Что лучше отводит тепло
Теплопроводность стали, алюминия, латуни, меди
Перед тем как работать с различными металлами и сплавами, следует изучить всю информацию, касающуюся их основных характеристик. Сталь является самым распространенным металлом и применяется в различных отраслях промышленности. Важным ее показателем можно назвать теплопроводность, которая варьируется в широком диапазоне, зависит от химического состава материала и многих других показателей.
Что такое теплопроводность
Данный термин означает способность различных материалов к обмену энергией, которая в этом случае представлена теплом. При этом передача энергии проходит от более нагретой части к холодной и происходит за счет:
Теплопроводность нержавеющей стали будет существенно отличаться от аналогичного показателя другого металла — например, коэффициент теплопроводности меди будет иным, нежели у стали.
Для обозначения этого показателя используется специальная величина, именуемая коэффициентом теплопроводности. Она характеризуется количеством теплоты, которое может пройти через материал за определенную единицу времени.
Показатели для стали
Теплопроводность может существенно отличаться в зависимости от химического состава металла. Коэффициент данной величины у стали и меди будет разным. Кроме этого, при повышении или уменьшении концентрации углерода изменяется и рассматриваемый показатель.
Существуют и другие особенности теплопроводности:
Коэффициент теплопроводности алюминия значительно выше, что связано с более низкой плотностью этого материала. Теплопроводность латуни также отличается от соответствующего показателя стали.
Влияние концентрации углерода
Концентрация углерода в стали влияет на величину теплопередачи:
Таким образом, рассматриваемый показатель у легированных сплавов может меняться в зависимости от температуры эксплуатации.
Значение в быту и производстве
Почему важно учитывать коэффициент теплопроводности? Подобное значение указывается в различных таблицах для каждого металла и учитывается в нижеприведенных случаях:
Определяется рассматриваемый показатель при проведении испытаний в различных условиях. Как ранее было отмечено, коэффициент проводимости тепла может зависеть от температуры эксплуатации. Поэтому в таблицах указывается несколько его значений.
Теплопроводность меди – две стороны одной медали
Высокая теплопроводность меди наряду с другими замечательными свойствами определила этому металлу значимое место в истории развития человеческой цивилизации. Изделия из меди и ее сплавов используются практически во всех сферах нашей жизни.
1 Медь – коротко про теплопроводность
Коэффициент теплопроводности меди при температуре 20–100 °С составляет 394 Вт/(м*К) – выше только у серебра. Стальной прокат уступает меди по этому показателю почти в 9 раз, а железо – в 6. Различные примеси по-разному влияют на физические свойства металлов. У меди скорость передачи тепла снижается при добавлении в материал или попадании в результате технологического процесса таких веществ, как:
Высокая теплопроводность характеризуется быстрым распространением энергии нагрева по всему объему предмета. Эта способность обеспечила меди широкое применение в любых системах теплообмена. Ее используют при изготовлении трубок и радиаторов холодильников, кондиционеров, вакуумных установок, автомашин для отвода избыточного тепла охлаждающей жидкости. В отопительных приборах подобные изделия из меди служат для обогрева.
Способность меди проводить тепло снижается при нагреве. Значения коэффициента теплопроводности меди в воздухе зависит от температуры последнего, которая влияет на теплоотдачу (охлаждение). Чем выше температура окружающей среды, тем медленнее остывает металл и ниже его теплопроводность. Поэтому во всех теплообменниках используют принудительный обдув вентилятором – это повышает эффективность работы устройств и одновременно поддерживает тепловую проводимость на оптимальном уровне.
2 Теплопроводность алюминия и меди – какой металл лучше?
Теплопроводность алюминия и меди различна – у первого она меньше, чем у второго, в 1,5 раза. У алюминия этот параметр составляет 202–236 Вт/(м*К) и является достаточно высоким по сравнению с другими металлами, но ниже, чем у золота, меди, серебра. Область применения алюминия и меди, где требуется высокая теплопроводность, зависит от ряда других свойств этих материалов.
