Что лучше полиуретан или полиэтилен

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

Различия между полиэтиленом и полиуретаном

Полиэтилен и полиуретан – это два типа пластиковых материалов, которые используются для производства большого ассортимента товаров, включая товары широкого потребления. Однако между этими материалами существуют некоторые четкие различия как в химическом составе, так и в том, как они используются.

Что лучше полиуретан или полиэтилен. Смотреть фото Что лучше полиуретан или полиэтилен. Смотреть картинку Что лучше полиуретан или полиэтилен. Картинка про Что лучше полиуретан или полиэтилен. Фото Что лучше полиуретан или полиэтилен

Полиэтилен является одним из наиболее широко используемых пластиковых полимеров. На самом деле, когда большинство людей описывают что-то, сделанное из общего термина «пластик», скорее всего, они описывают полиэтилен. Полиэтилен используется для изготовления таких предметов, как сумки для покупок, игрушки, бутылки с шампунем и даже пуленепробиваемые жилеты. Химически структура полиэтилена является самой простой из всех коммерческих полимеров. Он состоит из длинной цепочки атомов углерода с двумя атомами водорода, присоединенными к каждому атому углерода.

Полиуретан, как правило, используется для производства пены, такой как в мягкой мебели. Однако полиуретан также является очень универсальным полимером. В дополнение к пене, полиуретан может быть волокном и эластомером из-за его упругих свойств. Полиуретан используется для производства красок и клеев. Он также является ключевым компонентом спандекса и лайкры, эластичных искусственных материалов, обычно используемых в одежде.

Полиэтилен был открыт в 1933 году Реджинальдом Гибсоном и Эриком Фосеттом, двумя исследователями из британской промышленной фирмы Imperial Chemical Industries. В дополнение к низкой стоимости производства полиэтилена материал также оказался гибким, долговечным и устойчивым к химическим веществам. Полиуретан был изобретен несколько лет спустя доктором Отто Байером в Германии. После окончания Второй мировой войны полиуретан стал широко использоваться в выдувном виде для матрацев, обивки мебели и изоляции.

Полиэтилен представляет собой термопластичную смолу, что означает, что изделие, изготовленное из материала, может быть переработано, расплавлено и преобразовано в другую форму. Полиуретан, с другой стороны, представляет собой термореактивную смолу, что означает, что он состоит из двух частей, смешанных вместе для образования химической цепи. После отверждения полиуретана процесс не может быть отменен. Это означает, что что-то из полиуретана не может быть расплавлено и преобразовано в другой предмет.

Источник

Что лучше полиуретан или полиэтилен

Что лучше полиуретан или полиэтилен. Смотреть фото Что лучше полиуретан или полиэтилен. Смотреть картинку Что лучше полиуретан или полиэтилен. Картинка про Что лучше полиуретан или полиэтилен. Фото Что лучше полиуретан или полиэтилен

Между тем для упаковки используется очень много интересных материалов, которым посвящена статья Алана Фэклера (Alan Fackler), опубликованная на сайте Gizmodo.

Пенопласт

Этот материал начинал очень скромно – в 1830-х впервые в результате лабораторных опытов был получен стирол. Вам, конечно, знаком «пенный» вариант полистирола – пенопласт, который сделался одним из самых популярных искусственных материалов. Благодаря его способности к формованию, он стал прекрасным упаковочным материалом. Пенопласт не очень хорошо для окружающей среды, но он защищает вашу технику во время долгого путешествия по запутанным лабиринтам мировой цепи поставок.

Согласно легенде, путь пенопласта к величию начался в 1839 году. Именно в это время немецкий аптекарь по имени Эдуард Зимон (Eduard Simon) случайно открыл полистирол, когда проводил дистилляцию стиракса, смолы ликвидамбра. Он получил жидкое маслянистое вещество, которое через некоторое время уплотнилось и превратилось в желе. Это была первая версия материала, из котрого получили впоследствии пенопласт.

Руководствуясь результатами исследования Германа Штаудингера (Hermann Staudinger) на тему эластичности полимеров, которое удостоилось Нобелевской премии, ученые компании BASF смогли начать коммерческое производство полистирола в 1930 году. В 1937 году компания Dow Chemical начала свое производство и представила американскому рынку новый материал – пенопласт под маркой Styrofoam. Мы можем поблагодарить ученого из компании Dow по имени Рэй Макинтайр (Ray McIntire) за то, что он объединил ролистирол с изобутиленом, легковоспламеняющимся газом, чтобы создать вспененный вариант полистирола, который мы знаем и любим сегодня. Целью Макинтайра было создание гибкого изоляционного материала, но в 1942 году американские военные начали изучать пенопласт, который обладает влагостойкостью и большой плавучестью, на предмет использования в спасательных плавсредствах.

Вы замечали «гранулы» в пенопласте? Это потому, что формованный пенопласт действительно представляет собой конгломерат многочисленных маленьких вспененных шариков полистирола. Изначально шарики совсем маленькие, но они содержат углеводородный вспенивающий агент. Когда шарики обдают паром, вспениватель расширяется, заставляя шарики вырастать в сорок раз по сравнению с их первоначальным размером. Затем шарики помещают в форму, где их снова обрабатывают паром. Здесь они еще больше увеличиваются в размерах и сплавляются. И вот, вы получаете готовый стаканчик из пенопласта, или коробку для яиц, или упаковку точной формы для электронной новинки, которую вы только что приобрели.

Что лучше полиуретан или полиэтилен. Смотреть фото Что лучше полиуретан или полиэтилен. Смотреть картинку Что лучше полиуретан или полиэтилен. Картинка про Что лучше полиуретан или полиэтилен. Фото Что лучше полиуретан или полиэтилен

Главный недостаток пенопласта в том, что он не является биоразлагаемым, его нельзя просто выбросить на свалку и ждать, когда он разложится. Фото: gizmodo.com.au

В качестве упаковочного материала пенопласт может создать легкую упаковку любой формы. Действительно, пенопластовая оболочка вокруг вашего жидкокристаллического дисплея или фотопринтера на 98% состоит из воздуха. В мире транспорта лишний вес означает лишние расходы, поэтому транспортников привлекает сочетание прочности и легкости пенопласта. Пенопласт очень хорошо как недорогой готовый материал. Большие блоки пенопалста легко можно разрезать, подгонять под любые размеры.

