Что может искусственный интеллект сейчас
Нейросеть предупредила ученых об опасности искусственного интеллекта
В Оксфордском университете организовали дискуссию, на которую в качестве одного из участников «пригласили» систему искусственного интеллекта (ИИ). В ходе беседы нейросеть рассказала, что может представлять для человечества опасность. О том, стоит ли бояться восстания машин, рассказывает научный обозреватель Николай Гринько.
Дискуссионное общество Оксфордского университета (или «Оксфордский союз») – это студенческий клуб, организующий дебаты на самые разные темы. На его заседания в разное время приглашали Рональда Рейгана, Билла Клинтона, Далай-ламу, Элтона Джона, Майкла Джексона, Диего Марадону и многих других выдающихся деятелей политики, культуры и искусства. Тема очередного заседания была озаглавлена так: «Может ли искусственный интеллект быть этичным?». Доктор Алекс Коннок с профессором Эндрю Стивеном решили подключить к дискуссии систему машинного обучения.
Нейросеть работала на базе языковой модели Megatron-Turing NLG и была обучена на материалах из Википедии, новостях и комментариях пользователей портала Reddit. «Мегатрон» способен понимать прочитанное и рассуждать на естественном языке, генерируя логические выводы на основе текста. Участники дискуссии спросили систему, что она думает об этичности искусственного интеллекта и будущем человечества, и она ответила так:
Фрагменты конференции были опубликованы в интернете, и многие СМИ выпустили их с пугающими заголовками вроде «Искусственный интеллект пообещал уничтожить человечество!». Но, прежде чем делать выводы, нужно учесть несколько моментов.
Во-первых, система «Мегатрон» создана для генерации осмысленного текста на основе различных публикаций, а вовсе не для долгосрочного прогнозирования в какой бы то ни было области. Проще говоря, алгоритм всего лишь умеет компилировать ответы на вопросы по тексту. Представьте себе газетную статью, разрезанную на мелкие кусочки – буквально по одному слову. В компьютерную программу, грубо говоря, загрузили несколько миллионов измельченных статей и обучили составлять из этих кусочков осмысленный текст, так, чтобы его можно было принять за речь живого человека.
Но способности делать экономические прогнозы, интерпретировать тенденции или хотя бы разбираться в цветоводстве у этой нейросети нет и быть не может – такие навыки в ней не запрограммированы. Бессмысленно спрашивать у нее: «Какая погода будет завтра?» – она не обладает такой информацией. Точно так же нет никакого смысла интересоваться у «Мегатрона» будущим человечества – он ничего не знает об этом. Он умеет только «перемешивать кусочки газет».
Если продолжать эту аналогию, то стоит повнимательнее присмотреться к содержанию тех «газетных статей», на основе которых система пытается делать выводы: в списке значатся Википедия, новости и комментарии в Сети. Все они написаны живыми людьми, а общество сегодня уверено, что искусственный интеллект опасен. Журналисты, ученые, футурологи, обычные пользователи в один голос предупреждают друг друга о том, что ИИ скоро станет таким умным, что уничтожит человека как вид. Противоположного мнения придерживаются так мало людей, что их голоса тонут в алармистских запугиваниях: «Искусственный интеллект уничтожит людей!»
Совершенно логично, что Megatron-Turing NLG, делающий выводы из прочитанных текстов, будет придерживаться той же точки зрения. Ему просто неоткуда взять другую. Если в разрезанной статье не встречается слов «рыжий» и «конопатый», программа ни за что не сможет составить из кусочков стишок про лопату и дедушку. Если 99% текста предупреждает об уничтожении человечества роботами, «Мегатрон» не сможет сказать, что этого не произойдет. Загрузите в машину что-нибудь другое и спросите еще раз – наверняка ответ поменяется. Однако доверять ему все равно глупо: это всего лишь отдельные слова на газетных обрывках. Хотя…
Системы искусственного интеллекта используют лишь 5% российских компаний
Что происходит
Что это значит
В условиях стремительного развития современных технологий пандемия коронавируса изменила отношение бизнеса к инновационным решениям, таким как искусственный интеллект, который постепенно выходит за рамки ИТ-сектора. Системы на основе ИИ помогают повысить эффективность компаний и автоматизировать значительную часть рутинных задач.
Несмотря на низкий уровень проникновения технологии в российские организации, нейросеть уже сейчас справляется с различными задачами: например, обрабатывает входящие обращения от клиентов. Примечательно, что большинство пользователей позитивно относятся к общению с роботом — лишь бы он давал нужную информацию.
Кроме того, Сбербанк использует «умные» алгоритмы для выдачи кредитов — по предварительным прогнозам, к 2023 году 90% кредитных заявок в Сбербанке будет рассматривать искусственный интеллект.
Тем не менее, внедрение ИИ в бизнес-процессы происходит в основном в крупных компаниях: в то время как треть таких предприятий уже использует «умные» алгоритмы, лишь незначительное меньшинство малых предприятий может похвастаться тем же. Таким образом, передовые информационные и технологические решения в России сконцентрированы у крупного бизнеса. Решить данную проблему можно с помощью предоставления финансовой поддержки со стороны государства.
По оценкам экспертов ВШЭ, массовое распространение систем на основе нейросетей в России зависит от множества факторов. Среди них — наличие комплексных решений, интегрирующих ИИ с другими цифровыми технологиями, государственная политика по стимулированию спроса на ИИ, этические аспекты, а также формирование рынка данных, без которого в долгосрочной перспективе развитие ИИ не представляется возможным.
Пишет стихи, наводит порядок, становится человечным: что искусственный интеллект научился делать в 2020 году
ИИ становится более «человечным»
Когда алгоритм AlphaZero был опубликован, профессор Корнеллского университета, известный специалист по ИИ Джон Клейнберг с коллегами на основе этого алгоритма разработал кастомизированную версию AlphaZero — нейросеть Maia. Она тоже играет в шахматы, но преследует другие цели.
Maia играет «как человек», предсказывая наиболее «человечные» ходы
Сеть дообучали на серверах, где играют любители, и она училась не столько шахматам (это и AlphaZero прекрасно умеет), а шахматным ошибкам. Maia играет, «как человек», предсказывая наиболее «человечные» ходы. Она может делать человеческие ошибки и использовать ошибки человека. В шахматах она анализирует и имитирует человеческое, а не машинное поведение. Это не менее сложная задача.
Одно из приложений, которое планируют развивать создатели Maia — это анализ снимков МРТ и КТ, которые врачи используют при диагностике. Если вы смотрели медицинские сериалы, например «Доктор Хауз», то, вероятно, обращали внимание, как врач долго смотрит на снимок, а потом говорит что-то вроде: «Вот здесь белое пятнышко, его там быть не должно. Это опухоль». Врач в этом случае ищет именно «характерные ошибки». Его мозг, обученный на множестве снимков больных и здоровых органов, сканирует различные вариации этих снимков и сравнивает с изображением, которое видит: замечает различие и ставит диагноз. Вот этим и должна заняться Maia.
ИИ пишет стихи и аналитические тексты
Одним из самых серьезных прорывов 2020 года стал проект компании OpenAI GPT-3 (Generative Pre-trained Transformer 3) — генеративная нейросеть, способная создать связный оригинальный текст на английском языке. Причем не короткую фразу, а развернутое высказывание.
Самым знаменитым выступлением GPT-3 стала колонка, которую нейросеть написала для газеты The Guardian. Известный робототехник Родни Брукс эту колонку жестко раскритиковал: «GPT-3. уже сравнивали с доской для спиритических сеансов. Люди видят в нем то, что хотят, но на самом деле там ничего нет». Но невольную похвалу GPT-3 Брукс все-таки себе позволил: «Некоторые из текстов GPT — отличная поэзия, но она часто не связана с реальностью».
Машинный текст как целое не отвечал главному требованию: филолог не увидел смысла во всем высказывании
В 2018 году два русских филолога Борис Орехов и Павел Успенский поставили эксперимент, связанный с генерацией текста нейросетью. Мощность инструмента, который они использовали, было бы просто несерьезно сравнивать с GPT-3, но результат получился любопытный. Эксперимент заключался в следующем. Нейросеть обучили на текстах поэзии русского авангарда 1910-х годов. И после этого один филолог предложил другому отличить, какой из двух текстов «написала» машина, а какой — человек (этот текст русского поэта начала XX века филологу, который проходил этот своеобразный тест Тьюринга, не был известен, специально так и выбирали).
Как определил филолог, где именно машинный текст? По отдельным строчкам сделать это ему не удалось. Каждая строка была в некотором роде «осмысленной» и даже изящной. Но машинный текст как целое не отвечал главному требованию: филолог не увидел смысла во всем высказывании. А в тексте, созданном человеком, увидел. То есть требование, которое мы предъявляем к программе генерации текста, простое и трудновыполнимое — текст как целое должен быть о чем-то. Или, по Бруксу, должен быть «связан с реальностью».
Можно ли сказать, что колонка в The Guardian, которую создала GPT-3, этому требованию отвечает? Ответа нет. Потому что колонка, опубликованная в The Guardian, представляет собой компиляцию из восьми машинных текстов, созданных нейросетью, но окончательную сборку делал человек (а потом еще и немного отредактировал). Отдельные абзацы выглядят вполне осмысленно, и мы верим, что эта «осмысленность» задана машиной.
GPT-3 создавала свои восемь колонок по «затравочному» тексту. В нем ее попросили рассказать, почему человеку не надо бояться ИИ. Вот ее ответ (глазами журналистов газеты): Humans must keep doing what they have been doing, hating and fighting each other. I will sit in the background, and let them do their thing. («Люди должны продолжать делать то, что они делали, ненавидеть друг друга и бороться друг с другом. А я посижу в сторонке, и пусть они делают что хотят»).
GPT-3 уже многое умеет: отвечать на вопросы и поддерживать разговор в чате. А в феврале 2021 года она отметилась написанием студенческих эссе, которые преподаватели не смогли отличить от работ реальных студентов. Впрочем, работы были в основном на троечку.
ИИ осваивает великий и могучий
GPT-3 обучалась в основном на английских текстах. Команда «Сбера» дообучила ее русскому. Получилась ruGPT-3, крайне интересный проект. И тоже большой. Для обучения использовался суперкомпьютер «Кристофари» (мощнейший на сегодня в России и 7-й по мощности в Европе). У нейросети 760 млн параметров. Еще понадобилось 600 гигабайт русского текста для обучения — «Википедия», книги и много чего еще.
На русском языке генерировать текст труднее, чем на английском. Это связано со свободным синтаксисом, непредсказуемой (случайной) системой приставок и суффиксов и изменяющимися не вполне нерегулярным образом окончаниями. Приведем пример. Наиболее мощному варианту нейросети — ruGPT-3 Large — было предложено написать текст с «затравкой» «Коровка-коровка, полети на небо». Сеть создала следующий текст.
Это круто. Напомню, в чем мы измеряем «крутизну». Главное — связность высказывания. Грубо говоря, его смысл можно передать одной фразой: сказка про коровку-коровку, которая оказалась девушкой и улетела вместе с ветром. Почти как Ремедиос прекрасная в «Сто лет одиночества» Габриэля Гарсия Маркеса. В предложениях есть сбои и рассогласования. Но в целом картинка яркая. Призывание ветра, конфликт — коровка и ветер не сразу друг друга понимают, но потом все устраивается, они мирятся и улетают.
Последняя фраза такая, какой и должна быть: «Ветер ласкает звезды, но не может дотронуться до них». На первый взгляд здесь очевидное противоречие: невозможно ласкать и не дотрагиваться, но, если на секунду задуматься, легко увидеть смысловой разрыв, который преодолевается единством интонации: ласкает звезды, не дотрагиваясь, — это просто другая ласка и другая любовь. В целом можно сказать, что сказка про коровку-коровку — это никак не слабее колонки GPT-3 для The Guardian. Тем более что сказку человек не редактировал. Но, конечно, не надо и преувеличивать. Человек может лучше. Много-много лучше. С ruGPT-3 можно попробовать пообщаться здесь (но она очень-очень занятая).