Алюминий не уступает меди по антикоррозионным свойствам и превосходит в следующих показателях:
Аналогичное изделие, но выполненное из алюминия, значительно легче, чем из меди. Так как по весу металла требуется меньше в 3 раза, а цена его ниже в 3,5 раза, то алюминиевая деталь может быть дешевле примерно в 10 раз. Благодаря этому и высокой теплопроводности алюминий нашел широкое применение при производстве посуды, пищевой фольги для духовок. Так как этот металл мягкий, то в чистом виде не используется – распространены в основном его сплавы (наиболее известный – дюралюминий).
В различных теплообменниках главное – это скорость отдачи избыточной энергии в окружающую среду. Эта задача решается интенсивным обдувом радиатора посредством вентилятора. При этом меньшая теплопроводность алюминия практически не отражается на качестве охлаждения, а оборудование, устройства получаются значительно легче и дешевле (к примеру, компьютерная и бытовая техника). В последнее время в производстве наметилась тенденция к замене в системах кондиционирования медных трубок на алюминиевые.
Медь практически незаменима в радиопромышленности, электронике в качестве токопроводящего материала. Благодаря высокой пластичности из нее можно вытягивать проволоку диаметром до 0,005 мм и делать другие очень тонкие токопроводящие соединения, используемые для электронных приборов. Более высокая, чем у алюминия, проводимость обеспечивает минимальные потери и меньший нагрев радиоэлементов. Теплопроводность позволяет эффективно отводить выделяемое при работе тепло на внешние элементы устройств – корпус, подводящие контакты (к примеру, микросхемы, современные микропроцессоры).
Шаблоны из меди используют при сварке, когда необходимо на стальную деталь сделать наплавку нужной формы. Высока теплопроводность не позволит медному шаблону соединиться с приваренным металлом. Алюминий в таких случаях применять нельзя, так как велика вероятность его расплавления или прожига. Медь также используют при сварке угольной дугой – стержень из этого материала служит неплавящимся катодом.
3 Минусы высокой теплопроводности
Низкая теплопроводность во многих случаях является нужным свойством – на этом основана теплоизоляция. Использование медных труб в системах отопления приводит к гораздо большим потерям тепла, чем при применении магистралей и разводок из других материалов. Медные трубопроводы требуют более тщательной теплоизоляции.
У меди высокая теплопроводность, что обуславливает достаточно сложный процесс монтажных и других работ, имеющих свою специфику. Сварка, пайка, резка меди требует более концентрированного нагрева, чем для стали, и зачастую предварительного и сопутствующего подогрева металла.
При газовой сварке меди необходимо использование горелок мощностью на 1–2 номера выше, чем для стальных деталей такой же толщины. Если медь толще 8–10 мм, рекомендуется работать с двумя или даже тремя горелками (часто сварку производят одной, а другими осуществляют подогрев). Сварочные работы на переменном токе электродами сопровождаются повышенным разбрызгиванием металла. Резак, достаточный для толщины высокохромистой стали в 300 мм, подойдет для резки латуни, бронзы (сплавы меди) толщиной до 150 мм, а чистой меди всего в 50 мм. Все работы связаны с значительно большими затратами на расходные материалы.
4 Как у меди повысить теплопроводность?
Медь – один из главных компонентов в электронике, используется во всех микросхемах. Она отводит и рассеивает тепло, образующееся при прохождении тока. Ограничение быстродействия компьютеров обусловлено увеличением нагрева процессора и других элементов схем при росте тактовой частоты. Разбиение на несколько ядер, работающих одновременно, и другие способы борьбы с перегревом себя исчерпали. В настоящее время ведутся разработки, направленные на получение проводников с более высокой электропроводимостью и теплопроводностью.
Открытый недавно учеными графен способен значительно увеличить теплопроводность медных проводников и их возможность к рассеиванию тепла. При проведении эксперимента слой меди покрыли графеном со всех сторон. Это улучшило теплоотдачу проводника на 25 %. Как объяснили ученые, новое вещество меняет структуру передачи тепла и позволяет энергии двигаться в металле свободнее. Изобретение находится на стадии доработки – при эксперименте использовался медный проводник гораздо больших размеров, чем в процессоре.
Что такое теплоизоляционные материалы: сравнительные характеристики теплопроводности
Теплоизоляционный материал — это продукция, которую применяют для теплоизоляции зданий, сооружений и оборудования. В специализированных магазинах изоляторы представлены в широком ассортименте. При выборе теплоизоляции важно знать информацию о качествах материала.
Утеплители бывают бытового и промышленного типа. Имеют различия по форме выпуска, по происхождению, типу сырья. А также имеют отличительные особенности по своим характеристикам. К характеристикам теплоизоляции относится гигроскопичность.
Анализ гигроскопичности теплоизоляции
Все теплоизоляционные материалы обладают общим минусом. У них есть способность впитывать влагу из воздуха. Эта способность называется гигроскопичностью теплоизоляции. Такой недостаток необходимо ликвидировать, чтобы эффективность утеплителя оставалась на высоком уровне. Гигроскопичность измеряется процентным соотношением массы поглощенной влаги к массе веса материала.
Наименование продукта | Водопоглощение,% от массы |
---|---|
Минвата | 1.5 |
Пенопласт | 3 |
Эковата | 1 |
Пеноизол | 18 |
Из данной таблицы видно, что у пеноизола высокий процент поглощения влаги. Но при этом пеноизол способен равномерно распределять и выводить воду. А это значит, что он не теряет своих свойств. Минеральная вата, напротив, имеет низкий процент гигроскопичности. Но если влага попадет в ее волокна, то удерживается внутри. Коэффициент теплопроводности понижается.
Таблица теплопроводности материалов и утеплителей
Теплопроводность основное свойство теплоизоляции. Это качество материала передавать тепло. Обозначается коэффициент теплопроводности символом «лямбда». Если данный коэффициент имеет низкое значение, эффективность утеплителя возрастает.
Для поддержания в помещении комфортного климата, показатели теплопроводности рассчитаны для каждого региона.
Теплопроводность утеплителей таблица
Наименование материала | Коэффициент теплопроводности Вт/(м·°C) | ||
---|---|---|---|
В сухом состоянии | При нормальной влажности | При повышенной влажности | |
Каменная минеральная вата 25-50 кг/м3 | 0.036 | 0.042 | 0.045 |
Каменная минеральная вата 40-60 кг/м3 | 0.035 | 0.041 | 0.044 |
Каменная минеральная вата 80-125 кг/м3 | 0.036 | 0.042 | 0.045 |
Каменная минеральная вата 140-175 кг/м3 | 0.037 | 0.043 | 0.0456 |
Каменная минеральная вата 180 кг/м3 | 0.038 | 0.045 | 0.048 |
Стекловата 15 кг/м3 | 0.046 | 0.049 | 0.055 |
Стекловата 17 кг/м3 | 0.044 | 0.047 | 0.053 |
Стекловата 20 кг/м3 | 0.04 | 0.043 | 0.048 |