К сожалению, пенопласт не очень хорош для окружающей среды. Материал может быть переработан, но для этого надо его отвезти на перерабатывающее предприятие. Главный недостаток пенопласта в том, что он не является биоразлагаемым, его нельзя просто выбросить на свалку и ждать, когда он разложится. Более того, он легкий и поэтому может разноситься ветром. Если вы не знаете торговой марки этого материала, например Styrofoam, вы можете называть его общим именем – полистирол вспененный.

Защитная пена

Защитная пена – вы, наверное, лучше знаете ее под именами полиуретан и полиэтилен. Не переживайте, если перепутаете эти два материала друг с другом и даже с пенопластом. Все три материала выглядят и даже пахнут похоже. Несмотря на это, те, кто разбирается в полимерах, знают, что уретан, этилен и стирол обладают разными свойствами на физическом и молекулярном уровне.

История защитной пены начинается с полиуретана в 1937 году, почти через сто лет после открытия Эдуарда Зимона. В это время немецкий ученый Отто Байер (Otto Bayer) работал над созданием гибкого полимера. Он смешал жидкий полиэфир с диолами полиэфира, и родился полиуретан. К несчастью, Вторая мировая война прервала исследовательские работы. Материал появился на рынке по коммерчески приемлемым ценам только в конце 1950-х гг.

Что лучше полиуретан или полиэтилен. Смотреть фото Что лучше полиуретан или полиэтилен. Смотреть картинку Что лучше полиуретан или полиэтилен. Картинка про Что лучше полиуретан или полиэтилен. Фото Что лучше полиуретан или полиэтилен

Поскольку полиуретан отличается гибкостью и мягкостью, у него не достает защитной мощи, особенно если сравнить с полиэтиленом. Фото: gizmodo.com.au

Полиуретановая пена – дешевый, гибкий материал, который пригоден для формовки любого вида и размера, что удобно для упаковки. Он может быть тонким и использоваться для оборачивания, его можно формовать и разрезать для упаковочных вкладок. Обладающий мягкостью, большей, чем полиэтилен, полиуретан также может припрессовываться к другим материалам, подобно самоклеящимся этикеткам.

Почему полиэтилен иногда бьет полиуретан

Полиэтилен отличается от полиуретана на молекулярном уровне – это пена на основе пластика, которая достигает особой жесткости благодаря сложной недоступной клеточной структуре. Даже пар не может проникнуть сквозь этот материал (в отличие от полиуретана, который может впитывать даже жидкость). Таким образом, полиэтилен обеспечивает устойчивость к химикатам, растворителям, и что более важно для транспортировки – к трению и столкновениям.

Оба полимера недружественны к окружающей среде

Как и пенопласт, ни один из наших вспененных друзей не является биоразлагаемым. Так что оставить их растворяться на свалке не получится. Если полиэтилен может в настоящее время подвергаться вторичной переработке (если попадет в надежные руки), полиуретан этого не может. Если вы хотите безопасно переработать ваши полиэтиленовые отходы, отвезите их на местное перерабатывающее предприятие, которое имеет соответствующие мощности для его переработки. Ваш полиэтилен поместят в большую нагреваемую бочку, где он расплавится до состояния мягкой, гибкой пены, которую снова можно подвергнуть формовке. После того как материал примет новую форму, достаточно его охладить, и он примет свою прежнюю жесткость. Нет нужды говорить, это вовсе не то, что вы можете делать сами у себя дома.

Люди в Великобритании сократили слово «полиэтилен» до «polythene» («политен»). Когда Джон Леннон пел об одной несносной фанатке, которую звали Полиэтиленовая Пэт и которая была одета в свой «полиэтиленовый пакет» («polythene bag»), он в действительности говорил о неподходящем выборе упаковочного материала.

Источник

Как определить разные виды пластика

Мы практически безошибочно определяем пластмассу, отличаем её от дерева, металла и других материалов. Но как определить тип пластика? Чем пластики отличаются друг от друга?

Определение типа пластика по идентификационному знаку

Типы пластика, подлежащие сбору и вторичной переработке, обозначены разными символами. Коды согласованы на международном уровне, чтобы прояснить химический состав каждого пластикового изделия и определить возможность вторичной переработки этих изделий.

Что лучше полиуретан или полиэтилен. Смотреть фото Что лучше полиуретан или полиэтилен. Смотреть картинку Что лучше полиуретан или полиэтилен. Картинка про Что лучше полиуретан или полиэтилен. Фото Что лучше полиуретан или полиэтилен

1. PET или PETE — полиэтилентерефталат (ПЭТ или ПЭТФ). Это материал, из которого делают пластиковые бутылки. ПЭТ широко используется в мире для изготовление различных упаковочных изделий (бутылки, коррексы, бандажная лента). Кроме этого ПЭТ используется для изготовления утеплителя «синтепон», а также других нетканых материалов.

3. PVC — поливинилхлорид (ПВХ). Обычный поливинилхлорид достаточно жесткий пластик. Для придания ему большей мягкости в него добавляют пластификаторы. Из этого материала изготавливают различные изделия хозяйственно и строительного назначения: трубы, отделочные панели, оконные рамы. Из ПВХ изготавливают обувные подошвы и детские игрушки.

4. LDPE — полиэтилен низкой плотности (высокого давления ПВД). В основном этот пластик идет на изготовление пленки и мешков.

5. PP — полипропилен (ПП). Этот пластик имеет белый цвет или полупрозрачные тона. Что за материал используется в качестве упаковки для сиропов и йогурта. Полипропилен ценится за его термоустойчивость. Когда он нагревается, то не плавится. Относительно безопасен.

6. PS — полистирол (пластмасса ПС). Это жесткая пластмасса. Используется для изготовления корпусов бытовой электроники. Из полистирола изготавливают много одноразовой посуды.

7. OTHER или О — прочие. К этой группе относится любой другой пластик, который не может быть включен в предыдущие группы.

Кроме этого, изделия, изготовленные из вторичных полимеров, обозначаются дополнительной буквой «R». Например, RPET, RHDPE, RPVC, RLDPE, RPP, RPS. Такие изделия также подлежат дальнейшей вторичной переработке.

