Что менделеев считал главной характеристикой атома при построении периодической системы кратко
Что менделеев считал главной характеристикой атома при построении периодической системы кратко
Выдающийся русский учёный, химик, физик и энергетик. Самым значимым его вкладом в науку стало открытие периодического закона, графическое выражение которого получило название Периодической системы химических элементов.
Периодический закон
К середине XIX века учёные располагали множеством сведений о физических и химических свойствах разных элементов и их соединений. Появилась необходимость упорядочить эти знания и представить их в наглядном виде. Исследователи из разных стран пытались создать классификацию, объединяя элементы по сходству состава и свойств веществ, которые они образуют. Однако ни одна из предложенных систем не охватывала все известные элементы.
Пытался решить эту задачу и молодой русский профессор Д.И. Менделеев. Он собирал и классифицировал информацию о свойствах элементов и их соединений, а затем уточнял её в ходе многочисленных экспериментов. Собрав данные, Дмитрий Иванович записал сведения о каждом элементе на карточки, раскладывал их на столе и многократно перемещал, пытаясь выстроить логическую систему. Долгие научные изыскания привели его к выводу, что свойства элементов и их соединений изменяются с возрастанием атомной массы, однако не монотонно, а периодически.
Так был открыт периодический закон, который учёный сформулировал следующим образом: «Свойства элементов, а потому и свойства образуемых ими простых и сложных тел, стоят в периодической зависимости от их атомного веса».
Своё открытие Менделеев совершил почти за 30 лет до того, как учёным удалось понять структуру атома. Открытия в области атомной физики позволили установить, что свойства элементов определяются не атомной массой, а зависят от количества электронов, содержащихся в нём. Поэтому современная формулировка закона звучит так:
Свойства химических элементов, а также формы и свойства образуемых ими веществ и соединений находятся в периодической зависимости от величины зарядов ядер их атомов.
Этот принцип Менделеев проиллюстрировал в таблице, в которой были представлены все 63 известных на тот момент химических элемента. При её создании учёный предпринял ряд весьма смелых шагов.
Во-первых, многочисленные эксперименты позволили Менделееву сделать вывод, что атомные массы некоторых элементов ранее были вычислены неправильно, и он изменил их в соответствии со своей системой.
Во-вторых, в таблице были оставлены места для новых элементов, открытие которых учёный предсказал, подробно описав их свойства.
Мировое научное сообщество поначалу скептически отнеслось к открытию русского химика. Однако вскоре были открыты предсказанные им химические элементы: галлий, скандий и германий. Это разрушило сомнения в правильности системы Менделеева, которая навсегда изменила науку. Там, где раньше учёному требовалось провести ряд сложнейших (и даже не всегда возможных в реальности) опытов — теперь стало достаточно одного взгляда в таблицу.
Существует легенда, якобы знаменитая таблица явилась Менделееву во сне. Но сам Дмитрий Иванович эту информацию не подтвердил. Он действительно нередко засиживался над работой до поздней ночи и засыпал, продолжая размышлять над решением задачи, однако факт мистического озарения во сне учёный отрицал: «Я над ней, может быть, двадцать лет думал, а вы думаете, сел и вдруг — готово!».
Теперь расскажем, как устроена Периодическая таблица элементов Менделеева и как ею пользоваться.
Структура Периодической системы элементов
На настоящий момент Периодическая таблица Менделеева содержит 118 химических элементов. Каждый из них занимает своё место в зависимости от атомного числа. Оно показывает, сколько протонов содержит ядро атома элемента и сколько электронов в атоме находятся вокруг него. Атом каждого последующего элемента содержит на один протон больше, чем предыдущий.
Периоды — это строки таблицы. На данный момент их семь. У всех элементов одного периода одинаковое количество заполненных электронами энергетических уровней.
Группы — это столбцы. В группы в Периодической таблице объединяются элементы с одинаковым числом электронов на внешнем энергетическом уровне их атомов. В кратком варианте таблицы, используемой в школьных учебниках, элементы разделены на восемь групп. Каждая из них делится на главную (A) и побочную (B) подгруппы, которые объединяют элементы со сходными химическими свойствами.
Каждый элемент обозначается одной или двумя латинскими буквами. Порядковый номер элемента (число протонов в его ядре) обычно пишется в левом верхнем углу. Также в ячейке элемента указана его относительная атомная масса (сумма масс протонов и нейтронов). Это усреднённая величина, для расчёта которой используются атомные массы всех изотопов элемента с учётом их содержания в природе. Поэтому обычно она является дробным числом.
Чтобы узнать количество нейтронов в ядре элемента, необходимо вычесть его порядковый номер из относительной атомной массы (массового числа).
Свойства Периодической системы элементов
Расположение химических элементов в таблице Менделеева позволяет сопоставлять не только их атомные массы, но и химические свойства.
Вот как они изменяются в пределах группы (сверху вниз):
В пределах периодов (слева направо) свойства элементов меняются следующим образом:
Элементы Периодической таблицы Менделеева
По положению элемента в периоде можно определить его принадлежность к металлам или неметаллам. Металлы расположены в левом нижнем углу таблицы, неметаллы — в правом верхнем углу. Между ними находятся полуметаллы. Все периоды, кроме первого, начинается щелочным металлом. Каждый период заканчивается инертным газом.
Щелочные металлы
Первая группа главная подгруппа элементов (IA) — щелочные металлы. Это серебристые вещества (кроме цезия, он золотистый), настолько мягкие, что их можно резать ножом. Поскольку на их внешнем электронном слое находится только один электрон, они очень легко вступают в реакции. Плотность щелочных металлов меньше плотности воды, поэтому они в ней не тонут, а бурно реагируют с образованием щёлочи и водорода. Реакция идёт настолько энергично, что водород может даже загореться или взорваться. Эти металлы настолько активно реагируют с кислородом в воздухе, что их приходится хранить под слоем керосина (а литий — под слоем вазелина).
Учите химию вместе с домашней онлайн-школой «Фоксфорда»! По промокоду CHEMISTRY892021 вы получите бесплатный недельный доступ к курсам химии за 8 класс и 9 класс.
Щелочноземельные металлы
Вторая группа главная подгруппа (IIА) представлена щелочноземельными металлами с двумя электронами на внешнем энергетическом уровне атома. Бериллий и магний часто не относят к щелочноземельным металлам. Они тоже имеют серебристый оттенок и легко взаимодействуют с другими элементами, хотя и не так охотно, как металлы из первой группы главной подгруппы. Температура плавления щелочноземельных металлов выше, чем у щелочных. Ионы магния и кальция обусловливают жёсткость воды.
Лантаноиды и актиноиды
В третьей группе побочной подгруппе (IIIB) шестого и седьмого периодов находятся сразу несколько металлов, сходных по строению внешнего энергетического уровня и близких по химическим свойствам. У этих элементов электроны начинают заполнять третий по счёту от внешнего электронного слоя уровень. Это лантаноиды и актиноиды. Для удобства их помещают под основной таблицей.
Лантаноиды иногда называют «редкоземельными элементами», поскольку они были обнаружены в небольшом количестве в составе редких минералов и не образуют собственных руд.
Актиноиды имеют одно важное общее свойство — радиоактивность. Все они, кроме урана, практически не встречаются в природе и синтезируются искусственно.
Переходные металлы
Элементы побочных подгрупп, кроме лантаноидов и актиноидов, называют переходными металлами. Они вполне укладываются в привычные представления о металлах — твёрдые (за исключением жидкой ртути), плотные, обладают характерным блеском, хорошо проводят тепло и электричество. Валентные электроны их атомов находятся на внешнем и предвнешнем энергетических уровнях.
Неметаллы
Правый верхний угол таблицы до инертных газов занимают неметаллы. Неметаллы плохо проводят тепло и электричество и могут существовать в трёх агрегатных состояниях: твёрдом (как углерод или кремний), жидком (как бром) и газообразном (как кислород и азот). Водород может проявлять как металлические, так и неметаллические свойства, поэтому его относят как к первой, так и к седьмой группе Периодической системы.
Подгруппа углерода
Четвёртую группу главную подгруппу (IVА) называют подгруппой углерода. Углерод и кремний обладают всеми свойствами неметаллов, германий и олово занимают промежуточную позицию, а свинец имеет выраженные металлические свойства. Углерод образует несколько аллотропных модификаций — вариантов простых веществ, отличающихся по своему строению, а именно: графит, алмаз, фуллерит и другие.
Большинство элементов подгруппы углерода — полупроводники (проводят электричество за счёт примесей, но хуже, чем металлы). Графит, германий и кремний используют при изготовлении полупроводниковых элементов (транзисторы, диоды, процессоры и так далее).
Подгруппа азота
Пятую группу главную подгруппу (VA) называют пниктогенами или подгруппой азота. В ходе реакций эти элементы могут как отдавать электроны, так и принимать их, завершая внешний энергетический уровень.
Физические свойства элементов подгруппы азота различны. Азот является бесцветным газом. Фосфор, мягкое вещество, образует несколько вариантов аллотропных модификаций — белый, красный и чёрный фосфор. Мышьяк — твёрдый полуметалл, способный проводить электрический ток. Висмут — блестящий серебристо-белый металл с радужным отливом.
Азот — основное вещество в составе атмосферы нашей планеты. Некоторые элементы подгруппы азота токсичны для человека (фосфор, мышьяк, висмут). При этом азот и фосфор являются важными элементами почвенного питания растений, поэтому они входят в состав большинства удобрений. Азот и фосфор также участвуют в формировании важнейших молекул живых организмов — белков и нуклеиновых кислот.
Подгруппа кислорода
Халькогены или подгруппа кислорода — элементы шестой группы главной подгруппы (VIA). Для завершения внешнего электронного уровня атомам этих элементов не хватает лишь двух электронов, поэтому они проявляют сильные окислительные (неметаллические) свойства. Однако, по мере продвижения от кислорода к полонию они ослабевают.
Кислород образует две аллотропные модификации — кислород и озон — тот самый газ, который образует экран в атмосфере планеты, защищающий живые организмы от жёсткого космического излучения.
Кислород и сера легко образуют прочные соединения с металлами — оксиды и сульфиды. В виде этих соединений металлы часто входят в состав руд.
Галогены
Седьмая группа главная подгруппа (VIIA) представлена галогенами — неметаллами с семью электронами на внешнем электронном слое атома. Это сильнейшие окислители, легко вступающие в реакции. Галогены («рождающие соли») назвали так потому, что они реагируют со многими металлами с образованием солей. Например, хлор входит в состав обычной поваренной соли.
Самый активный из галогенов — фтор. Он способен разрушать даже молекулы воды, за что и получил своё грозное имя (слово «фтор» переводится на русский язык как «разрушительный»). А его «близкий родственник» — иод — используется в медицине в виде спиртового раствора для обработки ран.
Инертные газы
Инертные газы, расположенные в последней, восьмой группе главной подгруппе (VIIIA) — элементы с полностью заполненным внешним электронным уровнем. Они практически не способны участвовать в реакциях. Поэтому их иногда называют «благородными», проводя параллель с представителями высшего общества, которые брезгуют контактировать с посторонними.
У инертных газов есть удивительная способность: они светятся под действием электромагнитного излучения, поэтому используются для создания ламп. Так, неон используется для создания светящихся вывесок и реклам, а ксенон — в автомобильных фарах и фотовспышках.
Гелий обладает массой всего в два раза больше массы молекулы водорода, но, в отличие от последнего, не взрывоопасен и используется для заполнения воздушных шаров.
У нас вы сможете учиться в удобном темпе, делать упор на любимые предметы и общаться со сверстниками по всему миру.
Попробовать бесплатно
Интересное по рубрике
Найдите необходимую статью по тегам
Подпишитесь на нашу рассылку
Мы в инстаграм
Домашняя онлайн-школа
Помогаем ученикам 5–11 классов получать качественные знания в любой точке мира, совмещать учёбу со спортом и творчеством
Посмотреть
Рекомендуем прочитать
Реальный опыт семейного обучения
Звонок по России бесплатный
Посмотреть на карте
Если вы не нашли ответ на свой вопрос на нашем сайте, включая раздел «Вопросы и ответы», закажите обратный звонок. Мы скоро свяжемся с вами.
Периодический закон открыл в 1869 г. Дмитрий Иванович Менделеев (1834—1907)
В середине XIX в. было известно около 60 химических элементов. Д. И. Менделеев полагал, что должен существовать закон, который объединяет все химические элементы. Менделеев считал, что главной характеристикой элемента является его атомная масса. Поэтому он расположил все известные элементы в один ряд в порядке увеличения их атомной массы и сформулировал закон так:
Свойства элементов и их соединений находятся в периодической зависимости от величины атомной массы элементов. Современная формулировка периодического закона читается так:
Свойства элементов и их соединений находятся в периодической зависимости от заряда ядра атома, или порядкового номера элемента.
Формулировка периодического закона Д. И. Менделеевым и современная формулировка не противоречат друг другу, потому что для большинства элементов при увеличении заряда ядра относительная атомная масса тоже увеличивается. Существуют лишь немногие исключения из это го правила. Например, элемент № 18 аргон Аг имеет меньшую атомную массу, чем элемент № 19 калий К. Теория строения атома показала, что периодическая система Д. И. Менделеева является классификацией химических элементов по электронным структурам их атомов.
|
–Заряд ядер атомом увеличивается.
–Число электронных слоев атомов не изменяется.
–Число электроном на внешнем слое атомов увеличивается от 1 до 8
–Радиус атомов уменьшается
– Прочность связи электронов внешнего слоя с ядром увеличивается.
–Энергия ионизации увеличивается.
–Сродство к электрону увеличивается.
–Электроотрицательность увеличивается.
–Металличность элементов уменьшается.
–Неметалличность элементов увеличивается.
Рассмотрим, как изменяются некоторые характеристики элементов в главных подгруппах сверху вниз:
–Число электронных слоев атомов увеличивается.
–Число электронов на внешнем слое атомов одинаково.
–Радиус атомов увеличивается.– Прочность связи электронов внешнего слоя с ядром уменьшается.
–Энергия ионизации уменьшается.– Сродство к электрону уменьшается.
–Электроотрйцательность уменьшается.– Металличность элементов увеличивается.
–Неметалличность элементов уменьшается.
Билет 6.
Металлич. радиус равен половине кратчайшего расстояния между атомами в кристаллич. структуре металла. Его значение зависит от координац. числа К (числа ближайших соседей атома в структуре). Чаще всего встречаются структуры металлов с К = 12.
Ван-дер-ваальсовы радиусы определяют эффективные размеры атомов благородных газов. Эти радиусы равны половине межъядерного расстояния между ближайшими одинаковыми атомами, не связанными между собой хим. связью, т.е. принадлежащими разным молекулам. Значения ван-дер-ваальсовых радиусов находят, пользуясь принципом аддитивности А.р., из кратчайших контактов соседних молекул в кристаллах. В среднем они на
0,08 нм больше ковалентных радиусов. Знание ван-дер-ваальсовых радиусов позволяет определять конформацию молекул и их упаковку в молекулярных кристаллах.
Е сродства атома к электрону Ae – Е, кот. Выделится при присоединении ē к атому. Наибольшим сродством к электрону обладают атомы галогенов. Обычно сродство к электрону для атомов различных элементов уменьшается параллельно с ростом энергии их ионизации.
Экзаменационный билет № 7
Д. И. Менделеев и периодическая система элементов
Дмитрий Иванович Менделеев (1834–1907)
В сентябре 2017 года Генеральная ассамблея ООН провозгласила «год, начинающийся 1 января 2019 года, Международным годом Периодической таблицы химических элементов в целях повышения осведомленности мировой общественности о фундаментальных науках и расширения образования в области фундаментальных наук». Это было сделано по предложению нескольких международных организаций, в том числе Международного союза теоретической и прикладной химии, Российской академии наук, Объединенного института ядерных исследований, Российского химического общества имени Д. И. Менделеева.
150 лет назад, 17 февраля 1869 года (по принятому тогда в России юлианскому календарю), Дмитрий Иванович Менделеев поставил эту дату и свою подпись под одностраничной рукописью, названной им «Опыт системы элементов, основанной на их атомном весе и химическом сродстве». Отчетливо сознавая значение сделанного им открытия («опыта»), Д. И. Менделеев через несколько дней отправил сделанные переписчиками копии этой рукописи западноевропейским коллегам-химикам. Прежде всего, он послал рукопись немцу Юлиусу Лотару Мейеру (1830–1895), англичанину Джону Ньюлендсу (1837–1898) и итальянцу Станислао Канницаро (1826–1910). Интересно отметить, что эти химики и сам Менделеев были практически ровесниками, сравнительно молодыми учеными. В 1860–66 годах они независимо друг от друга стремились навести порядок в системе химических элементов, которых тогда было известно уже около 60. Большая часть из этого числа была открыта в 40–60-е годы XIX века и для них еще не были надежно определены атомные веса и химические свойства (возможные валентности).
В 1860 году С. Канницаро, расположив элементы в порядке увеличения их атомного веса, подметил некоторые закономерности в похожести химических свойств. Л. Мейер в 1864 году, выбрав 28 элементов, впервые составил некую таблицу из 6 столбцов, соответствующих 6 возможным валентностям. Но в каждой из 5 строк этой таблицы элементы располагались не по возрастанию атомного веса, а довольно хаотично. Причиной этого было неточное знание атомных весов и наличие нескольких возможных валентностей у многих элементов. Периодичность по строкам и столбцам нарушалась. Но сама идея поисков периодичности при расположения элементов по строкам и столбцам была здравой и многообещающей. На родине Мейера, в городке Фарель в Нижней Саксонии, неподалеку от устья Эльбы установлен мемориал с тремя скульптурными портретами — Мейера, Менделеева и Канницаро.
Английский химик Д. Ньюлендс тоже подметил некоторую закономерность в списке элементов. Он назвал эту закономерность «правилом октав». В начале списка Канницаро валентности повторялись через каждые шесть элементов, 2-й, 9-й и 16-й элементы имели валентность 1, а 3-й, 10-й и 16-й элементы имели валентность 2.Это походило на музыкальную октаву, в которой между тонами «до» расположено шесть других основных тонов. Правда, после кальция, занимавшего 17-е место в списке, это правило теряло свою обязательность. Опубликованная в 1865 году работа Ньюлендса не вызвала, однако, интереса у химиков и даже подверглась насмешкам на заседании Лондонского химического общества.
Таким образом, у истоков создания периодической системы стояли четыре человека, однако создателем периодической системы элементов признан российский химик.
Так что же сделал Д. И. Менделеев?
Прежде всего, он руководствовался списком не из 28 элементов (Мейер) и не из 40 элементов (Канницаро), а из 67 элементов, смело оставив в этом списке места для трех, совершенно неизвестных в то время элементов, по его мнению обязанных находиться в определенных местах таблицы согласно их возможной валентности и возможному атомному весу. Это означает, что для самого автора периодичность уже была установленным законом, хотя он и озаглавил свою таблицу «опытом». В этом сказалась методологическая (философская) убежденность Менделеева в существовании цикличности в глобальных законах природы.
«Опыт системы элементов» (1869 г.)
В первом варианте своей таблицы Менделеев, в отличие от Мейера, элементы с одинаковой валентностью располагал не по вертикали (в столбах), а по горизонтали (в строках). Это не меняло сути дела, и уже во втором варианте таблицы в 1870 году он повернул таблицу на 90 градусов, и она приняла более привычный нам вид. Номера столбцов стали соответствовать «главным» валентностям элемента (с первого по седьмой) и называться группами, а строки получили название периодов, в которых содержалось либо 7, либо 17 элементов. Отличие от современных значений — 8 групп (или 18, как принято в наиболее современных вариантах периодической системы) и по 8 или 18 элементов в периоде — обусловлено тем, что в то время еще совершенно не были известны элементы, называемые сегодня благородными (инертными) газами. Только за 4 месяца до открытия Менделеева появились первые сообщения о гипотетическом солнечном газе, а на Земле гелий был открыт лишь через 27 лет после этого. И уже впоследствии состоялось открытие других благородных газов.
Очень важным было то, что менделеевская таблица предсказала существование нескольких неизвестных тогда химических элементов, которые Менделеев назвал эка-алюминием, эка-кремнием и эка-бором. Через 6 лет после работы Менделеева французским химиком Лекоком де Буабодраном был открыт элемент, названный галлием. И хотя интересы Менделеева в это время уже сместились в другие области науки, он продолжал следить за научными публикациями по химии. Прочитав об открытии галлия, он тут же узнал в нем свой предугаданный эка-алюминий.
Сообщение Менделеева об этом в письме французскому химику произвело настоящую сенсацию среди ученых. Тем более, что предсказания Менделеева о плотности и атомном весе этого элемента оказались даже более точными, чем первоначально опубликованные опытные данные. В десятках европейских лабораториях химики стали лихорадочно искать остальные предсказанные Менделеевым элементы и проверять у известных элементов сомнительные атомные веса и химические свойства. И уже через год шведский химик Ларс Нильсон открыл элемент, полностью соответствующий описанному Менделеевым эка-бору. Он назвал его в честь своей родины скандием. При жизни Менделеева был открыт элемент германий (эка-кремний) и началось открытие семейства благородных газов.
Периодическая таблица элементов (1905 г.)
Опубликованная Менделеевым в очередном издании своих «Основ химии» в 1905 году таблица периодической системы уже гораздо больше походила на современную. Окончательно эта таблица получила современный вид после работ по анализу рентгеновских спектров элементов Генри Мозли (1913 г.). Мозли понял, что не только валентность, определяемая числом электронов во внешней электронной оболочке атома, определяет положение элемента в той или иной группе. Большую роль играют и спектры, связанные с электронными переходами во внутренних оболочках (К-, L- и М-электронных оболочках). Гораздо резче, чем в оптических спектрах, в рентгеновских спектрах проявляется номер элемента в периодической системе. Сегодня мы знаем, что это и есть зарядовое число атомного ядра элемента. Это позволило Мозли уточнить расположение в периодической таблице многих редкоземельных элементов и предсказать, в свою очередь, открытие ряда тогда еще неизвестных элементов. И в наше время, когда на мощных ускорителях в нескольких мировых научных центрах (и прежде всего в Объединенном институте ядерных исследований в подмосковной Дубне) открыто уже 26 трансурановых элементов, каждый из них занимает положенную ему «клеточку» в периодической системе согласно атомному весу и строению электронных оболочек, определяемому по рентгеновским спектрам.
Очередным триумфом менделеевской таблицы стало открытие 118-го элемента, который занял место в группе благородных газов. И он получил имя, которое оканчивается не на «-ий», как у всех других трансурановых элементов, а на «-он», как это и положено всем элементам восьмой группы, кроме гелия. Имя это — «оганесон» — дано в 2018 году международным комитетом в честь руководителя работ в Дубне академика РАН Ю. Ц. Оганесяна. Второй раз элементу присвоено имя в честь здравствующего ученого (первым был американский физик Гленн Сиборг, определивший в 1941 году нептуний и плутоний). Среди названий трансурановых элементов 2 астрономических, 9 географических, а 15 названы в честь ученых. Так, 99-й элемент — это эйнштейний, 100-й — фермий, а 101-й элемент заслуженно носит имя «менделевий». Не подлежит сомнению и роль Менделеевской таблицы в открытии элементов радия и полония, за что Мария Склодовская-Кюри в 1911 году получила вторую Нобелевскую премию, на этот раз — по химии.
Но наибольший триумф периодической системы — это ее теоретическое обоснование, сделанное в 1926 году Вольфгангом Паули на основе только что созданного тогда матричного представления квантовой механики. Это обоснование стало одним из первых доказательств справедливости квантовой механики, этого, по мнению многих ученых, величайшего достижения науки в ХХ веке.
Дмитрий Иванович Менделеев родился 27 января (8 февраля) 1834 года в Тобольске в семье директора гимназии и попечителя народных училищ Тобольской губернии Ивана Павловича Менделеева и Марии Дмитриевны Менделеевой, урожденной Корнильевой. В семье было 14 детей, но восемь из них умерли в младенчестве. Дмитрий был младшим сыном, «последышем», как он сам себя называл впоследствии. Иван Павлович вскоре после рождения младшего сына ослеп и, хоть зрение ему частично смогли восстановить московские хирурги, к работе он вернуться не смог и скончался, когда сыну было чуть больше 10 лет. Воспитанием будущего ученого занималась его мать, происходившая из старинного сибирского рода купцов и промышленников. Она самостоятельно прошла полный гимназический курс и сыграла особую роль в жизни семьи, фактически став главным семейным педагогом.
Мария Дмитриевна быстро поняла, что ее младший сын имеет выдающиеся способности, хотя в гимназии он увлекался математикой и физикой, а к гуманитарным предметам не испытывал интереса. Способности мальчика и его трудолюбие позволили ему закончить гимназический курс в 15 лет. Через год Мария Дмитриевна распродала имущество и отправилась с семьей сначала в Москву, а потом в Петербург, где тогда достаточно высоким был уровень естественно-научного образования, к которому стремился всей душой ее сын. Ей удается обеспечить досрочное (по возрасту) поступление сына в институт, а через год она умирает.
В предисловии к одной из первых научных работ Дмитрий Менделеев пишет:
«Это исследование посвящено памяти матери ее последышем. Она смогла его вырастить своим трудом и любовью, воспитывая примером, и, чтобы отдать науке выходца из Сибири, тратила последние средства и силы. Умирая, завещала: избегать самообольщения, настаивать в труде, а не в словах, терпеливо объяснять научную правду, ибо понимала, как при помощи науки, без насилия, любовно, но твердо устраняются предрассудки и ошибки и достигается свобода дальнейшего развития, общее благо и внутреннее благополучие. Заветы матери считаю священными».
В 21 год Менделеев закончил физико-математический факультет Главного педагогического института в Петербурге с золотой медалью и титулом «старший учитель». Два года он работал сначала в Симферополе, а потом в Одессе в гимназии при Ришельевском лицее преподавателем физики, математики и естественных наук. За это время он подготовил и с блеском защитил в Петербургском университете магистерскую диссертацию по химической проблеме и стал приват-доцентом этого университета.
В России тогда наступало новое время — эпоха отмены крепостного права, эпоха преобразований и организация регионального (земского) управления. Правительство Александра II понимало необходимость для этого подготовки просвещенных управленческих кадров, а значит, и развития образования и науки. Резкое увеличение финансирования университетов позволило Менделееву стать стипендиатом двухгодичной стажировки в научные учреждения Германии.
За границей Менделеев не только изучал новейшие достижения химической науки и технологии. Он смог получить средства для создания лаборатории, в которой изучал физико-химические свойства газов и жидкостей, в частности зависимость температуры кипения жидкостей от давления и свойств насыщенного пара.
Менделеев показал, что выше некоторой температуры ни при каком давлении не существует длительного процесса кипения жидкости и, соответственно, не существует явления постепенного сжижения газа. При некоторых температуре и давлении происходит одномоментное сгущение газа или расширение жидкости. Эти параметры впоследствии были названы «критическими», а само состояние вещества при этом — «критическим состоянием». Оказалось, что получение сжиженного газа с помощью сжатия возможно лишь при температуре ниже критической. Открытие Менделеева легло в основу всех будущих технологий получения сжиженных газов.
Во время своей стажировки в Германии Менделеев только начал эти работы. Вернувшись в Россию, он не смог найти подходящее место и финансирование для продолжения работ по сжижению газов. Ведь он формально (по диссертации) был химик, но в химической науке еще не успел проявить себя должным образом. И Менделеев принимает решение отложить на время свои научные занятия. На основе своего обширного знания химии он создает остро необходимый тогда учебник «Органическая химия», а также переводит и издает немецкий учебник «Химическая технология».
Эти издания принесли Д. И. Менделееву известность в научных кругах. А полученная за них академическая Демидовская премия обеспечила некоторое материальное благополучие. Эта премия, между прочим, существует под несколько измененным названием и в наше время и присуждается за выдающиеся научные достижения. Среди недавних лауреатов этой премии такие выдающиеся ученые, как физики Ж. И. Алферов и В. А. Рубаков, математики Л. Д. Фаддеев и Б. В. Раушенбах, историк В. Л. Янин, биологи А. А. Баев и А. С. Спирин, химик И. И. Моисеев.
Демидовская премия позволила Менделееву совершить путешествие по Европе вместе с молодой женой, Феозвой Никитичной Лещевой, его землячкой по Тобольску, падчерицей знаменитого тобольчанина (или «тоболяка», как больше нравится жителям этого города) Петра Павловича Ершова, официального автора «Конька-горбунка». Свое свадебное путешествие Менделеев вовсю использовал для общения с европейскими химиками и изучения всех новинок химической науки.
По возвращении из европейской поездки Менделеев получил место штатного доцента органической химии Петербургского университета и одновременно профессорскую должность в Петербургском технологическом институте. Через два года после защиты докторской диссертации Менделеев становится профессором Петербургского университета по кафедре технической химии.
В это время возникла острая необходимость создать новый учебник по неорганической химии, который бы отражал новейшие достижения бурно развивавшейся химической науки. Эта идея захватила Менделеева. Но в каком порядке излагать описания и химические свойства элементов? Ведь они так разнообразны.
Хорошо изучив свойства всех известных тогда элементов, Менделеев составил картотеку и все время мысленно тасовал эту «колоду», пытаясь найти закономерности расположения элементов. Он знал о подобных попытках европейских химиков, но долгое время у него, как и у них, ничего не выходило. Получила распространение легенда, что решение проблемы пришло к нему во сне. Эту легенду сам Менделеев и создал, живописно описывая, как однажды после бессонной ночи ему в полусне явилось единственно возможное расположение элементов и он тут же записал его на первом попавшемся клочке бумаги. Психологи считают, что это был не сон, а промежуточное состояние между сном и бодрствованием, в котором мозг работает с особой активностью. Менделеев при этом добавлял, что ничего не видит в этом особенного, поскольку долгое время он непрерывно думал об этом, прежде чем решиться на окончательный вариант таблицы, где были вакантные места и где он смело изменял известные тогда атомные веса некоторых элементов, чтобы они заняли соответствующие места в строках и столбцах таблицы. Так, например, несмотря на то, что атомный вес элемента урана тогда считался равным всего лишь 60 условных единиц, Менделеев «присваивает» урану значение атомного веса в 4 раза большее (как оно и оказалось на самом деле) и помещает уран в то самое место таблицы, где он и должен находиться.
Портрет Д. И. Менделеева в мантии доктора права Эдинбургского университета, написанный И. Е. Репиным (1885 г.)
Законный триумф и мировое признание, особенно после открытия предсказанных им элементов, не помешали Менделееву продолжать активно работать. Но его научные интересы сместились в другие области. Он вновь занялся изучением поведения газов при различных давлениях и для не очень высоких давлений переосмыслил открытый в 1834 году французским инженером и физиком Полем Клапейроном закон и ввел понятие универсальной газовой постоянной. С тех пор этот закон носит имя Менделеева — Клапейрона и называется уравнением состояния идеального газа. Но на этом Менделеев не успокоился и стал исследовать отклонения от этого закона. Он ввел понятие «реальные газы» и качественно описал отклонения поведения этих газов от «идеальности».
Велики заслуги Менделеева в физической химии, химической технологии и смежных отраслях техники. Вот только некоторые из них: создание безопасного способа получения одного из вариантов бездымного (пироксилинового) пороха, обеспечившее широкое распространение его в мире («менделеевский» порох); разработка теории растворов, в частности определение наиболее оптимального соотношения компонентов в смеси различных жидкостей; изучение поверхностного натяжения жидкостей и доказательство его исчезновения в критическом состоянии вещества; исследование состава нефти и доказательство ее как биогенного, так и абиогенного происхождения; обоснование значения многих составляющих нефти как ценных химических продуктов и разработка методов извлечения из нефти этих продуктов (знаменитая фраза: «сжигать нефть — это все равно, что топить печку ассигнациями»).
К этому впечатляющему «химическому» перечню можно добавить целый ряд других интересов и достижений Д. И. Менделеева. Например, метрологические исследования, руководство созданной им российской «Палатой мер и весов»; метеорологические исследования, изучение земной атмосферы и солнечной короны; участие в создании первых в мире ледоколов для освоения Арктики; написание 25 статей по проблемам промышленной экологии в энциклопедическом словаре Брокгауза и Эфрона.
Но одно из менделеевских увлечений выделяется из общего ряда. Для полноценных наблюдений за солнечной короной во время полного солнечного затмения летом 1887 года Менделеев разрабатывает проект стратостата, равного которому тогда в мире не существовало (диаметром 20 м и объемом больше 3000 м 2 ). Он делает это совместно с изобретателем и воздухоплавателем С. К. Джевецким. Вместе с Менделеевым должен был лететь пилот-аэронавт. Но когда выясняется, что в неожиданно наставшую дождливую погоду шар не сможет поднять двух человек, Менделеев решает, что он полетит один, и после необходимого инструктажа об управлении шаром поднимается в воздух. К сожалению, и на высоте солнце осталось скрытым за облаками и пришлось довольствоваться только изучением свойств земной атмосферы на различных высотах. При этом из-за отказа клапана шар поднялся выше облаков на незапланированную высоту 3,5 километра, но, увы, затмение уже закончилось. Менделеев сумел исправить клапан и благополучно приземлиться на расстоянии 100 километров от точки старта.
Этот штрих менделеевской биографии иллюстрирует его необычайную смелость, проявившуюся не только в подвиге создания периодической таблицы. Менделеев был смел и принципиален во всех своих делах, в том числе и в отношениях с «властями предержащими». В конце XIX века в России властями стала проводиться политика «укрепления дисциплины и правопорядка» в обществе и прежде всего в университетах, где студенческая молодежь стала стремиться к реформам образования. Менделеев несколько раз обращался в «инстанции», заступаясь за исключаемых из университета «бунтовщиков».
Результатом стало его увольнение из университета и отставка из почти всех комиссий, в которых он деятельно участвовал. Два раза Менделееву было отказано в избрании членом Российской академии наук, хотя он был уже членом нескольких десятков престижных академий и научных обществ всего мира. Дважды правительство настояло на отзыве представлений Менделеева на награждение Нобелевской премией, сделанных видными российскими химиками. И это, безусловно, повлияло на нобелевский комитет, так и не удостоивший Менделеева этой награды, к недоумению всего мирового химического сообщества.
Важное место в жизни Менделеева в то время занимали еженедельные вечера, где собирались коллеги и друзья, в том числе художники И. Е. Репин, А. И. Куинджи, И. И. Шишкин и другие передвижники. В этом салоне непринужденно обсуждались все события научной и политической жизни общества. Жена Менделеева демонстративно не принимала участия в этих встречах. Семейные отношения становились все более сложными и безысходными. В конце 1876 года 42-летний Менделеев на одном из своих салонных вечеров знакомится с 16-летней Анной Ивановной Поповой (1860–1942).
Молодая девушка выбрала необычную для того времени судьбу. Выросши в старозаветной семье донского казацкого атамана, она каким-то образом восприняла передовые идеи нарождавшейся русской интеллигенции, выбрав для себя путь просвещения народа. Тайно от отца (но с материнского благословления) она уехала в столицу, чтобы учиться на женских курсах (прообразе знаменитых «бестужевских курсов» — первого женского университета России). Она училась живописи, была принята в менделеевском салоне, чувствовала себя в нем свободно и непринужденно и, конечно, не могла не обратить внимания на его главу — знаменитого химика. И ни всемирная слава Менделеева, ни 26-летняя разница в возрасте не помешали ей наряду с безмерным уважением почувствовать любовь. А Дмитрий Иванович не мог не интересоваться Анечкой, как ее стали называть в салоне. Не желая быть причиной разрушения семьи, Аня «сбежала» в Италию. Узнав об отъезде, Менделеев бросил все и уехал вслед за Анной. Через месяц они возвратились вместе.
После развода с первой женой жизнь Менделеева резко изменилась. Анна Ивановна была внимательной и заботливой женой и разделяла все взгляды своего мужа. В этом браке родилось четверо детей. Неподалеку от загородного подмосковного дома Менделеева была деревня Шахматово, где в летнее время жила семья дочери ректора Петербургского университета ботаника А. Н. Бекетова большого друга Д. И. Менделеева. И там познакомились старшая дочь Менделеева Любовь Дмитриевна и внук Бекетова, Александр Александрович Блок, будущий великий русский поэт. Они стали мужем и женой.
В биографии многих знаменитых людей вплетаются и анекдотические истории. Присутствуют они и в биографии Менделеева. О легенде открытия, сделанного во сне, уже упоминалось. Другая притча о Менделееве — об изобретении им, якобы, русской сорокаградусной водки. На самом деле введение государственного акциза на водку произошло еще в 1844 году, когда Менделееву не исполнилось и десяти лет. Впоследствии Менделеев много занимался теорией растворов. Этому была посвящена его докторская диссертация, в которой он установил, что существует некоторое оптимальное соотношение смешивания различных жидкостей, при котором плотность смеси максимальна. Но для этилового спирта и воды это было вовсе не 40%, а совершенно другая величина — две части спирта на одну часть воды, что безусловно не годилось для народного алкогольного продукта. А во Франции именно это соотношение было принято, на основе работ Менделеева, для французского абсента — смеси этилового спирта с настойкой из 14 трав.
Но вот рассказы о Менделееве, как об известном мастере чемоданного дела, имели реальное основание. Еще в самом начале своей педагогической деятельности в Симферополе и Одессе его материальное положение было весьма тяжелым. И Менделеев нашел способ его поправить. Он изобрел особый лак, который делал фибровую основу чемодана очень прочной и в то же время легкой. Но кроме этого такой чемодан выглядел как очень дорогое кожаное изделие. Впоследствии это умение стало «хобби» ученого. Он с удовольствием отдыхал, делая чемоданы и раздаривая их знакомым.
Однако самым хорошим отдыхом для Дмитрия Ивановича были шахматы. На своих домашних вечерах он большую часть времени проводил за шахматной доской, что не мешало ему участвовать в интересных беседах. А игроком он был очень сильным.
Невозможно охарактеризовать деятельность Дмитрия Ивановича Менделеева и его достижения одним, даже самым емким определением. Химик Л. А. Чугаев в 1907 году написал о Менделееве так:
«Знаменитый химик, первоклассный физик, плодотворный исследователь в области термодинамики, гидродинамики, метеорологии, геологии, в различных отделах химической технологии и других сопредельных с химией дисциплин, глубокий знаток химической промышленности и промышленности вообще, особенно русской, оригинальный мыслитель в области учения о народном хозяйстве, государственный ум, которому, к сожалению, не суждено было стать государственным человеком, но который видел и понимал задачи и будущность России лучше представителей нашей официальной власти».
Дмитрий Иванович работал до последнего дня. Он скончался от воспаления легких 20 января 1907 года. Память о Менделееве сохраняется в названиях городов и поселков, многих географических и астрономических объектов и в многочисленных памятниках. А на мемориальном камне его могилы на Волковом кладбище Санкт-Петербурга достаточными оказались всего лишь три слова «Дмитрий Иванович Менделеев».