Стекловата 30 кг/м3 | 0.04 | 0.042 | 0.046 |
Стекловата 35 кг/м3 | 0.039 | 0.041 | 0.046 |
Стекловата 45 кг/м3 | 0.039 | 0.041 | 0.045 |
Стекловата 60 кг/м3 | 0.038 | 0.04 | 0.045 |
Стекловата 75 кг/м3 | 0.04 | 0.042 | 0.047 |
Стекловата 85 кг/м3 | 0.044 | 0.046 | 0.05 |
Пенополистирол (пенопласт, ППС) | 0,036-0,041 | 0,038-0,044 | 0,044-0,050 |
Экструдированный пенополистирол (ЭППС, XPS) | 0.029 | 0.03 | 0.031 |
Пенобетон, газобетон на цементном растворе, 600 кг/м3 | 0.14 | 0.22 | 0.26 |
Пенобетон, газобетон на цементном растворе, 400 кг/м3 | 0.11 | 0.14 | 0.15 |
Пенобетон, газобетон на известковом растворе, 600 кг/м3 | 0.15 | 0.28 | 0.34 |
Пенобетон, газобетон на известковом растворе, 400 кг/м3 | 0.13 | 0.22 | 0.28 |
Пеностекло, крошка, 100 — 150 кг/м3 | 0,043-0,06 | ||
Пеностекло, крошка, 151 — 200 кг/м3 | 0,06-0,063 | ||
Пеностекло, крошка, 201 — 250 кг/м3 | 0,066-0,073 | ||
Пеностекло, крошка, 251 — 400 кг/м3 | 0,085-0,1 | ||
Пеноблок 100 — 120 кг/м3 | 0,043-0,045 | ||
Пеноблок 121- 170 кг/м3 | 0,05-0,062 | ||
Пеноблок 171 — 220 кг/м3 | 0,057-0,063 | ||
Пеноблок 221 — 270 кг/м3 | 0.073 | ||
Эковата | 0,037-0,042 | ||
Пенополиуретан (ППУ) 40 кг/м3 | 0.029 | 0.031 | 0.05 |
Пенополиуретан (ППУ) 60 кг/м3 | 0.035 | 0.036 | 0.041 |
Пенополиуретан (ППУ) 80 кг/м3 | 0.041 | 0.042 | 0.04 |
Пенополиэтилен сшитый | 0,031-0,038 | ||
Вакуум | 0 | ||
Воздух +27°C. 1 атм | 0.026 | ||
Ксенон | 0.0057 | ||
Аргон | 0.0177 | ||
Аэрогель (Aspen aerogels) | 0,014-0,021 | ||
Шлаковата | 0.05 | ||
Вермикулит | 0,064-0,074 | ||
Вспененный каучук | 0.033 | ||
Пробка листы 220 кг/м3 | 0.035 | ||
Пробка листы 260 кг/м3 | 0.05 | ||
Базальтовые маты, холсты | 0,03-0,04 | ||
Пакля | 0.05 | ||
Перлит, 200 кг/м3 | 0.05 | ||
Перлит вспученный, 100 кг/м3 | 0.06 | ||
Плиты льняные изоляционные, 250 кг/м3 | 0.054 | ||
Полистирол бетон, 150-500 кг/м3 | 0,052-0,145 | ||
Пробка гранулированная, 45 кг/м3 | 0.038 | ||
Пробка минеральная на битумной основе, 270-350 кг/м3 | 0,076-0,096 | ||
Пробковое покрытие для пола, 540 кг/м3 | 0.078 | ||
Пробка техническая, 50 кг/м3 | 0.037 |
В таблице приведены показатели нормативных документов.
Так как материалы разных производителей отличаются по характеристикам, необходимо обращать на это внимание при покупке.
Теплопроводность зависит от толщины строительных материалов. Чем тоньше продукция, тем меньше теплоизоляции потребуется, чтобы осуществить монтаж.
Сравнение теплопроводности строительных материалов по толщине
Сравнение утеплителей по виду и свойствам
Минеральная вата имеет низкую теплопроводность. Это качество дает данному материалу преимущество перед большинством современных утеплителей. Компания “ТехноНиколь” предлагает разнообразный ассортимент минваты для теплоизоляции и отделки помещений.
Плиты «Роклайт»
Роклайт это теплоизоляционные плиты из каменной ваты для тепло-, звукоизоляционного покрытия. Этот вид плит применяется в частном домостроении. Идеально подходит для теплоизоляции кровель и других конструкций. Является одним из лучших теплоизоляционных материалов.
Основные плюсы «Роклайт»
Плиты «Техноблок»
Изолятор в виде плит из минеральной ваты. Материал средней плотности от 40 до 50 кг/м3. Поэтому этот вид не выдерживает высоких нагрузок и применяется в строительстве малоэтажный зданий. Применяется в отделке фасадов домов, под сайдинг. Можно использовать утеплитель укладывая его в два слоя.
Достоинства «Техноблок»:
«Техноруф»
Негорючие плиты из каменной ваты, для создания теплоизоляционного слоя.Изделия «Техноруф» устойчивы к деформации, поэтому прекрасно сохраняют свои качества. Плиты устойчивы к воздействию влаги, поэтому предотвращает появление сырости внутри помещения.
Назначение:
Изделия сформированы из тесно переплетенных тонких волокон ваты происхождения. Имеют высокий уровень звукоизоляции, что способствует снижению воздушного и ударного уровня шума.
Качество:
«Техновент»
«Техновент» – утеплители нового поколения на основе минеральной базальтовой ваты.
В ассортименте 3 линейки материала:
Различие этих материалов состоит:
Все три разновидности материла предназначаются для утепления вентилируемых фасадных конструкций, причем оптимизированы для создания однослойной защитной теплоизоляции.
Высокие показатели по:
«Технофлор»
«Технофлор» это материал, который предназначен для тепловой и звуковой изоляции пола. Панель из жесткой минеральной ваты используются для поверхностей, испытывающих большие нагрузки. Энергосберегающий материал, который не подвергается перепадам температурного режима. Обеспечивает изоляцию звука на 100%.
Огнестойкий, не гниет и не поддается негативным воздействиям окружающей среды. Незаменим для утепления полов спортивного типа, на который оказывается весовая механическая нагрузка. Используется для утепление полов плавающего типа, для теплого пола с методом укладки ваты на грунт либо с монтажом ваты на бетонное основание.
Продукт «Технофлор» производится в листах размерами: 1000х500х40мм и 1200х600х200мм. Сроки эксплуатации данного продукта из серии «ТехноНиколь», достигает 80 лет.
«Техноакустик»
Экологически чистый материал, предназначенный для использования в качестве звукоизоляции:
Обладает способностью удерживать и поглощать шумы до 60 дБ. В связи с этим обеспечивает высокий уровень акустической защиты стен.
«Теплоролл»
«Теплоролл» — это рулонная теплоизоляция нового поколения. Выпускается в виде матов. Маты обладают высокой прочностью. Обеспечивают высокие теплоизоляционные и звукоизоляционные качества. Используется в утеплении и изоляции кровли, перегородок и перекрытий. Широко используется в строительстве частных домов.
Особенности:
Теплоизоляция имеет хороший уровень заглушки шумов. Удобна в монтаже за счет небольшой длины.
«Техно Т»
Это жесткие плиты из каменной ваты, которые используют в гражданском и промышленном строительстве для тепловой термоизоляции. За счет этого этот материал имеет ограничения в использовании. Выдерживает широкий диапазон температур от −180 С до +750 С.
Это является особенностью материала и главным отличием от обычной строительной изоляции. Позволяет осуществлять монтаж тепловой изоляции воздуховодов, газоходов, промышленных печей.
Плиты могут выпускаться обработанные алюминиевой фольгой или стеклохолстом с одной стороны. Фольгированная изоляция дает ряд преимуществ. Фольгированное покрытие утеплителя не позволяет влаге попасть под покрытие, тем самым обеспечивает проникновение влаги. Фольга не пропускает холодный воздух и не выпускает тепло. Благодаря высокому коэффициенту теплообмена выдерживает перепады температур. Способна отражать ультрафиолетовые лучи.
Согреться наверняка: как правильно выбрать обогреватель
Сегодня у покупателей широкий выбор разнообразной техники для обогрева небольших пространств, неотапливаемых помещений и целых домов. Обогреватели могут быть совсем простыми или оснащенными по последнему слову техники, они отличаются друг от друга производительностью и уровнем шума, размерами и назначением. Выбрать подходящий обогреватель довольно просто, если знать, на что ориентироваться.
Что такое обогреватель
Обогреватель — бытовое устройство для отопления помещений. Такие устройства можно разделить на несколько типов: одни больше подойдут для обогрева загородных домов или технических помещений, другие станут идеальным решением для небольших квартир или отдельных комнат.
Первый в мире электрический обогреватель придумал в 1930-х годах француз Жак Нуаро. Изобретение представляло собой вентилятор, который гнал воздух на подключенную к электросети раскаленную спираль. Именно этот механизм стал прообразом современных обогревателей. Но сегодняшние модели довольно далеко ушли вперед от своего прообраза.
1. Инфракрасный обогреватель
В отличие от остальных типов устройств, этот аппарат нагревает не воздух, а предметы вокруг: пол, стены, картины, шкафы и даже людей. Такой аппарат идеально подходит для открытого пространства, но если в помещении много перегородок, он будет плохо справляться, поскольку ИК-лучи не могут огибать преграды.
Инфракрасные обогреватели бывают световыми (нагревается спираль в стеклянной трубке), конвективными (помимо нагревательного элемента греет поверхность самого устройства) и пленочными (нагревательный элемент — фольгированная пленка).
Плюсы
Минусы
2. Масляный обогреватель
Плюсы
Минусы
3. Конвекторный обогреватель
Принцип работы конвекторного обогревателя довольно прост: воздух проходит через нагреватель и поднимается вверх, вытесняя холодные слои. Поверхность прибора при этом нагревается до 90 °C.
Пленочные конвекторные обогреватели обычно вешают на стену. Такие приборы хороши для части комнаты. Если нужно нагреть большое помещение, лучше разместить такой аппарат над источником сквозняка — то есть над дверью или окном.
Плюсы
Минусы
4. Тепловентилятор
Свою главный задачу — быстро прогреть помещение — тепловентилятор выполняет с помощью заключенного в пластиковый или металлический корпус нагревателя и вентилятора, который обеспечивает циркуляцию воздуха. На рынке можно найти и тепловые пушки для складских помещений, и мини-вентиляторы на рабочий стол. Многие аппараты оснащены поворотным механизмом, позволяют переключать мощность и температуру и предусматривают дистанционное управление.
Плюсы
Минусы
5. Монолитный обогреватель
Благодаря своему устройству монолитные обогреватели совмещают принцип работы двух типов приборов: конвекционного и инфракрасного. Они состоят из прессованного кварцевого песка (герметичный корпус) с нагревателем внутри — нихромовой спиралью. Конструкция простая, неразборная, но обеспечивает равномерное прогревание помещения.
Плюсы
Минусы
6. Электрический обогреватель
К электрическим обогревателям относится множество моделей, работающих от розетки. В основном они обогревают часть помещения, плюсы и минусы у каждой модели свои и обусловлены ее конфигурацией, мощностью, уровнем шума, наличием или отсутствием возможности закрепить устройство на стене и т. п. Но есть один общий главный недостаток: все эти приборы расходуют много электроэнергии и создают дополнительную нагрузку на проводку. В старых зданиях или загородных домах этот вопрос может иметь решающее значение.
7. Керамический обогреватель
В эту группу обогревателей входят конвекторные и инфракрасные. В конвекторных устройствах керамикой покрыт металлический теплообменник, через который проходит и нагревается воздух. В устройстве ИК-обогревателей используют керамические пластины. Помимо свойственных каждому типу достоинств и недостатков, у них есть несколько общих черт.
Плюсы
Минусы
8. Газовый обогреватель
Главное отличие всех обогревателей этого типа — они работают на природном или сжиженном газе. В конструкции предусмотрены корпус, теплообменник, нагреватель и горелка. Модели бывают мобильными и стационарными, могут подключаться к магистральной сети или работать от баллонов. На газе функционируют конвекторные и инфракрасные обогреватели.
Конвекторный обогреватель оборудован дымоходом и датчиком слежения за уровнем углекислого газа в помещении. ИК-обогреватель на газе может быть с каталитической или керамической панелью. Керамический нагреватель сильнее раскаляется и больше подойдет для просторных помещений. В каталитических принцип работы основан на взаимодействии газа с катализатором: тепло становится не из-за горения, а в результате химической реакции.
Плюсы
Минусы
9. Галогенный обогреватель
Галогенные обогреватели работают по тому же принципу, что и инфракрасные: они нагревают поверхности, а не воздух. Внутри прибора находится лампа с вольфрамовой нитью и газом внутри, которая испускает тепловые лучи.
Плюсы
Минусы
10. Микатермический обогреватель
Прибор работает по тому же принципу, что и галогенные и ИК-обогреватели. Нагревательный элемент — сетка из никеля внутри слюдяных пластин — испускает излучение, которое проникает в окружающие предметы, пол и стены, превращая их в источники вторичного теплового излучения.
Плюсы
Минусы
Какой обогреватель лучше выбрать: 7 советов
Широки й ассортимент усложняет выбор. Небольшой список советов поможет безошибочно определить, какой именно тип устройства нужен. Вот алгоритм выбора подходящей модели.
1. Измерить площадь помещения
От этого зависит мощность обогревателя. На 10 кв. м достаточно 1 кВт, а для того чтобы прогреть 25 кв. м, потребуется уже 2,5 кВт. Для каждой модели обычно указывают комфортную и максимальную площадь обогрева.
2. Определить доступные типы питания
В квартире с электричеством выбор шире, чем в частном доме без коммуникаций или со старой проводкой. С другой стороны, далеко не в каждой комнате получится установить газовый обогреватель.
3. Выбрать назначение обогревателя
Если вы подбираете технику, которой можно быстро и ненадолго прогреть большое помещение, то идеальный вариант — тепловая пушка. Для того чтобы время от времени посидеть в тепле на веранде, подойдет ИК-обогреватель. Если прибор планируется использовать в течение длительного времени, хорошо подойдет масляный обогреватель.
4. Учесть особенности помещения
Для детской комнаты существуют особые требования к безопасности, как и к помещениям с повышенной влажностью, например ванной. Большинство обогревателей оснащены защитой от перегрева и падения, однако о многие можно обжечься. Существуют модели с влагозащищенным корпусом и такие, которые крепятся к стенам и потолку, где их не достанут маленькие дети.
Для спальни или кабинета может стать критичным уровень шума. Обычно его указывают в документации к прибору. Одни из самых тихих обогревателей — инфракрасные, масляные и конвекторные. Однако важно учитывать все параметры в комплексе. Например, тихий инфракрасный обогреватель также станет источником яркого света, который помешает ребенку заснуть.
5. Очертить финансовые границы
Сколько вы готовы потратить? Речь не только о цене обогревателя, но и о расходе топлива. Так, есть энергосберегающие приборы и устройства с высокой производительностью, которые быстро отопят большое помещение, но и электроэнергии съедят очень много. Следует обращать внимание на такой параме тр, как производительность: за какое количество времени какую площадь и при каком расходе энергии отопит прибор. Эти сведения можно найти в инструкции или выяснить у консультанта.
6. Найти место для обогревателя
От этого напрямую зависят требования к размеру и типу крепления устройства. Мощность обогревателя не всегда зависит от габаритов, а у моделей одного размера может быть разная производительность.
7. Продумать дополнительные требования к функциональности
Обогреватели различаются по типу управления: механические и электронные. У некоторых моделей могут быть таймер включения-выключения, защита от пыли или влаги, функция ночного режима, отложенного старта, возможность запрограммировать несколько режимов работы или даже управлять системой удаленно.