Определение вида пластика по характеру горения

Несмотря на свою простоту, испытание на горение следует использовать с осторожностью из-за токсичности многих продуктов сгорания. Не стоит сразу прибегать к этому способу, особенно с образцом неизвестного полимера.

Что лучше полиуретан или полиэтилен. Смотреть фото Что лучше полиуретан или полиэтилен. Смотреть картинку Что лучше полиуретан или полиэтилен. Картинка про Что лучше полиуретан или полиэтилен. Фото Что лучше полиуретан или полиэтиленКак определить ПЭВД

Горит синеватым, светящимся пламенем с оплавлением и горящими потеками полимера. При горении становится прозрачным, это свойство сохраняется длительное время после гашения пламени. Горит без копоти. Горящие капли, при падении с достаточной высоты (около полутора метров), издают характерный звук. При остывании, капли полимера похожи на застывший парафин, очень мягкие, при растирании между пальцами- жирны на ощупь. Дым потухшего полиэтилена имеет запах парафина. Плотность ПЭВД: 0,91-0,92 г/см. куб.

Как определить ПЭНД

Более жесткий и плотный чем ПЭВД, хрупок. Проба на горение – аналогична ПЭВД. Плотность: 0,94-0,95 г/см. куб.

Как определить Полипропилен

При внесении в пламя, полипропилен горит ярко светящимся пламенем. Горение аналогично горению ПЭВД, но запах более острый и сладковатый. При горении образуются потеки полимера. В расплавленном виде — прозрачен, при остывании — мутнеет. Если коснуться расплава спичкой, то можно вытянуть длинную, достаточно прочную нить. Капли остывшего расплава жестче, чем у ПЭВД, твердым предметом давятся с хрустом. Дым с острым запахом жженой резины, сургуча.

Как определить Полиэтилентерафталат (ПЭТ)

Прочный, жёсткий и лёгкий материал. Плотность ПЭТФ составляет 1, 36 г/см.куб., поэтому он тонет в воде. При горении сильно коптящее пламя. При удалении из пламени самозатухает.

Как определить Полистирол

При сгибании полоски полистирола, легко гнется, потом резко ломается с характерным треском. На изломе наблюдается мелкозернистая структура.Горит ярким, сильно коптящим пламенем (хлопья копоти тонкими паутинками взмывают вверх!). Запах сладковатый, цветочный. Полистирол хорошо растворяется в органических растворителях (дихлорэтан, ацетон, бензол).

Как определить Поливинилхлорид (ПВХ)

Горит с трудом, при удалении из пламени затухает. При горении сильно коптит, в основании пламени можно наблюдать яркое голубовато-зеленое свечение. Очень резкий, острый запах дыма. При сгорании образуется черное, углеподобное вещество (легко растирается между пальцами в сажу). Растворим в четыреххлористом углероде.

Как определить Поликарбонат (органическое стекло)

Прозрачный, прочный, но хрупкий материал. Горит синевато-светящимся пламенем с легким потрескиванием. У дыма острый фруктовый запах (эфира). Легко растворяется в дихлорэтане.

Как определить Полиамид (ПА)

Материал имеет отличную масло-бензостойкость и стойкость к углеводородным продуктам, которые обеспечивают широкое применение ПА в автомобильной и нефтедобывающей промышленности (изготовление шестерен, искуственных волокон…). Полиамид отличается сравнительно высоким влагопоглощением, которое ограничивает его применение во влажных средах для изготовления ответственных изделий. Горит голубоватым пламенем. При горении разбухает, «пшикает», образует горящие потеки. Дым с запахом паленого волоса. Застывшие капли очень твердые и хрупкие. Полиамиды растворимы в растворе фенола, концентрированной серной кислоте. Плотность: 1,1-1,13 г/см. куб. Тонет в воде.

Как определить Полиуретан

Основная область применения – подошвы для обуви. Очень гибкий и эластичный материал (при комнатной температуре). На морозе — хрупок. Горит коптящим, светящимся пламенем. У основания пламя голубое. При горении образуются горящие капли-потеки. После остывания, эти капли – липкое, жирное на ощупь вещество. Полиуретан растворим в ледяной уксусной кислоте.

Как определить Пластик АВС

Все свойства по горению аналогичны полистиролу. От полистирола достаточно сложно отличить. Пластик АВС более прочный, жесткий и вязкий. В отличие от полистирола более устойчив к бензину.

Как определить Фторопласт-3

Применяется в виде суспензий для нанесения антикоррозийных покрытий. Не горюч, при сильном нагревании обугливается. При удалении из пламени сразу затухает. Плотность 2,09-2,16 г/см.куб., тонет в воде.

Как определить Фторопласт-4

Безпористый материал белого цвета, слегка просвечивающийся, с гладкой, скользкой поверхностью. Очень хороший диэлектрик. Не горюч, при сильном нагревании разлагается. Не растворяется практически ни в одном растворителе.

Источник

АБС-пластик

Пенопласты

Пенопласты – вспененные или ячеистые пластмассы, газонаполненные полимеры, представляющие собой композиционные материалы с каркасом (матрицей) из полимерных пленок, образующих стенки и ребра ячеек (пор), заполненных газом. Объемное соотношение газовой и полимерной фаз в пенопластах составляет обычно от 30: 1 до 1:10.
В соответствии с видом полимерного материала, используемого для получения пенопластов, различают пенопласты на основе поливинилхлорида, пенополистиролы, пенополиуретаны, пенопласты на основе фенолоформальдегидных смол, поропласты на основе мочевиноформальдегидных смол, вспененные синтетические каучуки, пенополиэтилен.
По реакции на тепловое воздействие пенопласты разделяются на термопластичные: обладают свойством размягчаться при нагревании и затвердевать при охлаждении, например, пенополистиролы, пенопласты на основе поливинилхлорида; и термореактивные: однажды затвердев (заполимеризовавшись), не способны снова размягчаться при повышении температуры, например, пенополиуретаны, пенопласты на основе фенолоформальдегидных смол.
Вспененные пластмассы, содержащие преимущественно автономные (закрытые) ячейки, называются собственно пенопластами (замкнутоячеистые пенопласты), в отличие от поропластов – материалов, в которых преобладают сообщающиеся (открытые) ячейки или тупиковые капилляры-поры (открытопористые пенопласты). Типичные представители замкнутоячеистых пенопластов – пластики с полым сферическим наполнителем, так называемые синтактные (синтактичные) пенопласты, или сферопласты. Полностью открытопористую структуру имеют сетчатые (ретикулированные) пенопласты, в которых дополнительное вскрытие ячеек достигается в результате разрушения их стенок выщелачиванием, направленным взрывом и другими специальными приемами.
Пенопласты с модулем упругости выше 1000 МПа относят к эластичным, ниже 100 МПа –к жестким пенопластам. Промежуточное положение занимают полужесткие пенопласты. В особую категорию выделяют интегральные пенопласты – газонаполненные полимерные материалы и изделия анизотропной структуры, состоящие из легкой пористой (ячеистой) сердцевины (собственно пенопласта), постепенно переходящей в монолитную поверхностную корку. Различают однокомпонентные интегральные пенопласты (сердцевина и корка выполнены из полимера одного типа) и многокомпонентные интегральные пенопласты (сердцевина и корка выполнены из двух или трех разных полимеров).

Полиамиды

Полиамиды – синтетические термопластичные полимеры конструкционного назначения. К конструкционным или инженерно-техническим полимерам принято относить те полимерные материалы, которые обеспечивают работоспособность деталей при повышенных механических и тепловых нагрузках, имеют высокие электроизоляционные характеристики и доступные цены: полиамиды, полиформальдегид, полибутилентерефталат, полиэтилентерефталат, поликарбонат, АБС-пластики. Полиамиды – наиболее востребованные среди них.
Отличительной чертой полиамидов является наличие в основной молекулярной цепи повторяющейся амидной группы –C(O)–NH–. Различают алифатические и ароматические полиамиды. Известны полиамиды, содержащие в основной цепи как алифатические, так и ароматические фрагменты.
Обычное обозначение полиамидов на российском рынке ПА или PA. В названиях алифатических полиамидов после слова «полиамид» ставят цифры, обозначающие число атомов углерода в веществах, использованных для синтеза полиамида. Так, полиамид на основе ε-капролактама называется полиамидом-6 или PA 6. Полиамид на основе гексаметилендиамина и адипиновой кислоты – полиамидом-6,6 или PA 66 (первая цифра показывает число атомов углерода в диамине, вторая – в дикарбоновой кислоте). Помимо обычных обозначений для полиамидов могут использоваться и названия торговых марок: капрон, нейлон, анид, капролон, силон, перлон, рильсан.

Поливинилхлорид

Поливинилхлорид – синтетический термопластичный полярный полимер. Продукт полимеризации винилхлорида. Твердое вещество белого цвета. Выпускается в виде капилярно-пористого порошка с размером частиц 100-200 мкм, получаемого полимеризацией винилхлорида в массе, суспензии или эмульсии. Порошок сыпуч и хорошо перерабатывается. На основе поливинилхлорида получают жесткие (винипласт) и мягкие (пластикат) пластмассы, пластизоли (пасты), поливинилхлоридное волокно. Винипласт используется как жесткий конструкционный материал, применяемый в строительстве в виде погонажа, профилей, труб. Пластикат применяется для изготовления пленок, шлангов, клеенки, линолеума.
Обычное обозначение поливинилхлорида на российском рынке – ПВХ, но могут встречаться и другие обозначения: PVC (поливинилхлорид), PVC-P или FPVC (пластифицированный поливинилхлорид), PVC-U или RPVC или U-PVC или UPVC (непластифицированный поливинилхлорид), CPVC или PVC-C или PVCC (хлорированный поливинилхлорид), HMW PVC (высокомолекулярный поливинилхлорид).

Условное обозначение отечественного поливинилхлоридного пластиката, полученного переработкой поливинилхлоридной композиции в соответствии с ГОСТ 5960-72, предназначенного для изоляции и защитных оболочек проводов и кабелей, работающих в зависимости от марки пластиката и конструкции провода и кабеля в диапазоне температур от минус 60 до плюс 70 °С, а для пластиката марки ИТ-105 – до плюс 105 °С, имеет следующий вид.
Первые две буквы в условном обозначении поливинилхлоридного пластиката типов И и ИО обозначают тип пластиката: И – изоляционный, ИО – изоляционный и для оболочек.
Две первые цифры указывают морозостойкость пластиката.
Две последующие цифры указывают порядок величины удельного объемного электрического сопротивления при 20°С.
Для пластиката типа О (для оболочек) – первая буква обозначает тип пластиката, две последующие цифры указывают морозостойкость пластиката.
Обозначение пластиката марки ИТ-105 (изоляционный термостойкий) состоит из букв, обозначающих тип пластиката, и последующих цифр, указывающих верхний предел рабочих температур пластиката.
Условное обозначение пластиката, предназначенного для маслобензостойких оболочек – ОМБ-60.
Условное обозначение пластиката, предназначенного для оболочек с низкой миграцией пластификатора в полиэтилен – ОНМ-50.
Условное обозначение пластиката, предназначенного для оболочек с низким запахом – ОНЗ-40.
Кроме того, в условном обозначении пластиката указывают его цвет, рецептуру и сорт.
Пример условного обозначения пластиката для маслобензостойких оболочек черного цвета, рецептуры М 317:
пластикат ОМБ-60, черный, рецептура М 317 ГОСТ 5960-72;
Пример условного обозначения пластиката изоляционного термостойкого марки ИТ-105 с верхним пределом рабочей температуры 105 °С, неокрашенного, рецептуры Т-50, высшего сорта:
пластикат ИТ-105, неокрашенный, рецептура Т-50, высшего сорта ГОСТ 5960-72.

Поликарбонат

Полиметилметакрилат

Полиметилметакрилат – синтетический полярный термопластичный полимер, один из видов полимеров эфиров метакриловой кислоты. Продукт полимеризации метилметакрилата. Твердое жесткое прозрачное вещество. Выпускается в форме гомополимера или сополимеров метилметакрилата с акрилонитрилом, бутадиеном или стиролом. Суспензионной полимеризацией получают формовочный полиметилметакрилат в виде гранул размером 3-5 мм. Блочной полимеризацией получают листовой полиметилметакрилат толщиной 0,8-200 мм.
Обычное обозначение полиметилметакрилата на российском рынке – ПММА или PMMA. Сополимер метилметакрилата и акрилонитрила обозначается как A/MMA. Сополимер метилметакрилата, акрилонитрила, бутадиена и стирола, называемый прозрачным АБС – MABS. Сополимер метилметакрилата, бутадиена и стирола – MBS. Сополимер метилметакрилата и стирола – MS.
Из-за прозрачности и одной из основных областей своего применения полиметилметакрилат называют органическим стеклом или просто оргстеклом. Прижилось у нас и название германской торговой марки полиметилметакрилата – плексиглас. С странах СНГ в ходу торговое название полиметилметакрилата – дакрил. В США – люсайт. В Великобритания – диакон. В Италия – ведрил. В Японии – делпет или парапет. Во Франция – ороглас.

Полипропилен – синтетический термопластичный неполярный полимер, принадлежащий к классу полиолефинов. Продукт полимеризации пропилена. Твердое вещество белого цвета. Выпускается в форме гомополимера и сополимеров, получаемых сополимеризацией пропилена и этилена в присутствии металлоорганических катализаторов при низком и среднем давлениях, в виде гранул стабилизированных, окрашенных или неокрашенных.
Обычное обозначение полипропилена на российском рынке – ПП, но могут встречаться и другие обозначения: РР (полипропилен), PP HO или PP homopolymer (полипропилен гомополимер), HIPP (высокоизотактический полипропилен гомополимер), РР-Х, PP-XMOD (сшитый полипропилен), PPCP или PP/Co или PP block-copolymer или PP impact copolymer (полипропилен блок-сополимер, блок-сополимер пропилена и этилена), PPМ (блок-сополимер пропилена и этилена с низким содержанием полиэтилена), PPR (блок-сополимер пропилена и этилена со средним содержанием полиэтилена), PPU (блок-сополимер пропилена и этилена с высоким содержанием полиэтилена), PPH (блок-сополимер пропилена и этилена с очень высоким содержанием полиэтилена), PP random copolymer (статистический сополимер пропилена и этилена), PP-EPDM или PP/EP (смесь полипропилена и тройного сополимера этилена, пропилена и диена), EPP (вспенивающийся полипропилен), EMPP (полипропилен, модифицированный каучуком), mРР (металлоценовый полипропилен).
Условное обозначение отечественного полипропилена и сополимеров пропилена, выпускаемых в соответствии с ГОСТ 26996-86, состоит из названия материала «полипропилен» или «сополимер» и пяти цифр. Первая цифра 2 или 0 указывает на то, что процесс полимеризации протекает на комплексных металлорганических катализаторах при низком или среднем давлении соответственно. Вторая цифра указывает вид материала: 1 – полипропилен; 2 – сополимер пропилена. Три последующие цифры обозначают десятикратное значение показателя текучести расплава. Далее через тире указывают номер рецептуры стабилизации, затем сорт и обозначение стандарта, в соответствии с которым изготавливается полипропилен и его сополимеры.
Пример условного обозначения полипропилена марки 21020, стабилизированного по рецептуре 02, 1-го сорта: Полипропилен 21020-02, сорт 1, ГОСТ 26996-86.
При выпуске окрашенного полипропилена или сополимера в обозначении дополнительным словом указывают цвет и трехзначное число, обозначающее номер рецептуры окрашивания.
Пример условного обозначения полипропилена марки 21030, стабилизированного по рецептуре 06, окрашенного в красный цвет по рецептуре 105, 1-го сорта: Полипропилен 21030-06, красный, рец. 105, сорт 1, ГОСТ 26996-86.
Исходя из условного обозначения полипропилена, разделив число из трех последних цифр в марке полипропилена на 10, можно найти ПТР и определить наиболее подходящий способ переработки конкретной марки ПП. ПТР Полистирол

Полистирол – синтетический термопластичный твердый, жесткий, аморфный полимер. Продукт полимеризации стирола. Массово выпускается в форме полистирола общего назначения и ударопрочного полистирола.

Ударопрочный полистирол – непрозрачный бесцветный материал, продукт привитой сополимеризации стирола с бутадиеновым или бутадиен-стирольным каучуком, имеющий двухфазную структуру. Непрерывная фаза (матрица) образована полистиролом. Дискретная фаза (микрогель) – частицами каучука овальной формы с размерами 2-5 мкм. Каучуковые частицы окружены тонкой пленкой привитого сополимера стирола на каучуке, а внутри частиц содержится также окклюдированный полистирол, в результате чего увеличивается эффективный объем каучуковой фазы. От объема последней во многом зависят свойства ударопрочного полистирола. Ударопрочный полистирол выпускается стабилизированным, в виде белых гранул. Основные методы переработки – литье под давлением и экструзия листа с последующим пневмо- или вакуумформованием.
Условное обозначение ударопрочного полистирола в соответствии с ГОСТ 28250-89 состоит из букв УП – ударопрочный, сразу за которыми указывается метод синтеза полистирола: М – полимеризацией в массе, Э – полимеризацией в эмульсии, С – полимеризацией в суспензии. Далее через тире две цифры обозначают ударную вязкость. Следующие две цифры указывают удесятеренное содержание остаточного мономера. Кроме того, в марку может включаться буква, означающая предпочтительный способ переработки.
Пример условного обозначения ударопрочного полистирола, полученного полимеризацией в массе с ударной вязкостью 7 кДж/м 2 и остаточным содержанием мономера 0,3 %, предназначенного для переработки экструзионным методом:
УПМ-0703 Э.

Обычное обозначение полистирола на российском рынке ПС, но могут встречаться и другие обозначения: PS или GPPS или PS-GP или XPS или Crystal PS (полистирол общего назначения), УП или УПС или HIPS или PS-HI или PS-I (ударопрочный полистирол), MIPS или IPS или PS-I (ударопрочный полистирол средней ударной прочности), SHIPS (ударопрочный полистирол сверхвысокой ударной прочности).

Кроме полистирола общего назначения и ударопрочного полистирола промышленностью выпускается широкое разнообразие модификаций и сополимеров стирола. В частности, эластомеры, обладающие способностью к большим обратимым деформациям за счет частичного развертывания хаотически свернутых цепных молекул полимера, и синдиотактический полистирол, получаемый на металлоценовых катализаторах и обладающий очень высокой жесткостью и термостойкостью.

Полиуретаны

Полиэтилен

Полиэтилен – синтетический термопластичный неполярный полимер, принадлежащий к классу полиолефинов. Продукт полимеризации этилена. Твердое вещество белого цвета. Выпускается в форме полиэтилена низкого давления (полиэтилена высокой плотности), получаемого суспензионным методом полимеризации этилена при низком давлении на комплексных металлоорганических катализаторах в суспензии или газофазным методом полимеризации этилена в газовой фазе на комплексных металлоорганических катализаторах на носителе, и полиэтилена высокого давления (полиэтилен низкой плотности), получаемого при высоком давлении полимеризацией этилена в трубчатых реакторах или реакторах с перемешивающим устройством с применением инициаторов радикального типа. Кроме того, существует несколько подклассов полиэтилена, отличающиеся от традиционных более высокими эксплуатационными характеристиками. В частности, сверхвысокомолекулярный полиэтилен, линейный полиэтилен низкой плотности, полиэтилен, получаемый на металлоценовых катализаторах, бимодальный полиэтилен.
Как правило, полиэтилен выпускают в виде стабилизированных гранул диаметром 2-5 миллиметров в окрашенном и неокрашенном виде. Но возможен и промышленный выпуск полиэтилена в виде порошка.

Обычное обозначение полиэтилена на российском рынке – ПЭ, но могут встречаться и другие обозначения: PE (полиэтилен), ПЭНП или ПЭВД или LDPE или PEBD или PELD (полиэтилен низкой плотности, полиэтилен высокого давления), ПЭВП или ПЭНД или HDPE или PEHD (полиэтилен высокой плотности, полиэтилен низкого давления), ПЭСП или MDPE или PEMD (полиэтилен средней плотности), ULDPE (полиэтилен сверхнизкой плотности), VLDPE (полиэтилен очень низкой плотности), ЛПЭНП или LLDPE или PELLD (линейный полиэтилен низкой плотности), LMDPE (линейный полиэтилен средней плотности), HMWPE или PEHMW или VHMWPE (высокомолекулярный полиэтилен). HMWHDPE (высокомолекулярный полиэтилен высокой плотности), PEUHMW или UHMWPE (сверхвысокомолекулярный полиэтилен), UHMWHDPE (ультравысокомолекулярный полиэтилен высокой плотности), PEX или XLPE (сшитый полиэтилен), PEC или CPE (хлорированный полиэтилен), EPE (вспенивающийся полиэтилен), mLLDPE или MPE (металлоценовый линейный полиэтилен низкой плотности).

Базовые марки суспензионного полиэтилена низкого давления: 20108-001; 20208-002; 20308-005; 20408-007; 20508-007; 20608-012; 20708-016; 20808-024; 20908-040; 21008-075.

Базовые марки газофазного полиэтилена низкого давления: 271-70; 271-82; 271-83; 273-71; 273-73; 273-79; 273-80; 273-81; 276-73; 276-75; 276-83; 276-84; 276-85; 276-95; 277-73; 277-75; 277-83; 277-84; 277-85; 277-95.

Базовые марки полиэтилена высокого давления, полученного в реакторах с перемешивающим устройством: 10204-003; 10604-007; 10703-020; 10803-020; 11304-040; 11503-070; 12003-200; 12103-200.

Базовые марки полиэтилена высокого давления, полученного в реакторах трубчатого типа: 15003-002; 15303-003; 15503-004; 16305-005; 17603-006; 17504-006; 16005-008; 17703-010; 16603-011; 17803-015; 15803-020; 16204-020; 16405-020; 18003-030; 18103-035; 16904-040; 18203-055; 16803-070; 18303-120; 17403-200; 18404-200.

В кабельной промышленности используются композиции на основе полиэтилена высокого давления (низкой плотности) и низкого давления (высокой плотности) со стабилизаторами и другими добавками, предназначенные для наложения изоляции, оболочек и защитных покровов проводов и кабелей методом экструзии.
Марки композиций полиэтилена для кабельной промышленности устанавливаются на основе базовых марок полиэтилена высокого давления 10204-003, 15303-003, 10703-020, 18003-030, 17803-015 и рецептур добавок 01, 02, 04, 09, 10, 93-97, 99, 100, марки 10703-020 и рецептур 61 и полиэтилена низкого давления (суспензионный метод) 20408-007, 20608-012, 20708-016, 20808-024 и рецептур добавок 07, 11, 12, 19, 57 полиэтилена низкого давления (газофазный метод) на основе марки 271-порошок и рецептур добавок 70, 82, 83, марки 273-порошок и рецептур добавок 71, 81.
Обозначение марок композиций полиэтилена для кабельной промышленности состоит из наименования материала «полиэтилен», трех первых цифр обозначения базовой марки полиэтилена, номера рецептуры добавок, написанного через тире, и буквы «К», обозначающей применение композиций полиэтилена в кабельной промышленности, и обозначения стандарта, в соответствии с которым изготовлен полиэтилен для кабельной промышленности.
Пример условного обозначения композиции для кабельной промышленности на основе полиэтилена высокого давления базовой марки 10204-003 с добавками в соответствии с рецептурой 09:
Полиэтилен 102-09К ГОСТ 16336-77
Пример условного обозначения композиции для кабельной промышленности на основе полиэтилена низкого давления базовой марки 20408-007 с добавками в соответствии с рецептурой 07:
Полиэтилен 204-07К ГОСТ 16336-77

При заказе полиэтилена после обозначения марки указывают сорт. Для полиэтилена, предназначенного для изготовления электротехнических изделий и изделий, контактирующих с пищевыми продуктами, питьевой водой, косметическими и лекарственными препаратами, игрушек, контактирующих и не контактирующих с полостью рта, а также для полиэтилена, подлежащего длительному хранению, дополнительно указывают соответствующее назначение.

Но на рынке присутствуют и другие марки полиэтилена, поскольку большинство производителей работает в соответствии с собственными ТУ, отражающими развитие индустрии полимерных материалов, за которым система стандартизации не всегда успевает.

