. На самом деле
На самом деле вам придётся выложить кучу денег, чтобы соорудить всю конструкцию, и уйма времени на то, чтобы разобраться, как собрать её, и на то, чтобы распланировать покупку деталей, но в итоге окажется, что повышение производительности, за исключением снижения шума, ничтожно мало. Добавьте сюда беспокойство, которое возникает при разборке неоправданно дорогих компонентов (спасибо Nvidia), необходимых для создания системы и поддержания её работоспособности, и вы придёте к выводу, что для обычного пользователя нет никакого смысла делать это.
Но мне как человеку, собравшему 12 систем жидкостного охлаждения и всё ещё собирающему их, интересно узнавать что-то новое с каждой сборки. И потому я продолжу делать это до тех пор, пока не потеряю интерес к этому мазохистскому хобби. Зачем? Ну, помимо того, что мои нежные ушки миллениала желают, чтобы ПК издавал меньше шума, чем при взлёте самолёта с реактивным двигателем, подобная сборка выглядит чертовски круто. СВО удивительна, успешно собрать её – всё равно что достичь вершины горы. И, оглядываясь на многочисленные разочарования и огромные траты денег и времени, которые нужны для того, чтобы создать это чудо производительности с коротким жизненным циклом, в то время как число ядер и тактовая частота приобретают всё больший вес в нашей индустрии, приходишь к выводу о том, что в этом мазохистском хобби есть что-то определённо прекрасное.
средненькая «Водянка» или лучший «Воздух» (полная версия)
В этом материале я буду сравнивать средненькую Систему Водяного Охлаждения с лучшими воздушными кулерами, а также опишу свой первый опыт в подборе/сборке/оптимизации СВО для ПК! Особо ленивым советую перейти сразу к части 4ой (тестирование).
ЧАСТЬ 1 (Вступление)
В этом материале я буду сравнивать средненькую Систему Водяного Охлаждения с лучшими воздушными кулерами, а также опишу свой первый опыт в подборе/сборке/оптимизации СВО для ПК! Особо ленивым советую перейти сразу к части 4ой (тестирование).
ЧАСТЬ 1 (Вступление)
ЧАСТЬ 2 (Выбор комплектующих)
Подбор компонентов для СВО было моим первым испытанием, да-да именно испытанием, ведь стоит один раз ошибиться, купить шумную помпу или сэкономить на фулкавере и весь смысл моей затеи сразу теряется. Да, будет отличное охлаждение, красиво/эстетично, но шумно или не достаточно производительно для «утирания носа воздушкам» и таких примеров можно привести много!
Мой совет всем начинающим «водяньщикам», обязательно консультируйтесь со спецами в соответствующих ветках!
Осмыслив идею, к которой я стремлюсь, и сумму которой располагаю, приоритет по выбору компонентов был следующим: цена/производительность/качество/эстетика! Именно по совокупности этих качеств я и выбрал одну из популярных фирм » ЕК» и большинство моих компонентов именно этой фирмы, а также система будет состоять только из основных компонентов: помпа, резервуар, водоблок CPU, водоблок GPU, радиатор, вентиляторы, шланги, фитинги и жидкость! Никакие подсветки, датчики потоков, термодатчики и т.д. и т.п. я навешивать не буду.
1) Помпа! Один из самых ключевых элемент, именно от ее работы зависит тишина и уровень потока в системе, именно она будет отвечать за своевременную циркуляцию жидкости. Чуть ковырнув иннет и посоветовавшись с опытными людьми, я выбрал Swiftech MCP350 Laing DDC-1T Pump. Тихая, качественная, производительная, компактная, классика + цена в 2128р просто не оставила мне шансов.
6) Вентиляторы. Изначально в спешке были выбраны мной Floston Red impeller 120P, как оказалось в последствии, они являются «узким местом», гул ротора даже на низких оборотах и не возможность снижения оборотов ниже 800об/мин, даже при использовании реобаса! Не долго думая я решил обратится к уже хорошо известной мне по личному опыту фирме Arctic Cooling и выбрать Arctic Cooling ARCTIC F12 PWM, как оказалось в последствии, я не прогадал! Одни из самых дешевых вентиляторов на гидродинамическом подшипнике с возможностью подключения и мониторинга до 5шт на один 3/4pin разъём и скоростью вращения 300-1350об/мин. То, что нужно! Я подключил по два вентиля на три канала реобаса.
— для раствора применяется дистиллированная/деионизированная вода;
— содержит антикоррозийные и антибактериальные добавки;
— не агрессивна по отношению к оргстеклу, резине и других уплотнительных материалов;
— изготовлено в соответствии с ROHS.
ЧАСТЬ 3 (Особенности сборки)
Особо не буду заострять внимание на комплектации, т.к. уже и так куча «буквенных символов, не несущих особой смысловую нагрузку» и укажу лишь ключевые моменты сборки. С каждым компонентом присутствует инструкция и не смотря на то, что «могучего и великого» в неё не включили, сама сборка интуитивна и проста, по крайней мере для меня. Матплату и видеокамеру снимать придется, для удаления воздушных кулеров и скопившейся пыли то-же, да и просто для удобства/качества монтажа/сборки, что немаловажно, т.к. сами представляете последствия течи, в результате закрученного на «отчипись» фитинга!
Будьте осторожны иннет-лимитчики, трафик!
А вот с фулкавером GTX580 хлопот чуть больше, во первых, необходимо заняться «получасовым чертежным оригами», разместить и вырезать термопрокладки по инструкции из разной толщины заготовок. А во вторых, после размещения «оригами» по своим местам, необходимо положить фулкавер на лицевую сторону и разместить на тыльной/контактирующей стороне пластиковые проставки, для соблюдения необходимого зазора между фулкавером и печатной платой видео карты. Но тут не все так просто, ведь проставки не фиксируются, а просто ставятся на крепежные отверстия и накладывая видеокарту сверху, уже с размещенными в ней винтами, приходится крутится, щурится и целится, чтоб не сдвинуть свободно стоящие проставки с положенных мест.
Процесс заправки особого труда не вызывает, тут главное внимательность и рулон хорошей туалетной бумаги, обворачиваем соединения, откручиваем помпу и вынимаем на длину шлангов. Далее я проверял систему на течь просто не включая ПК, подключил СВО минуя помпу к крану, 5-10мин и все станет ясно. Затем помпу на место, откручиваем крышку, запускает ПК и тихонько льем жидкость из бутылки, когда ее станет достаточно будет ясно. Затем самое интересное, удаление воздушных пробок из системы и радика, этим лучше заняться вдвоем, один держит помпу и подливает жидкость, другой вращает, трясёт, переворачивает ПК вверх ногами, после выхода всех пузырьков, крышку и помпу на место.
фото с одним радиком:
фото с двумя радиками:
ЧАСТЬ 4 (Тестирование)
методика тестирования GPU:
— температура в комнате +22-24С;
— вентиляторы СВО в двух режимах: 800об/мин и 1300об/мин;
— корпусная вентиляция 1х140мм на задней стенке при 700об/мин;
— прогрев проводился при помощи «Ведьмак2 » с этими настройками и вот так разогнанной ВК.
— тестирование проходило как с одним, так и с двумя радиаторами;
— температура VRM не замерялась, т.к. была на 2-3С меньше температуры GPU, во весь период тестирования, доказано в этом материале!
смотрим результат 1 и 2 радиатора:
Нуууууу. вариант с 2мя радиками при 800об/мин мне нравится безусловно больше! Разница в целых 9С и потраченные деньги на покупку второго радика, отрабатываются сполна!
И по вышеизложенному можно сделать вывод, что все уперлось в производительность водоблока, что было предсказуемо и вполне ожидаемо!
Вот это победа. И не стоит забывать, что даже в режиме AUTO, воздушные кулера отчётливо слышны и навряд ли сравнятся по уровню шума с 6х800об/мин
методика тестирования CPU:
— температура в комнате +22-24С;
— вентиляторы СВО при 800об/мин;
— вентилятор SCYTHE Mine 2 при 1600об/мин;
— профильный 2500К был разогнан до 5.0ГГц при 1.455v;
— память Kingston HyperX Intel® XMP (KHX1600C9D3X2K2/8GX) @1866 (9-11-9-24)
В случаи СВО, узким местом является водоблок, т.к. увеличение вентиляции до 1300об/мин ничего не дало, как и не дало при использовании одного радиатора!
А нечего здесь подводить! Стоимость моей СВО = 16100р. Большинство скажет, «Да-ну-на!», но только не «водяньщики», к которым я теперь и с удовольствием отношусь.
ЗЫ. хочу лишь напомнить, что это только мой первый опыт в СВО на ПК!
Увлёкшись всем выше проделанным, я решил довести конечный результат до ума!
Для этого мне понадобились, корпус, шлифовка процессора, перепайка помпы для снижения оборотов, и бэксплэйт на печ580, много расписывать не буду, голова болит после вчерашнего, всё в фото:
Помпа Swiftech MCP350 Laing DDC-1T Pump очень качественная, надёжная и мощная! Но работает постоянно на всю катушку, а это 3800об/мин, при нахождении в непосредственной близости от ПК, она хоть и не напрягает, но отчётливо слышна! Ковырнув соответствующие ветки нашего замечательного ресурса, я узнал, что данная помпа свободно перепаивается на 4pin и подключается к CPU-FAN на матплате!
Напряжение/обороты помпы можно свободно занижать, но стартовое напряжение должно быть не менее 9 вольт или 3400об/мин, это необходимо для нормального старта и не влечёт уменьшение срока эксплуатации!
Подключение к матплате, очень чревато выгоранием коннектора питания и скорее всего выхода матплаты из строя! Необходимо знать сколько ватт матплата даёт на данный коннектор и сколько требует помпа при старте!
Еще раз повторюсь, что производить подобное вмешательство в штатный режим рабрты устройств не желательно и влечёт за собой: потерю гарантии, уменьшение срока службы и возможно выход из строя!
В биосе матплаты я выставил значение «9» для оборотов CPU-FAN в моём случаи это было 3400об/мин, как раз то количество оборотов которое необходимо помпе для «нормального старта» или 9v. После чего при запуске системы, я добавил в автозагрузку штатную утилиту «ASRock eXtreme Tuner», которая и понижает обороты помпы до 3000об/мин! Для чего это нужно было? Для тихой работы ПК, для уменьшения нагрева помпы при работе и + ко всему я не потерял ни градуса, как оказалось 3000об/мин совсем не уступают 3800!
В свою очередь корпус очень порадовал, удобством сборки, качеством и отличным кабель-менеджментом! Ещё раз респект комраду timerhan, за помощь в выборе!
Собственно дальше идут фото конечного результата «моего новогоднего апгрейда» и Вам осталось только поднять большой палец вверх или наобород опустить его в низ!
PS. Господа! Уделите ещё минуточку внимания!
По просьбе комрада «Allex. » хочу ещё раз вам напомнить, что многое описанное в моей статье, является не совсем безопасным. Стоит учитывать тот факт, что СВО/СЖО достаточно опасная штука! А как убедил меня «Allex. » так и ещё абсолютно противопоказана: гражданам не умеющим трезво оценивать обстановку и отдавать отчёт своим действиям, а так-же несовершенно летним, лицам с явно выраженной инвалидностью, беременным женщинам и слабовидящим.
Гражданам употребляющим психотропные вещества, алкоголь, наркотики в момент употребления и в период действия.
А так же прошу не расценивать мою статью, как инструкцию к действиям, за последствия которых я ответственности не несу!
Почему водянки не нужны в обычных ПК, или мифы об СВО
Минутка физики: водянки и кулеры работают одинаково. Ну, почти
Не все знают, но внутри обычной медной теплотрубки залита… жидкость, обычно — вода. Из-за пониженного давления она кипит при более низкой температуре, к тому же имеет высокую теплоемкость — короче говоря, это эффективный и дешевый теплоноситель. Разогреваясь и испаряясь рядом с горячей крышкой процессора, она переносится к более холодному радиатору, где конденсируется и вновь по специальному фитилю стекает к CPU, после чего цикл повторяется.
В СВО, очевидно, также используется жидкость, однако работает она чуть иначе: течет она не самостоятельно, а под действием помпы, и не испаряется, а просто нагревается у процессора и охлаждается у радиатора. Так что, как видите, на деле обычное воздушное охлаждение не такое уж и воздушное, оно действительно достаточно близко к водянкам.
Краткий экскурс в физику закончен, пора переходить непосредственно к компьютерам.
Водянка в игровых ПК — красиво, но абсолютно бесполезно
Никто не спорит, водянка зачастую смотрится внутри корпуса куда красивее, чем большая башня. К тому же маркетологи специально упирают на топовость — дескать, ты купил мощный CPU и видеокарту, крутую память и материнку. Очевидно, нужен классный охлад — то есть водянка.
Однако есть одно важное но: игры, даже самые тяжелые и процессорозависимые, типа Watch Dogs 2 или Assassin’s Creed Odyssey, просто не могут нагрузить процессор также, как бенчмарки или рабочие задачи. Знаете, сколько ест в играх горячий Core i9-9900K в разгоне до 5 ГГц? Всего около 70-90 Вт. Это в два раза меньше, чем в бенчмарках. Такое количество тепла абсолютно без проблем отведет любая популярная башня за полторы тысячи рублей.
Но вы можете сказать — под водянкой в играх можно добиться 40-50 градусов, когда лучшие суперкулеры скорее всего смогут охладить топовые CPU лишь до 60-70. Да, тут все верно, СВО действительно снизит температуру процессора в играх. А зачем? Что это дает? Позволит повысить частоты? Да нет, вы раньше упретесь в возможности самого CPU. Увеличит срок жизни? Ну да, проживет кристалл не 30 лет, а 20 — действительно большая разница.
А что по шуму? Водянки всегда считаются более тихими, но так ли это на деле? Скорее нет, чем да. Проблема тут в том, что радиаторы СВО более плотные, чем у воздушных кулеров, поэтому чтобы продуть их нужны мощные высокооборотистые вентиляторы с большим давлением. А такие вентиляторы серьезно шумят.
За примерами далеко ходить не нужно — возьмем, достаточно крутую двухсекционную СВО NZXT Kraken X62 с двумя родными 140 мм вентиляторами и сравним с суперкулером Phanteks PH-TC14PE с такими же вертушками, который вдвое дешевле. Эффективность этих двух решений сравнима, а вот шум… Раскочегарив вентиляторы водянки на максимум, можно получить аж 61 дБ. С таким уровнем шума поработать получится только в наушниках. При этом у Phanteks все куда лучше — 49 дБ можно сравнить с урчанием холодильника, и такой шум сложно назвать громким или отвлекающим.
СВО не поможет в охлаждении новейших десктопных процессоров от Intel и AMD
Ладно, скажете вы — не все играют, многие на компьютерах еще и работают: обработка видео, 3D рендеринг, различные расчеты — все это сильно нагружает процессор, и даже суперкулеры тут не справятся. Увы, но в случае с Ryzen 3000 и Intel Core 8-ого и 9-ого поколения это не так. Проблема большинства десктопных процессоров от Intel, начиная с 3-его поколения, это терможвачка под крышкой. В случае с топовыми Core i5, i7 и i9 последнего поколения компания перешла на припой, но, как показывают тесты, его качество тоже оставляет желать лучшего.
Что же в итоге получается? Кристалл CPU, очевидно, сильно разогревается, и цель термоинтерфейса — передать это тепло на крышку, откуда его сможет отвести охлаждение. И, как вы уже догадались, терможвачка делает это из рук вон плохо: как показывает практика, снятие крышки и замена этого термоинтерфейса на жидкий металл позволяет снизить температуру CPU зачастую аж на 20 градусов. В случае с припоем разница меньше, но все еще внушительна — до 8-10 градусов.
Вот и получается забавная и грустная картина одновременно: ваш суперкулер или водянка в теории могут отвести 200-250 Вт, а на практике из-за экономии Intel ваш процессор, потребляя 150 Вт, уже перегревается. Конечно, как я уже сказал, вполне можно скапануть процессор — однако согласитесь ли вы это делать с вашим рабочим CPU, тем самым теряя гарантию и рискуя его повредить? Далеко не факт. А без этого СВО будет бесполезна с тем же Core i9-9900K.
В случае с Ryzen 3000 ситуация интереснее. С одной стороны, AMD использует качественный припой: его замена на жидкий металл в лучшем случае подарит вам пару градусов, так что игра свеч не стоит. Но вот сами кристаллы с ядрами маленькие, более того — у топовых CPU их две штуки и они рядом, ну и к тому же они расположены с краю, когда обычно лучший прижим и охлаждение что суперкулеры, что водянки обеспечивают в центре.
Все это и приводит к тому, что Noctua NH-U14S, способный удерживать температуру 100-ваттного Ryzen 7 2700X в жестком Prime95 на уровне 75 градусов, с трудом справляется с таким же 100-ваттным Ryzen 7 3700X, удерживая температуру последнего чуть выше 90 градусов. Так что, очевидно, попытка заменить кулер на водянку тут ничего не даст — в высоких температурах виновато не качество воздушного охлаждения, а внутренние особенности самих Ryzen 3000.
Также, возможно, кому-то придет в голову другая интересная затея: взять более слабый CPU и раскочегарить его с помощью СВО до уровня более старшего. Увы, эта затея опять же не осуществима: к примеру, чтобы 6-ядерный Core i5-9600K добрался до уровня производительности 8-ядерного Core i7-9700K, его нужно ускорить на треть, то есть повысить частоту до 6 с копейками ГГц. Очевидно, что водянки для этого мало — нужен уже жидкий азот.
Получается, водянки не нужны?
Конечно нет. Они все еще нужны там, где и раньше — в топовых рабочих станциях. Взять, например, тот же AMD Threadripper 3990X. 64 ядра, 128 потоков, теплопакет в 280 Вт — однако на деле он потребляет все 350. При этом у него 8 процессорных кристаллов, и каждый из них греется не очень сильно из-за не самых высоких частот, то есть таких проблем как у Ryzen 3000 нет.
Вот и получается, что нужно с достаточно большой площади снять овер 300 Вт. Даже большие суперкулеры тут справятся на пределе возможностей, а вот для трехсекционных заводских СВО или тем более самосборов это не проблема. Это же касается и топовых 28-ядерных Xeon и прочих HEDT-процессоров — у них гигантские тепловыделения, и водянки для них мастхэв.
А что насчет видеокарт?
Тут все интереснее. Во-первых, видеокарты Nvidia имеют умный драйвер, который слегка повышает частоту при снижении температуры. Правда, разница едва ли превысит полсотни мегагерц, что даст в лучшем случае пару fps, так что отдавать за это лишние 15-20 тысяч рублей за водоблок явно не стоит.
Во-вторых, есть видеокарты, тепловыделение которых из коробки улетает в небеса. Взять ту же AMD Radeon RX Vega 64 Liquid Cooled — ее тепловыделение в Crysis 3 достигает аж 370 Вт. При разгоне — свыше 450 Вт! Очевидно, тут даже массивная воздушная система охлаждения с тремя вентиляторами скорее всего не справится, а вот СВО — вполне.
Думаете, что у Nvidia меньше? Как бы не так. Взять например ASUS RTX 2080 Ti Matrix. Ее официальный BIOS позволяет поднять TDP до 360 Вт. Более того, для GTX 1080 Ti существуют полностью разлоченные BIOS, с которыми тепловыделение уходит за 400 Вт. Разумеется, отвести такое количество тепла сможет лишь качественная СВО.
Но, опять же, стоит понимать, что такие заоблачные TDP имеют лишь топовые видеокарты и то под серьезным разгоном. У большинства среднеуровневых Nvidia GTX 1600 или AMD RX 5000 тепловыделение находится на уровне 150-200 Вт, и с этим вполне справится воздушное охлаждение с парой вентиляторов. Тратить деньги на СВО в случае нетоповых видеокарт просто нет смысла — будет выгоднее купить более мощную видеокарту, чем пытаться выжать все соки из более слабой.
Перейдем к минусам — водянки требуют обслуживания
Чем хороши кулеры? Они требуют минимум обслуживания — достаточно раз в год продувать их от пыли и он верой и правдой прослужит вам много лет. Самое худшее, что может случиться — это перестанет работать вентилятор, однако с учетом того, что практически всегда они все имеют стандартные размеры, его можно легко заменить.
Вторая и куда более массовая проблема — заиливание. Как говорится, вода камень точит, а уж пластик трубок тем более. Ситуация еще усугубляется, если вода подкрашена. Как итог — кто-то через год, кто-то позже, но все же достаточное количество людей сталкиваются с тем, что в лучшем случае вырастают температуры CPU, а в худшем забитая жижей помпа просто перестает работать.
И приходится разбирать всю систему, чистить радиатор и помпу, после чего заливать новую воду. А ведь далеко не все СВО разборные — хватает и необслуживаемых. Их в таком случае, если кончилась гарантия, можно смело нести в мусор.
Ну и третья проблема — умирает помпа. Это бывает и из-за жижи, и просто потому что это механика. Да, у современных помп время наработки на отказ зачастую составляет десятки тысяч часов, но так везет далеко не всем. Опять же, помпа меняется не везде — обычно только в кастомных СВО.
Конечно, стоит понимать, что возможно вам повезет, и у вас водянка проработает 5 лет без проблем. Но подумайте над тем, что будет, если вам не повезет — особенно если учесть, что у воздушного охлаждения вышеуказанных проблем нет вообще.
Выводы — водянка в домашнем компьютере не нужна
Подведем итоги. Водянки не помогают в разгоне современных CPU. Водянки не тихие. Водянки дорогие. Вопрос — а зачем их брать в обычные компьютеры? Ну разве что очень хочется. Во всех других случаях лучше обойтись суперкулером и оставить СВО для тех случаев, когда они действительно нужны — а именно для топовых рабочих станций. Свое мнение пишите в комментах.