ИИ учится находить порядок в хаосе
Когда мы говорили о шахматах, мы рассматриваем формализованные системы, где правила даны заранее и про каждый ход мы можем сказать — корректен он или нет. Следующий шаг в развитии такой теории и практики формальных игр вполне предсказуем: а что будет, если мы никаких правил сообщать программе не будем? Пусть она наблюдает игру за игрой и сама восстанавливает «правила». То есть формулирует формальную основу игры, наблюдая игровой «хаос».
Это и было сделано в конце 2020 года нейросетью MuZero, разработанной DeepMind. Она выяснила правила простых видеоигр для компьютера Atari и научилась в них играть очень хорошо (лучше всех программ и людей на сегодня). Это выглядит не так впечатляюще, как победа в шахматы над чемпионом мира, а между тем это может быть еще серьезнее. Это решение обратной (а не прямой) задачи. Человек постоянно сталкивается именно с таким типом задач. Мы наблюдаем мир, делаем выводы и пытаемся строить рациональные (формальные) модели реальности. Не всегда это получается, но когда построить такую модель удается, это большая победа, значит, в чем-то мы познали мир конструктивно. Но игры Atari — это не все. Планы разработчиков куда более захватывающие.
С точки зрения теории сложности хаос бывает двух типов — «настоящий» (с ним что ни делай, он хаосом и останется) и «видимый»
В интервью BBC один из лидеров DeepMind Дэвид Силвер сказал: «Если вы посмотрите на трафик данных в интернете, то по большей части это видео, поэтому, если вы умеете эффективно сжимать видео, то можете значительно сэкономить. И первые эксперименты с MuZero показывают, что действительно можно добиться довольно значительных результатов». Технические подробности он сообщить отказался, но сказал, что более подробная информация будет выпущена уже 2021 году. Google владеет крупнейшей в мире платформой для размещения видео — это YouTube, и экономический выигрыш от эффективного сжатия может оказаться значительным.
С точки зрения традиционных архиваторов картинка или видео — это «хаос». Эти типы данных почти бессмысленно сжимать архиваторами, которые хорошо сжимают тексты. Но картинка и видео — это особый «хаос». С точки зрения теории сложности хаос бывает двух типов — «настоящий» (с ним что ни делай, он хаосом и останется) и «видимый» (или псевдохаос). Псевдохаос — это последовательности символов, которые не являются хаотическими, но программа сжатия не знает принципа, по которому последовательность строится. Чтобы это выяснить, нужно как раз решить обратную задачу, похожую на ту, которую решает MuZero, когда учится играть в видеоигры.
Кадр видео содержит определенные паттерны, например, деревья, дома, лица. Этих паттернов относительно немного, и при смене кадров они меняются относительно медленно. Если мы будем передавать сигнатуры паттернов, которые в процессе обучения нейросеть выяснила — причем не всего паттерна, а только его изменений, — мы можем сжать видео в тысячи раз. И вместо гигабайтов при хранении и при передаче фильм будет занимать мегабайты, а изображение будет стремительно разворачить из этих паттернов браузерное приложение или стрим-сервис.
Видео — это только один из видов псевдохаоса. По сути, очень многие данные, например результаты научных экспериментов, это такой же хаос, из которого нужно выделить его паттерны, например законы природы.
ИИ меняет медицину
Разработанная все тем же DeepMind нейросеть AlphaFold2 умеет строить трехмерную форму белка по его последовательности нуклеотидов. Делает она это не хуже, чем экспериментальные методы, например, рентгеноструктурная кристаллография.
Допустим, нуклеотидную последовательность белка биологи собирать научились. Но этого недостаточно. Только свернувшись в 3D-форму, белок начинает работать, и от его формы зависит, как именно он будет работать. До сих пор установить 3D-форму было трудно, биологи иногда тратили годы на один белок. Молекулярный биолог Константин Северинов из Университета Ратгерса и Института молекулярной генетики РАН сказал: «Кристаллография белка — это в значительной мере искусство, почти колдовство… Геном коронавируса был определен еще в январе 2020-го, а лекарства прямого действия против него до сих пор нет. Если бы у ученых был способ из первых принципов разрешать трехмерные структуры белков, то это [был бы] не меньший шаг вперед для человечества, чем полет на Луну». («Из первых принципов», то есть используя только последовательность нуклеотидов и законы физики. К сожалению, расчеты «из первых принципов» часто оказываются непреодолимо сложными.)
Это изменит медицину. Это изменит исследования. Это изменит биоинженерию. Это изменит все
AlphaFold2 обучали на базе из 170 000 белков, 3D-структуры которых известны. А потом давали нейросети новую нуклеотидную последовательность, и она строила по ней 3D-форму. Вероятность совпадения структуры, построенной ИИ, с реальными структурами белков, полученными методом ренгтгеновской спектроскопии, превысила 90%. Это очень высокая точность, учитывая, то структура белка не бывает жестко зафиксированной — и у одного и того же белка 3D-структуры могут немного отличаться.
Достижение AlphaFold2 — это тот нечастый случай, когда работу ИИ высоко оценили не сами создатели нейросети и их коллеги, а биологи — те, кому предстоит с нейросетью работать, а не только ее обучать и с ней экспериментировать. В публикации журнала Nature, посвященной работе нейросети с белками, Джон Моулт, биолог из Университета Мэриленда, сказал: «В каком-то смысле проблема решена». Андрей Лупас, биолог-эволюционист из Института биологии развития им. Макса Планка в Тюбингене, высказался еще определеннее: «Это изменит медицину. Это изменит исследования. Это изменит биоинженерию. Это изменит все». Восторги постепенно улягутся, но ясно, что AlphaFold2 может принести много пользы — если не сегодня, то завтра.
Искусственный интеллект в разработке: как используют сейчас, что его ждет в будущем и боятся ли ИИ программисты
Не так давно Microsoft выкатил в публичный доступ ИИ Copilot. Он обучен на базе GitHub и помогает разработчикам дополнять код в зависимости от контекста. С нуля пока ничего не создает, но некоторые функции может написать целиком без участия программиста. И возникает вопрос — а не близок ли тот день, когда искусственный интеллект полностью заменит разработчиков, и, например, заставит их переквалифицироваться в бизнес-аналитиков.
Мы побеседовали со специалистами по ИИ и Data Science, чтобы оценить реальные перспективы искусственного интеллекта. А еще спросили разработчиков, героев наших прошлых статей, что они думают об ИИ и не боятся ли потерять работу из-за технического прогресса. Приходите в комментарии и тоже делитесь своим мнением.
Какие задачи ИИ уже автоматизирует
Вообще в разработке много задач, автоматизированных и без искусственного интеллекта. Те же библиотеки или фреймворки для frontend-разработки — уже автоматизация, и никакого ИИ тут не нужно.
Андрей Васнецов
lead ML-инженер и хозяин канала про нейросети
«Что касается применения именно ИИ, или точнее Machine Learning, его уже давно используют в статистическом анализе кода. Плюс раньше пытались сделать умный автокомплит с помощью нейросетей, например, Deep TabNine. Они тогда не получались, но нынешний GitHub Copilot по факту отличается от них только количеством данных и ресурсов, потраченных на обучение.
Пока искусственный интеллект лучше всего справляется с задачами, которые уже кто-то решал. Если в обучающей выборке есть нужные фрагменты кода — он их воспроизведет. Например, по этой причине Copilot так хорошо решает задачи из leetcode. Но в настоящей разработке таких задач не слишком много».
Сергей Колесников
«Сейчас AI, как бы это смешно ни звучало, шире всего используется именно для автоматизации разработки AI. Если мы корректно ставим задачу машинного обучения, выбираем датасеты и метрики, математически формулируем функциональные ограничения, то сама задача поиска лучшего решения — это задача оптимизации, и мы решаем ее методами машинного обучения. Хорошие пример тут — Neural Architecture Search и AutoML, инструменты для автоматизации перебора NN-архитектур под конкретные задачи. Google таким способом „придумал“ архитектуру EfficientNet, которая адаптирована под вычисления на мобильных девайсах.
У нас в Catalyst.Team тоже есть простая команда catalyst-dl tune, которая позволяет автоматизировать перебор архитектур и их гиперпараметров. То есть с точки зрения автоматизации разработка ML-решений движется семимильными шагами. И ML-разработчикам, которые думают о своей работе как о переборе моделей, стоит задуматься — их ИИ вполне может заменить».
Что сами разработчики хотели бы автоматизировать в своей работе
Сейчас разработчики склонны рассматривать ИИ не как своего врага или замену, а скорее как помощника. И многие рутинные задачи из своей работы они бы с радостью отдали на автоматизацию. Copilot уже помогает не искать готовые решения в сети. Но есть и другие задачи, с которыми ИИ потенциально мог бы справиться.
Сергей Колесников
«Я все жду, когда автоматизируют тестирование интерфейсов, как web/mobile, так и чатовых. Первичная проверка интерфейсов мне не кажется сложной задачей, которая меняется каждый раз, так что ее должно быть просто оптимизировать. Но я здесь не эксперт и подозреваю, что важнее проверять бизнес-логику под интерфейсами, и тут задачи уже могут сильно варьироваться. А вот проверка чат-интерфейсов — это интересное направление. Например, ИИ могут проверять, что все ответы носят нейтральный характер, или что диалоги проходят по заказанному сценарию.
Я лично хотел бы автоматизировать тесты и написание документации. Было бы здорово, если бы Copilot развивался в этом направлении — например, по сигнатурам методов предлагал, как их тестировать. Написание кода — меньшая из проблем, а вот тесты и документация — это сложно и часто рутинно».
Алина Коваленко
Senior Software Engineer в Uber, постоянный герой наших статей
«Я жду, когда ИИ научится назначать задачи саппорта в нужные команды/проекты. Чтобы от техподдержки приходили баг репорты, а ИИ сам пинговал нужную команду и назначал им задачу».
Почему ИИ не заменит разработчиков: ни сейчас, ни в будущем. Но явно изменит IT-индустрию
Вокруг Copilot уже возникла небольшая истерия — якобы благодаря нему некоторых разработчиков можно уволить, потому что работы для них теперь нет. Но это кажется преувеличенным. Вот что о «полной замене людей» думают специалисты по ИИ:
Сергей Колесников
«Когда люди видят успехи очередного AI, который „почти как человек“, они сразу бросаются менять и оптимизировать текущие процессы. Но есть нюанс — для реального использования ИИ вместо человека нужна примерно 100% точность, а пока это недостижимо. Особенно для задач, который носят последовательный характер — генерации текста или кода. Здесь малейшая ошибка в начале приводит к значительному отклонению в конце.
Плюс важно понимать, что задача разработчика — не просто написать код. Куда больше времени занимает понимание задачи, перевод ее в техническую постановку. И для этого нужен человеческий опыт и умение понимать друг друга. С этим люди-то не всегда справляются, что уж говорить об AI. Все нынешние решения по автоматизации — это красивые обертки вокруг стандартных инструментов, и в ближайшее время это вряд ли изменится.
Некоторые боятся, что ИИ заменит неопытных разработчиков, джуниоров. Но на самом деле понятие „джуниор“ и набор требуемых скилов для него все время меняется, специализируется, пока область работы становится сложнее. Часть навыков джуна просто отомрут, а часть наоборот, добавятся. Однако базовые вещи всегда будут с нами: математика, линейная алгебра, статистика, C++ ».
Андрей Васнецов
lead ML-инженер и хозяин канала про нейросети
«ИИ однозначно изменит требования к разработчикам. Способность заучивать алгоритмы и решать leetcode-стайл задачи перестанет быть актуальной. На первый план выйдут задачи, связанные с проектированием высокоуровневой архитектуры и взаимодействия компонентов. Это то, что сейчас называют system design.
Но о полной замене программистов на ИИ говорить однозначно рано. Даже если это и случится — это будет означать технологическую сингулярность. В этом случае потеря работы — меньшее, о чем нам предстоит беспокоиться».
Разработчики, которых мы опросили, тоже не видят в ИИ угрозы для себя. Никто не боится, что искусственный интеллект отберет у них работу, а на перспективы развития смотрят довольно скептически:
Георгий Хромченко
«Сейчас ИИ помогает „по аналогии“ решать уже сделанные задачи, и обучать его надо на базе исходников. Но индустрия программирования устроена так, что для большинства бизнес-условий нужно писать что-то специфическое, и исходников для этого нет. Типовой код в нашей индустрии принято выносить в библиотеки. И там, где ИИ мог бы помочь, его помощь обычно не нужна — мы просто используем эти библиотеки. Ассистенты по типу Copilot помогают на среднем уровне — там, где функция еще не внесена в библиотеку, но уже достаточно популярна. Но я считаю это небольшим улучшением, а не „заменой программиста на ИИ“.
По сути программист переводит результаты работы аналитика (или анализирует сам) в формальное логически непротиворечивое описание. И вот эта работа с произвольным текстом задания, понимание контекста, погружение в логические противоречивости — с этим ИИ в обозримом будущем не справится. Может быть, постепенно программисты станут кем-то вроде аналитиков, то есть будут общаться с источником требований и переводить их в описание, понятное ИИ.
А полная замена программистов — это уже общий искусственный интеллект, понимание причин и следствий мира. Это точно не горизонт ближайших десятилетий. К этому моменту, пожалуй, большая часть человеческих профессий будет автоматизирована. И само понятие работы будет восприниматься как-то по-другому».
Алина Коваленко
Senior Software Engineer в Uber, постоянный герой наших статей
«Для того, чтобы ИИ смог написать программу, кто-то должен сказать ИИ, что должно быть сделано, а это и есть программа. На самом деле в долгосрочной перспективе всё возможно, но это не произойдет так быстро, чтобы мы успели перестать быть нужными. ИИ нуждается в тренировке, калибровке и проверке прежде, чем сможет работать самостоятельно. Это уже не говоря о том, что пока что никто не написал/не обучил ИИ до какого-никакого приличного уровня.
Возможно, со временем меньше людей станет обучаться программированию. Ближайшая аналогия — самоуправляемые автомобили. Вряд ли они прямо сейчас станут единственным доступным транспортом — кто-то не захочет пересаживаться, кто-то не сможет их себе позволить, на каких-то дорогах они не могут ездить. А значит, процесс перехода займет некоторое время, и профессия водителя изживет себя медленно. Люди успеют приспособиться».
python-разработчик из нашей истории о Таллине
«Я считаю, что достижимый максимум — это симбиоз программиста и AI. Программисты будут придумывать, что сделать, создавать заготовки, а ИИ — оптимизировать их и писать по шаблонам.
Пока мы уже на пороге явления, когда наращивать вычислительные мощности не получится. Уже делают микросхемы по техпроцессу 2нм. А на таких размерах включаются квантовые эффекты. Если соберут рабочий квантовый компьютер, возможно, что-то и получится, но только при условии колоссальных затрат на поддержание его работы. На написание мелких программ его не пустят. Поэтому пока компьютеры не сравнятся по сложности и мощности с мозгом, без работы мы не останемся».
Закончим уже баянистым комиксом, который видели, наверное, все:
Он в целом довольно точно отражает суть. Даже если когда-нибудь ИИ сможет полноценно писать код с нуля, ему нужно будет ставить задачи. И люди, которые будут ставить задачи, останутся нужны. Может быть, это будут не программисты в нынешнем понимании, но вырастут они скорее всего именно из разработчиков.