Полиэтилентерефталат

Полиэтилентерефталат – синтетический линейный термопластичный полимер, принадлежащий к классу полиэфиров. Продукт поликонденсации терефталевой кислоты и моноэтиленгликоля. Полиэтилентерефталат может эксплуатироваться как в аморфном, так и в кристаллическом состоянии. Аморфный полиэтилентерефталат – твердый прозрачный материал, кристаллический – твердый непрозрачный бесцветный. Степень кристалличности может быть отрегулирована отжигом при температуре между температурой стеклования и температурой плавления. Товарный полиэтилентерефталат выпускается обычно в виде гранулята с размером гранул 2-4 миллиметра.
Обычное обозначение полиэтилентерефталата на российском рынке – ПЭТ, но могут встречаться и другие обозначения: ПЭТФ или PET или PETP (полиэтилентерефталат), APET (аморфный полиэтилентерефталат).
В промышленном масштабе ПЭТ начал выпускаться как волокнообразующий полимер, но вскоре занял одно из ведущих мест и в индустрии полимерной упаковки. По темпам роста потребления в настоящее время полиэтилентерефталат является наиболее быстрорастущим полимерным материалом.
Волокнообразующий полиэтилентерефталат известен на рынке под торговыми марками лавсан или полиэстер.
Технические требования, предъявляемые к отечественному ПЭТ, определяются «ГОСТ Р 51695-2000 Полиэтилентерефталат. Общие технические условия».

Полипропилен

Полипропилен – синтетический термопластичный неполярный полимер, принадлежащий к классу полиолефинов. Продукт полимеризации пропилена. Твердое вещество белого цвета. Выпускается в форме гомополимера и сополимеров, получаемых сополимеризацией пропилена и этилена в присутствии металлоорганических катализаторов при низком и среднем давлениях, в виде гранул стабилизированных, окрашенных или неокрашенных.
Обычное обозначение полипропилена на российском рынке – ПП, но могут встречаться и другие обозначения: РР (полипропилен), PP HO или PP homopolymer (полипропилен гомополимер), HIPP (высокоизотактический полипропилен гомополимер), РР-Х, PP-XMOD (сшитый полипропилен), PPCP или PP/Co или PP block-copolymer или PP impact copolymer (полипропилен блок-сополимер, блок-сополимер пропилена и этилена), PPМ (блок-сополимер пропилена и этилена с низким содержанием полиэтилена), PPR (блок-сополимер пропилена и этилена со средним содержанием полиэтилена), PPU (блок-сополимер пропилена и этилена с высоким содержанием полиэтилена), PPH (блок-сополимер пропилена и этилена с очень высоким содержанием полиэтилена), PP random copolymer (статистический сополимер пропилена и этилена), PP-EPDM или PP/EP (смесь полипропилена и тройного сополимера этилена, пропилена и диена), EPP (вспенивающийся полипропилен), EMPP (полипропилен, модифицированный каучуком), mРР (металлоценовый полипропилен).
Условное обозначение отечественного полипропилена и сополимеров пропилена, выпускаемых в соответствии с ГОСТ 26996-86, состоит из названия материала «полипропилен» или «сополимер» и пяти цифр. Первая цифра 2 или 0 указывает на то, что процесс полимеризации протекает на комплексных металлорганических катализаторах при низком или среднем давлении соответственно. Вторая цифра указывает вид материала: 1 – полипропилен; 2 – сополимер пропилена. Три последующие цифры обозначают десятикратное значение показателя текучести расплава. Далее через тире указывают номер рецептуры стабилизации, затем сорт и обозначение стандарта, в соответствии с которым изготавливается полипропилен и его сополимеры.
Пример условного обозначения полипропилена марки 21020, стабилизированного по рецептуре 02, 1-го сорта: Полипропилен 21020-02, сорт 1, ГОСТ 26996-86.
При выпуске окрашенного полипропилена или сополимера в обозначении дополнительным словом указывают цвет и трехзначное число, обозначающее номер рецептуры окрашивания.
Пример условного обозначения полипропилена марки 21030, стабилизированного по рецептуре 06, окрашенного в красный цвет по рецептуре 105, 1-го сорта: Полипропилен 21030-06, красный, рец. 105, сорт 1, ГОСТ 26996-86.
Исходя из условного обозначения полипропилена, разделив число из трех последних цифр в марке полипропилена на 10, можно найти ПТР и определить наиболее подходящий способ переработки конкретной марки ПП. ПТР АБС

Свойства: АБС-пластик – ударопрочный материал, относящийся к инженерным пластикам. Обладает более высокой стойкостью к ударным нагрузкам по сравнению с полистиролом общего назначения, ударопрочным полистиролом и другими сополимерами стирола. Превосходит их по механической прочности и жесткости. Износостоек. Выдерживает кратковременный нагрев до 90-100 °С. Максимальная температура длительной эксплуатации: 75 – 80 °С. АБС-пластик пригоден для нанесения гальванического покрытия, для вакуумной металлизации, а также для пайки контактов. Хорошо сваривается. Рекомендуется для точного литья. Имеет высокую размерную стабильность. Дает блестящую поверхность. Имеются специальные марки с повышенным и пониженным блеском. Стоек к щелочам, смазочным маслам, растворам неорганических солей и кислот, углеводородам, жирам, бензину. Растворяется в ацетоне, эфире, бензоле, этилхлориде, этиленхлориде, анилине, анизоле. Не стоек к ультрафиолетовому излучению. Характеризуется ограниченной устойчивостью против атмосферных воздействий и пониженными электроизоляционными свойствами по сравнению с полистиролом общего назначения и ударопрочным полистиролом.

Свойства АБС-пластика можно изменять в широких пределах посредством модификации исходного материала. Так, например, повышение атмосферостойкости достигается заменой бутадиена на насыщенные эластомеры. Прозрачную модификацию АБС-пластика можно получить, используя четвертый мономер – метилметакрилат. Теплостойкий АБС-пластик с максимальной температурой эксплуатации до 90-100 °С и возможностью кратковременного нагрева до 110-130 °С содержит четвертый мономер – альфаметилстирол или N-фенилмалеинимид.

Фторопласты

Фторопласты – синтетические термопластичные полимеры, принадлежащие к классу фторолефинов. Продукты полимеризации фторпроизводных олефинов.
Наибольшее применение в промышленности находят:
политетрафторэтилен, известный под торговыми марками фторопласт-4, тефлон (США), полифлон (Япония), алгофлон (Италия), флюон (Англия), сорефлон (Франция), гостафлон TP (Германия);
политрифторхлорэтилен, известный под торговыми марками фторопласт-3, дайфлон (Япония), кель F (США), гостафлон (Германия), волталеф (Франция);
поливинилиденфторид, известный под торговыми марками, фторопласт-2, кайнар (США), KF полимер (Япония); видар (Германия); солеф (Бельгия), форафлон (Франция);
сополимер тетрафторэтилена с этиленом, известный под торговыми марками фторопласт-40, тефзел (США), неофлон ETFE (Япония), хостафлон ET (Германия);
сополимер тетрафторэтилена с винилиденфторидом, известный под торговой маркой фторопласт-42;
сополимер тетрафторэтилена с гексафторпропиленом, известный под торговыми марками фторопласт-4МБ, тефлон FEP (США), хостафлон FEP (Германия), неофлон (Япония);
сополимер тетрафторэтилена с перфторвинилпропиловым эфиром известный под торговыми марками фторопласт-50, тефлон PFA (США).

Широко применяются также композиции на основе фторопластов, когда во фторполимер вводятся наполнители, повышающие износостойкость, прочность, твердость или упругость, изделий из фторопластов.
В качестве наполнителей для фторопластовых композиций применяют материалы, выдерживающие температуру спекания фторопласта. Наиболее распространенные наполнители можно разделить на следующие группы:
Порошкообразные:
металлические – медь, серебро, свинец, никель, бронза, олово, алюминий;
минеральные – кварц, стеклопорошок, ситал, керамика, слюда, каолин;
органические – графит, сажа, уголь, кокс.
Волокнистые (армирующие наполнители):
нетканые – стекловолокно, асбестовое, графитовое, кварцевое, базальтовое волокно, металлические усы;
тканые – стеклоткани, графитовые, асбестовые и базальтовые ткани.
Армирующие наполнители каркасного типа:
металлическая смятая сетка;
смятая фольга.
Наполнители можно вводить во фторопласт каждый в отдельности или в различных сочетаниях (комбинированные наполнители) в зависимости от назначения композиций.
Введение во фторопласты таких наполнителей, как стекловолокно, графит, бронза, коксовая мука, дисульфид молибдена, силициды металлов, позволяет в 200-1000 раз уменьшить износ уплотнительного элемента, в несколько раз увеличить теплопроводность, в 5-10 раз увеличить прочность при сжатии и твердость, уменьшить трение.
В частности,
введение графита используют в тех случаях, когда надо повысить механическую прочность и сохранить стойкость;
введение бронзы повышает теплопроводность, твердость, стабильность размеров, в 450 раз увеличивает износостойкость композиции;
введение дисульфида молибдена увеличивает твердость и прочность, снижает коэффициент трения;
введение стекловолокна повышает износостойкость, стабильность размеров при водопоглощении и усадке, теплостойкость, уменьшает коэффициент линейного расширения и хладотекучесть
композиции со стекловолокном и 5% дисульфида молибдена используют для получения деталей, работающих в условиях глубокого вакуума, сухого и влажного воздуха и газов;
внедрение углеродного волокна повышает износостойкость, твердость и удельную теплопроводность, сопротивление ползучести, снижает деформацию при нагрузке, повышает модуль упругости при сжатии и модуль пластичности;
введение коллоидного графита повышает жесткость и уменьшает хладотекучесть материала.
При использовании в качестве наполнителей стекловолокна, кремнезема, асбестовой ткани, металлической ваты увеличивается жесткость композита, уменьшается относительная деформация при невысоких коэффициентах трения.

Среди самих фторопластов наибольшее распространение получил фтропласт-4 и композиции на его основе, благодаря исключительной химической инертности этого полимера по отношению практически ко всем агрессивным средам.
В России фтропласт-4 производится в соответствии с ГОСТ 10007-80, который предусматривает выпуск нескольких марок фторопласта-4:
С – для изготовления специзделий;
П – для изготовления электроизоляционной и конденсаторной пленок;
ПН – для изготовления электротехнических изделий и других изделий повышенной надежности, а также электроизоляционных, изоляционных и пористых, вальцованных пленок и прокладочной ленты (допускается в отдельных случаях при отсутствии фторопласта-4 марки С применять фторопласт-4 марки ПН для изготовления изделий спецназначения);
О – для изготовления изделий общего назначения и композиций;
Т – для изготовления толстостенных изделий и трубопроводов.
Условное обозначение фтропласта-4 состоит из названия материала и сокращенного указания марки. Например: Фторопласт-4 П ГОСТ 10007-80 или Фторопласт-4 С ГОСТ 10007-80.
Марки композиционных материалов отечественного производства маркируются с обозначением материала, на основе которого создан композит, и количественного обозначения массовой доли наполнителей с буквенным указанием материала наполнителя (С – измельченное стекловолокно, К – молотый кокс, М – дисульфид молибдена, Г – графит, НБ – нитрид бора, КС – кобальт синий, УВ – углеродное волокно, Al – безводная окись алюминия). Например:
Ф4К15М5 – композиционный материал на основе фторопласта-4, содержит 15% коксовой муки и 5% дисульфида молибдена (применяется для работы в среде влажных газов);
Ф4С15М5 – композиционный материал на основе фторопласта-4, содержит 15% размолотого стекловолокна и 5% дисульфида молибдена (применяется для деталей, работающих в условиях высокого вакуума сухого и влажного воздуха и газов);
Ф4М15 – композиционный материал на основе фторопласта-4, содержит 15% дисульфида молибдена (применяется для деталей, работающих в среде влажных газов и в вакууме);
Ф4С15В5 – композиционный материал на основе фторопласта-4, содержит 15% измельченного стекловолокна и 5% нитрида бора (применяется для изделий, обладающих высокой химической стойкостью и износостойкостью, а также высокими механическими свойствами в широком интервале температур);
Композиция Ф4Г21М7 – композиционный материал на основе фторопласта-4, содержит 21% графита и 7% дисульфида молибдена (применяется для создания антифрикционных самосмазывающихся графитофторопластовых материалов).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *