Что лучше quad core или xeon

Intel Core 2 Quad Q9650 vs Xeon E5450

Общая информация

Сведения о типе (для десктопов или ноутбуков) и архитектуре Core 2 Quad Q9650 и Xeon E5450, а также о времени начала продаж и стоимости на тот момент.

Место в рейтинге производительности15671550
Соотношение цена-качество1.430.98
ТипДесктопныйСерверный
Кодовое название архитектурыYorkfieldHarpertown
Дата выходаАвгуст 2008 (13 лет назад)1 октября 2007 (14 лет назад)
Цена сейчас132$146$

Для получения индекса мы сравниваем характеристики процессоров и их стоимость, учитывая стоимость других процессоров.

Характеристики

Количественные параметры Core 2 Quad Q9650 и Xeon E5450: число ядер и потоков, тактовые частоты, техпроцесс, объем кэша и состояние блокировки множителя. Они косвенным образом говорят о производительности Core 2 Quad Q9650 и Xeon E5450, но для точной оценки необходимо рассмотреть результаты тестов.

Ядер4нет данных
Потоков4нет данных
Базовая частота3.00 ГГц3.00 ГГц
Максимальная частота3 ГГцнет данных
Кэш 1-го уровня64 Кб (на ядро)нет данных
Кэш 2-го уровня6 Мб (всего)нет данных
Кэш 3-го уровнянет данных12 Мб L2 Кб
Технологический процесс45 нм45 нм
Размер кристалла2x 107 мм 2нет данных
Максимальная температура ядра71 °C67 °C
Количество транзисторов820 млннет данных
Поддержка 64 бит++
Совместимость с Windows 11
Свободный множитель
Допустимое напряжение ядра0.85V-1.3625V0.85V-1.35V

Совместимость

Параметры, отвечающие за совместимость Core 2 Quad Q9650 и Xeon E5450 с остальными компонентами компьютера. Пригодятся например при выборе конфигурации будущего компьютера или для апгрейда существующего. Обратите внимание, что энергопотребление некоторых процессоров может значительно превышать их номинальный TDP даже без разгона. Некоторые могут даже удваивать свои заявленные показатели, если материнская плата позволяет настраивать параметры питания процессора.

Макс. число процессоров в конфигурации1нет данных
СокетLGA775LGA771
Энергопотребление (TDP)95 Вт80 Вт

Технологии и дополнительные инструкции

Здесь перечислены поддерживаемые Core 2 Quad Q9650 и Xeon E5450 технологические решения и наборы дополнительных инструкций. Такая информация понадобится, если от процессора требуется поддержка конкретных технологий.

AES-NIнет данных
Enhanced SpeedStep (EIST)++
Turbo Boost Technology
Hyper-Threading Technology
Idle States++
Thermal Monitoring++
Demand Based Switching+
Четность FSB+

Технологии безопасности

Встроенные в Core 2 Quad Q9650 и Xeon E5450 технологии, повышающие безопасность системы, например, предназначенные для защиты от взлома.

Технологии виртуализации

Перечислены поддерживаемые Core 2 Quad Q9650 и Xeon E5450 технологии, ускоряющие работу виртуальных машин.

VT-d+нет данных
VT-x++
EPTнет данных

Поддержка оперативной памяти

Типы, максимальный объем и количество каналов оперативной памяти, поддерживаемой Core 2 Quad Q9650 и Xeon E5450. В зависимости от материнских плат могут поддерживаться более высокие частоты памяти.

Типы оперативной памятиDDR1, DDR2, DDR3нет данных

Тесты в бенчмарках

Это результаты тестов Core 2 Quad Q9650 и Xeon E5450 на производительность в неигровых бенчмарках. Общий балл выставляется от 0 до 100, где 100 соответствует самому быстрому на данный момент процессору.

Общая производительность в тестах

Это наш суммарный рейтинг эффективности. Мы регулярно улучшаем наши алгоритмы, но если вы обнаружите какие-то несоответствия, не стесняйтесь высказываться в разделе комментариев, мы обычно быстро устраняем проблемы.

Источник

Intel Xeon E5450 vs Core 2 Quad Q9500

Общая информация

Сведения о типе (для десктопов или ноутбуков) и архитектуре Xeon E5450 и Core 2 Quad Q9500, а также о времени начала продаж и стоимости на тот момент.

Место в рейтинге производительности15501631
Соотношение цена-качество0.984.75
ТипСерверныйДесктопный
Кодовое название архитектурыHarpertownYorkfield
Дата выхода1 октября 2007 (14 лет назад)нет данных
Цена сейчас146$33$

Для получения индекса мы сравниваем характеристики процессоров и их стоимость, учитывая стоимость других процессоров.

Характеристики

Количественные параметры Xeon E5450 и Core 2 Quad Q9500: число ядер и потоков, тактовые частоты, техпроцесс, объем кэша и состояние блокировки множителя. Они косвенным образом говорят о производительности Xeon E5450 и Core 2 Quad Q9500, но для точной оценки необходимо рассмотреть результаты тестов.

Ядернет данных4
Потоковнет данных4
Базовая частота3.00 ГГц2.83 ГГц
Кэш 3-го уровня12 Мб L2 Кб6 Мб L2 Cache
Технологический процесс45 нм45 нм
Максимальная температура ядра67 °C71 °C
Поддержка 64 бит++
Совместимость с Windows 11
Свободный множитель
Допустимое напряжение ядра0.85V-1.35V0.85V-1.3625V

Совместимость

Параметры, отвечающие за совместимость Xeon E5450 и Core 2 Quad Q9500 с остальными компонентами компьютера. Пригодятся например при выборе конфигурации будущего компьютера или для апгрейда существующего. Обратите внимание, что энергопотребление некоторых процессоров может значительно превышать их номинальный TDP даже без разгона. Некоторые могут даже удваивать свои заявленные показатели, если материнская плата позволяет настраивать параметры питания процессора.

СокетLGA771LGA775
Энергопотребление (TDP)80 Вт95 Вт

Технологии и дополнительные инструкции

Здесь перечислены поддерживаемые Xeon E5450 и Core 2 Quad Q9500 технологические решения и наборы дополнительных инструкций. Такая информация понадобится, если от процессора требуется поддержка конкретных технологий.

Enhanced SpeedStep (EIST)++
Turbo Boost Technology
Hyper-Threading Technology
Idle States++
Thermal Monitoring++
Demand Based Switching+
Четность FSB+нет данных

Технологии безопасности

Встроенные в Xeon E5450 и Core 2 Quad Q9500 технологии, повышающие безопасность системы, например, предназначенные для защиты от взлома.

Технологии виртуализации

Перечислены поддерживаемые Xeon E5450 и Core 2 Quad Q9500 технологии, ускоряющие работу виртуальных машин.

VT-x++
EPTнет данных

Тесты в бенчмарках

Это результаты тестов Xeon E5450 и Core 2 Quad Q9500 на производительность в неигровых бенчмарках. Общий балл выставляется от 0 до 100, где 100 соответствует самому быстрому на данный момент процессору.

Общая производительность в тестах

Это наш суммарный рейтинг эффективности. Мы регулярно улучшаем наши алгоритмы, но если вы обнаружите какие-то несоответствия, не стесняйтесь высказываться в разделе комментариев, мы обычно быстро устраняем проблемы.

Источник

До чего дошел прогресс — Xeon E5450 vs. Core i3-8100 в современных приложениях и играх

Введение

Несмотря на неумолимый ход технического прогресса, рост вычислительной мощности компьютерных комплектующих на короткой дистанции (длиной в пару лет) обычно не выглядит столь уж впечатляющим. Взять, к примеру, уже ставшие мемом «жалкие» 5% прибавки к IPC в очередном поколении процессоров Intel — согласитесь, такое. Конечно, всегда можно аргументировать, что пример выбран максимально подходящий под вышеобозначенный тезис: Intel последние годы занимался лишь оптимизацией крайне удачной на момент своего выхода микроархитектуры Skylake, существенным образом свои процессоры не перерабатывая, так что и ожидать хотя бы двузначного прироста IPC от поколения к поколению здесь не стоило. У AMD, например, приросты IPC при переходе от Zen к Zen 2 и от Zen 2 к Zen 3 вполне себе двузначные, но это опять же около 15%, что выглядит впечатляюще разве что на фоне упомянутых выше показателей Intel и в отрыве от контекста. А контекст состоит в том, что несмотря на значительный рывок в IPC при переходе на первое поколение микроархитектуры Zen, процессоры этой архитектуры лишь приблизились по показателям IPC к представителям актуальной на тот момент очередной оптимизации Skylake. И поэтому двузначный прирост IPC при переходе от Zen к Zen 2, когда AMD наконец-таки догнала Intel, а затем и при переходе от Zen 2 к Zen 3, когда AMD удалось уже обогнать конкурента, не должен вводить в заблуждение — столь высокие на фоне Intel показатели прогресса от поколения к поколению у AMD в последние годы обусловлены тем, что точка отсчёта (Zen) была всё же заметно ниже лучших представителей Intel того времени.

реклама

Но речь сейчас, конечно же, не о противопоставлении AMD и Intel, а о том, что в целом рост производительности центральных процессоров в последние годы сильно замедлился, и упомянутый резкий рывок AMD по IPC здесь как раз таки не показатель по указанной выше причине. Вот, как в общем выглядит график роста целочисленной производительности одних из лучших центральных процессоров за период в 40 лет по данным наборов тестов SPECint (из Hennessy, J. L., Patterson, D. A. Computer architecture: a quantitative approach, 6th ed.):

Конечно же, о двукратном приросте производительности за каждую пару лет, как это было в «лихие 90-е» речи уже давно не идёт — тогда переход на RISC-архитектуры позволил сравнительно легко и достаточно долго год от года существенно увеличивать производительность путём наращивания кэшей, всё более эффективного использования суперскалярности и повышения тактовых частот. Но уже в начале 2000-х стало ясно, что такой «халяве» осталось продолжаться недолго — за прошедшие с момента перехода индустрии на RISC-архитектуры годы инженеры «выжали» из преимуществ RISC почти «все соки». Привычные методы увеличения производительности себя почти полностью исчерпали — рост тактовых частот практически остановился из-за физических ограничений (энергопотребление и тепловыделение росли банально быстрее, чем тактовые частоты), а увеличение скорости шины, размера кэш-памяти и улучшение некоторых других аспектов микроархитектуры более не приводили к ощутимому росту производительности и экономически себя не оправдывали. По этой причине с середины 2000-х индустрия начинает массово переходить на многоядерные процессоры, и ещё некоторое время одноядерная производительность продолжала расти преимущественно за счёт улучшения техпроцесса и покорения всё более высоких тактовых частот уже в рамках многоядерных моделей. Однако, к концу 2010-х обсуждаемый рост практически полностью остановился: прирост порядка нескольких процентов в год — реалии современного процессорного рынка. Нам тут остаётся лишь вторить главному герою мультфильма «Падал прошлогодний снег».

Но даже если взять за точку отсчёта момент появления первых многоядерных процессоров, то 10% и даже 20% прироста год от года заметить на самом деле не так уж просто, особенно учитывая тот факт, что во многих реальных задачах прирост производительности при переходе от поколения к поколению до указанных чисел не дотягивает. Совсем другой дело — посмотреть во что суммарно выльются все эти улучшения на сравнительно большой дистанции, скажем, лет 10. Оценить, так сказать, «кумулятивный эффект» от многочисленных микроархитектурных и прочих изменений в центральных процессорах и связанных с ними узлах (в первую очередь, оперативной памятью), причём сделать это в реальном программном обеспечении. Вот этим мы сегодня и займёмся, а поможет нам в этом парочка 4-ядерных процессоров Intel двух разных эпох — Xeon E5450 (аналог настольного Core 2 Quad Q9650) и Core i3-8100.

реклама

Участники тестирования

Участников сегодняшнего тестирования действительно разделяют целых 10 лет технического прогресса в области процессоростроения: Xeon E5450 увидел свет в ноябре 2007, а Core i3-8100 — в октябре 2017. Настольный аналог Xeon E5450, Core 2 Quad Q9650, конечно, вышел чуть позже (в августе 2008), но сути дела это сильно не меняет. За указанный, внушительный по меркам компьютерной индустрии, срок процессоры Intel пережили 4 смены микроархитектуры, если считать по «такам» (Core → Nehalem → Sandy Bridge → Haswell → Skylake), 3 смены техпроцесса (45 нм → 32 нм → 22 нм → 14 нм), а заодно и столь «любимые» всеми 4 смены процессорного разъёма (LGA 775 → LGA 1156 → LGA 1155 → LGA 1150 → LGA 1151), или точнее даже 5, учитывая две лишь механически совместимые версии LGA 1151. Для простоты сравнения Xeon E5450 был немного разогнан с 333 МГц по шине до 400 МГц, так что его итоговая частота оказалась равной таковой у далёкого потомка в лице Core i3-8100, а именно 3.6 ГГц. Но не стоит думать, что таким разгоном мы искусственным образом ставим представителя микроархитектуры Core в более выгодное положение, ведь даже в настольной линейке процессоров Intel той эпохи имелся процессор с 400 МГц шиной, остановившийся всего в одном шаге (по множителю) от частоты 3.6 ГГц — Core 2 Extreme QX9770 со стоковой частотой 8.0 × 400 МГц = 3200 МГц. Ну а среди серверных 4-ядерных процессоров Intel микроархитектуры Core можно обнаружить и Xeon X5492 со стоковой частотой 8.5 × 400 МГц = 3400 МГц, то есть всего лишь на 200 МГц ниже используемой в нашем тестировании. Так что в отношении небольшого разгона Xeon E5450 можно сказать, что мы лишь подтянули его показатели до таковых у самых топовых представителей микроархитектуры Core, разве что совсем немного переусердствовав.

реклама

Конечно, не все даже указанные выше улучшения являются существенными для нашего конкретного случая. Так, например, последний пункт нам безразличен, так как Core i3-8100 не поддерживает ни Hyper-Threading, ни Turbo Boost, но упомянуть эти технологии всё же стоило.

Основы тестовых стендов LGA 775 и LGA 1151 составляют материнские платы ASUS P5Q3 и GIGABYTE B360M H, соответственно. Остальные комплектующие, кроме оперативной памяти, идентичны: видеокарта GeForce RTX 2060 Super от KFA2, бюджетный SSD WD Green на 240 ГБ под Windows и приложения, жёсткий диск Seagate 7200 BarraCuda на 3 ТБ под игры, блок питания Xilence Performance A+ 630 Вт. Первые два тестовых стенда оснащены 4 планками DDR3-1600 CL9 памяти с Aliexpress объёмом по 4 ГБ каждая, о которой неоднократно писалось ранее, последний— 2 планками Patriot Signature DDR4-2400 CL17 памяти объёмом по 8 ГБ каждая.

Источник

Ретроверсус — Core 2 Quad (Xeon) vs. Athlon/Phenom II X4

Введение

Ещё в самом первом материале, посвящённом исследованию производительности 4-ядерных процессоров AMD прошлых лет, упоминалось, что именно эта компания выпустила в конце 2007 года по сути первый «настоящий» 4-ядерный x86-процессор, то есть x86-процессор с 4 ядрами на одном кристалле и общим для всех ядер кэшем. Первые 4-ядерные x86-процессоры Intel, выпущенные годом ранее, представляли собой по сути «сдвоенные двухъядерные» — два 2-ядерных кристалла в одном корпусе с общим кэшем лишь в пределах каждого кристалла. В этом отношении первые 4-ядерные чипы Intel Core 2 Quad/Extreme напоминали первые же 2-ядерные чипы этой компании, Pentium D эпохи NetBurst, использовавшие аналогичную двухкристальную компоновку. С одной стороны такое внутреннее устройство многоядерных процессоров Intel имело очевидный недостаток — из-за отсутствия общего для всех ядер кэша обмен данными между ядрами из разных кристаллов мог выполняться лишь посредством системной шины и оперативной памяти, что очевидно менее эффективно. Однако, с другой стороны, уже проверенная временем двухкристальная компоновка позволила на год раньше конкурента выпустить на рынок 4-ядерные процессоры на новой микроархитектуре Core. Кроме того, как мы уже неоднократно отмечали, несмотря на в целом передовую архитектуру, первый 4-ядерный “блин” у AMD получился “комом” — даже несмотря на то, что процессоры этой компании вышли на рынок на год позже, их производительность на фоне конкурента в лице Core 2 Quad оказалась совсем невпечатляющей. И тут было уже не до маркетинговых лозунгов о «настоящих» 4-ядерных процессорах — AMD пришлось серьёзно скорректировать ценовую политику, чтобы окончательно не потерять рынок многоядерных процессоров для настольных систем.

реклама

Впрочем, и этот момент также уже упоминался не единожды в наших исследованиях, потенциал микроархитектуры K10 не был раскрыт в процессорах Phenom первого поколения преимущественно из-за проблем с достижением сравнительно высоких тактовых частот — проблемы, решённой компанией AMD уже к началу 2009 года с выпуском второго поколения процессоров Phenom, лишённых указанного выше недостатка. В последней статье цикла мы как раз и протестировали Phenom II X4 в связке с DDR3 памятью и убедились, что 4-ядерные процессоры второго поколения многоядерных решений микроархитектуры K10 в умеренном разгоне всё ещё могут обеспечить стабильные 30 FPS во многих современных играх даже на ультра-настройках. Конечно же, было бы интересно посмотреть, как в той же дисциплине выступят 4-ядерные процессоры Intel тех лет, пускай и не совсем «настоящие» (в упомянутом выше смысле). С этой целью в качестве конкурента Phenom II X4 925, принимавшему участие в нашем тестировании ранее, мы противопоставим сегодня серверный Xeon E5440, являющийся аналогом настольного Core 2 Quad Q9550. Да, на момент выхода Phenom II X4 на рынок у Intel имелись в арсенале уже и «настоящие» 4-ядерные процессоры Core i7 900-ой серии на новой микроархитектуре Nehalem, однако, эти процессоры были частью платформы LGA 1366, сборки на которой стоили значительно дороже и относились к классу высокопроизводительных настольных систем (HEDT). На рынке массовых настольных компьютеров господствующей платформой Intel всё ещё оставалась платформа LGA 775, и, соответственно, массовыми 4-ядерными предложениями Intel были как раз таки процессоры Core 2 Quad.

Как и ранее, в качестве современного ориентира используется «гиперпень». Основы тестовых стендов AM3, LGA 775 и LGA 1151 составляют материнские платы ASUS M4A79T Deluxe, ASUS P5Q3 и MSI B250M PRO-VD, соответственно. Остальные комплектующие, кроме оперативной памяти, идентичны: видеокарта GeForce RTX 2060 Super от KFA2, бюджетный SSD WD Green на 240 ГБ под Windows и приложения, жёсткий диск Seagate 7200 BarraCuda на 3 ТБ под игры, блок питания Xilence Performance A+ 630 Вт. Первые два тестовых стенда оснащены 2 планками DDR3-1600 CL9 памяти с Aliexpress объёмом по 4 ГБ каждая, о которой неоднократно писалось ранее, последний— 2 планками DDR4-2400 CL17 памяти так же объёмом по 4 ГБ каждая.

реклама

Небольшой спойлер: на фото тестовый стенд LGA 775 трудится над сбором данных уже для следующей статьи (нетрудно заметить, что планок памяти установлено уже 4, а не 2), но об этом в другой раз. Ах да, ничего свободного под LGA 775, кроме Cryorig R1 Ultimate под рукой не нашлось, так что не обессудьте — для небольшого разгона 2-секционный суперкулер явно перебор, но дешёвая «водянка» ID-Cooling FROSTFLOW X 240, которая использовалась ранее в тестах платформы AM3, не имеет креплений под LGA 775. Пользуясь случаем, передаю привет магазину НИКС, на сайте которого указано обратное — что, дескать, поддерживает. Впрочем, не суть, так что не будем отвлекаться. Ниже приведена таблица основных технических характеристик сравниваемых процессоров.

Разгон процессоров AMD подробно обсуждался ранее, вкратце Athlon II X4 630 покорил планку в 240 МГц «по шине», а Phenom II X4 925 — в 260 МГц, и, таким образом, результирующие частоты этих процессоров в разгоне составили 3.36 и 3.64 ГГц, соответственно. Делитель памяти был установлен в значение 3:10, так что итоговая частота памяти в разгоне оказалась равной DDR3-1733 (9-9-9) и DDR3-1600 (9-9-9), соответственно. В стоке память также работала в режиме DDR3-1600 (9-9-9).

реклама

Xeon E5440 также разгонялся «по шине». Цель ставить рекорды вновь не стояла, так что ограничившись напряжением в 1.375 В на ядра процессора удалось разогнать FSB с 333 МГц до 425. Частота процессора при этом возросла с 2.83 до 3.6 ГГц, а память заработала в режиме DDR3-1700 (9-9-9). Таким образом, в разгоне частотные характеристики процессора и памяти оказались практически идентичными таковым для Phenom II X4 925, что позволит провести сравнение в практически идентичных условиях. В стоке с Xeon E5440 память работала на частоте DDR3-1333 (7-7-7), то есть на официально заявленной Intel для P45 максимальной частоте памяти DDR3.

Отметим, что как и в случае с тестируемыми процессорами AMD, многие производители материнских плат с чипсетом P45 повышали максимально поддерживаемую тактовую частоту памяти до 1600 МГц и выше. Например, у нашей платы, ASUS P5Q3, официально заявлена поддержка DDR3-1600 и даже DDR3-1800. Однако, указанные более высокие частоты доступны для Xeon E5440 только в разгоне минимальный делитель на память 1:2, так что в стоке с Xeon E5440 при эффективной частоте системной шине 1333 МГц (4×333 МГц) больше чем DDR3-1333 мы позволить себе не можем. Впрочем, при тестировании 4-ядерных процессоров K10 разница в играх в стоке с DDR3-1333 CL7 и DDR3-1600 CL9 была минимальной, так что этот фактор не определяющий.

AIDA64

Начинаем по традиции с результатов синтетических тестов из пакета AIDA64.

реклама

И здесь дела для процессора Intel обстоят не лучшим образом: если показатели представителей микроархитектуры K10 на фоне современного «гиперпня» со стоковой DDR4-2400 памятью не впечатляли, то с Xeon картина ещё хуже — даже в комплексном разгоне (увеличение не только частоты процессора, но и контроллера памяти) Xeon E5440 значительно отстал не только от G4600, но и от 4-ядерных решений конкурента. При этом в тестах записи отставание Xeon не столь существенно, а вот при чтении (и, как следствие, копировании) Xeon уже далеко позади. В чём причина такого поведения платформы с Xeon сказать непросто, скорее всего такие показатели — особенности используемых контроллеров памяти, ведь если бы причиной низких результатов Xeon на чтение было отсутствие общего для всех ядер кэша, то Athlon II X4 в этом тесте должен был существенно проиграть Phenom II X4, чего не наблюдается.

Переходим к синтетическим тестам центрального процессора. На диаграммах, приведённых ниже, результаты оценки производительности в тестах CPU и FPU вновь, как и ранее, для наглядности приведены относительно таковых для Pentium G4600, показатели которого взяты за 1.

В целом видим, что считает Xeon E5440 так же быстро, как и 4-ядерные представители AMD K10, а при использовании арифметики с плавающей точкой даже немного быстрее. Из общей картины вновь выбивается лишь PhotoWorxx, впрочем, такое поведение данного теста сюрпризом для нас уже не стало — результаты в PhotoWorxx сильно зависят от скоростных показателей подсистемы памяти, которые у Xeon заметно хуже. С одной стороны, можно сказать, что PhotoWorxx не место в синтетических тестах производительности CPU, так как данный тест не измеряет производительность вычислительных блоков процессора в условиях максимально возможной изоляции от других узлов компьютера, с другой — PhotoWorxx за счёт этой своей особенности значительной реалистичнее остальных тестов AIDA64.

Результаты игровых тестов

Grand Theft Auto V (2015, RAGE, DX11)

Sid Meier’s Civilization VI (2016, Собственный, DX11)

Total War: Warhammer II (2017, TW Engine 3, DX11)

Middle-earth: Shadow of War (2017, Firebird Engine, DX11)

F1 2018 (2018, EGO Engine, DX11)

Shadow of the Tomb Raider (2018, Foundation Engine, DX12)

Hitman 2 (2018, Glacier 2, DX12)

Far Cry New Dawn (2019, Dunia 2, DX11)

Metro Exodus (2019, 4A Engine, DX12)

Borderlands 3 (2019, Unreal Engine 4, DX12)

Среднегеометрические результаты и выводы

Картина в абсолютном большинстве протестированных проектов получилась идентичная, так что подробно обсудим лишь среднюю по всем тестам производительность. Итак, что же мы видим по итогу? На практически равных частотах с практически одинаковой памятью как в стоке, так и в небольшом разгоне Xeon E5440 оказался чуть быстрее Athlon II X4 630 и несколько медленнее Phenom II X4 925. Если теперь принять во внимание результаты синтетических тестов AIDA64, показавших примерно одинаковую скорость счёта тестируемых процессоров, то причина, по которой участники тестирования заняли соответствующие места, лежит на поверхности — основной архитектурной характеристикой, оказавшей влияние на результаты, по всей видимости, является наличие или отсутствие общего кэша для ядер. Athlon II X4, напрочь лишённый указанной роскоши, финишировал последним, Xeon, лишь каждая пара ядер которого снабжена общим L2-кэшем, пришёл вторым, а Phenom II X4 с общим L3-кэшем на все 4 ядра закономерно одержал победу.

А вот в недалёком прошлом, в конце 2000-х и начале 2010-х, расклад сил был несколько иным — на равных частотах Core 2 Quad в большинстве игр были всё же быстрее, пускай и незначительно, чем Phenom II X4. Что же изменилось в игровой индустрии с тех пор, что позволило Phenom II X4 спустя годы обойти конкурента? Причина изменений в расстановке сил, по всей видимости, кроется в умении современных игр значительно эффективнее использовать 4 и даже более ядер центрального процессора, в то время как на момент выхода первых 4-ядерных x86-процессоров для настольных систем на рынок, производительность большей части игр редко хоть как-то масштабировалась на более чем 2 ядра. В те годы Core 2 Quad и Athlon/Phenom II X4 за редким исключением показывали в играх производительность равную таковой у своих 2-ядерных «младших братьев» Core 2 Duo и Athlon/Phenom II X2. Но прогресс не стоит на месте и к концу 2010-х большая часть игровых проектов уже была способна сравнительно эффективно использовать как минимум 4 процессорных ядра, и узкое место 2-кристальной компоновки Core 2 Quad — отсутствие общего для всех 4 ядер кэша — дало о себе знать.

Обыгрывая известный в компьютерном сообществе мем, можно сказать, что потенциал «настоящей» многоядерной архитектуры K10 с общим кэшем на все ядра, наконец-то полностью раскрылся. Относиться к этому факту можно по-разному — поклонники AMD с гордо поднятой головой чётким и громким голосом продекламируют «А мы ведь говорили!», сторонники Intel отмахнутся, резонно указав на то, что полностью потенциал K10 раскрылся лишь тогда, когда процессоры этого поколения уже по большей части потеряли свою актуальность. Справедливости ради надо отметить, что в большинстве проектов 2015-2018 годов рассмотренные 4-ядерные процессоры как AMD, так и Intel в небольшом разгоне всё ещё способны обеспечить стабильные 30 (а местами и больше) FPS даже на ультра-настройках. Дальше, конечно, хуже — в некоторых играх 2019 ради стабильных 30 FPS придётся опуститься уже до средних настроек, а часть проектов, кроме того, вообще не запустится из-за отсутствия поддержки наборов инструкций SSE4.2. Суммарно, конечно, на данный момент эти процессоры выглядят, мягко скажем, не впечатляюще, но «консольный опыт» в большинстве игр получить вполне ещё можно. 😀 Естественно, из современных процессоров даже 2-ядерный 4-поточный «гиперпень» в стоке способен продемонстрировать игровую производительность того же порядка при более низких значениях энергопотребления и тепловыделения. Но если вспомнить, сколько протестированным сегодня процессорам лет, то какие вообще к ним могут быть претензии?

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *