Что можно изучить с помощью микроскопа

Детский микроскоп: 10 объектов для исследования

Микроскоп — это прибор не для развлечения, а для познания. Правда, оно бывает настолько увлекательным, что аппарат заменяет многие игры и забавы! Неудивительно, что и взрослые готовы рассматривать под увеличением все то, что интересно детям.

Для первых опытов рекомендуется приобрести недорогой монокулярный микроскоп. Как правило, в комплекте идут дополнительные объективы. Вместе с окуляром аппарат может давать 800-кратное увеличение!

Совсем необязательно покупать или одалживать у знакомых биологов электронный, сканирующий или рентгеновский микроскоп: они предназначены для научного использования в лабораториях. Человек, работающий с ними, должен иметь специальный опыт. Но пока опыта нет, можно исследовать все, что есть под рукой и даже на руках, а обширный список мы как раз подготовили!

1 Мякоть или кожура фрукта или овоща, кусочки грибов, мох

Можно здорово удивиться, что яблоко меняет свой цвет: в зависимости от освещения фрукт становится черным или голубым, а кожура томата отличается бронзовым оттенком. А как красивы увеличенные листы салата или лесные мхи!

2 Волосы

Казалось бы, одинаковые на первый взгляд человеческие волосы под микроскопом имеют разную толщину, структуру и цвет. Можно сравнить волосы людей и домашнего животного — кошки или собаки, поместив их под стекло микроскопа.

3 Листья и лепестки растений

Микроскоп легко ответит на вопрос ребенка: «Почему крапива жжется?». Все дело в том, что на листе растения есть жгучие волоски, отлично заметные при увеличении!

А любители красоты не устоят перед увеличенными лепестками садовых или полевых цветков — анютиных глазок, васильков, красных роз.

4 Пыльца

«Неужели эти фигурки действительно существуют?» — может спросить юный биолог. Действительно, крошечные частички под стеклом — это разноцветные тела различных форм: одни напоминают круг, другие — многоугольники с шипами. А для того чтобы перенести пыльцу с растения на предметное стеклышко, понадобится мягкая кисточка.

5 Бумага, мех, нитки

Все это под увеличением изменяется причудливым образом: например, кусочек бумажного листа будет выглядеть как серая структура. И мех, и нитки под микроскопом совсем не похожи на то, что мы привыкли видеть невооруженным глазом!

6 Кристаллы поваренной соли, сахар-песок, зернышко кофе

Наверное, интереснее всего выглядят кубики соли — как будто ими можно играть! Да и гранулы сахарного песка поражают своими четкими геометрическими формами.

7 Соскоб налета со стенки аквариума

Этот опыт разъясняет строение зеленых водорослей. Специалисты отмечают, что такое наблюдение может заставить ребят подолгу находиться у микроскопа!

8 Бактерии в зубном налете

Зачем чистить зубы два раза в день? А для того, чтобы во рту было как можно меньше всех этих «палочек», «ниточек», «шариков», которыми изобилует зубной налет. Правда, чтобы увидеть бактерии, налет разводят в капельке воды, предварительно сняв острой зубочисткой или спичкой. Также можно изучить выпавшие молочные зубы, которые хранятся во многих семьях.

9 Грязь под ногтями

А это исследование — просто спасение для тех родителей, которые «воюют» со своими чадами за регулярное мытье рук. Мама и папам, уставшим объяснять, зачем это нужно делать, прекрасно поможет микроскоп.

Воочию увидев, что же скапливается под ногтями, дети незамедлительно побегут в ванную!

10 Муха или другое насекомое

Строение насекомого можно и нужно изучать под микроскопом: конечно, эстетического удовольствия не получишь, зато обретешь новые полезные знания.

Каким бы любознательным ни был ребенок, первое время работать с микроскопом нужно с родителями. Мама и папа должны предупредить, что нельзя баловаться со стеклом, крутить и вертеть винты без необходимости. Также родители могут рассказать об устройстве микроскопа и предназначении каждой детали. Все это «отложится в копилку» сына или дочери и заставит тянуться к новым знаниям.

Источник

12 методов в картинках: микроскопия

Авторы
Редакторы

Один из старейших научных приборов — микроскоп — появился практически одновременно с наукой в ее современном виде. Этот канонический инструмент биолога более 400 лет был важнейшим средством для познания живого, и дал львиную долю наших знаний об устройстве жизни. Все это время эволюция микроскопа продолжалась, расширяя возможности увидеть неразличимое глазом.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

12 биологических методов в картинках

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Генеральный партнер цикла — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.

Одна из главных миссий «Биомолекулы» — докопаться до самых корней. Мы не просто рассказываем, какие новые факты обнаружили исследователи — мы говорим о том, как они их обнаружили, стараемся объяснить принципы биологических методик. Как вытащить ген из одного организма и вставить в другой? Как проследить в огромной клетке за судьбой нескольких крошечных молекул? Как возбудить одну крохотную группу нейронов в огромном мозге?

И вот мы решили рассказать о лабораторных методах более системно, собрать воедино в одной рубрике самые главные, самые современные биологические методики. Чтоб было интереснее и нагляднее, мы густо проиллюстрировали статьи и даже кое-где добавили анимации. Мы хотим, чтобы статьи новой рубрики были интересны и понятны даже случайному прохожему. И с другой стороны — чтобы они были так подробны, что даже профессионал мог бы обнаружить в них что-то новое. Мы собрали методики в 12 больших групп и собираемся сделать на их основе биометодический календарь. Ждите обновлений!

История микроскопии

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

На пороге микромира

Собирающие (увеличивающие) линзы были известны с XI века, и очки распространились по Европе уже в XIV веке. Традиционно изобретение первого составного микроскопа приписывают отцу и сыну — Хансу и Захарию Янсенам в 1595 году (рис. 1). Этот первый микроскоп мог увеличивать изображение всего в 3–9 раз. Есть версия, что первый микроскоп создал Корнелиус Дреббель. Среди изобретателей первых микроскопов был и Галилей, создавший свой микроскоп в 1609 году. Так или иначе, ни один из изобретателей не оставил подробных описаний микромира. Микроскопия как наука началась с Роберта Гука, который в 1665 году издал Micrographia — книгу, в которой подробно описывались устройство микроскопа, основы оптики и первые наблюдения за биологическими объектами, иллюстрированные подробными рисунками [1]. Микроскоп Гука (рис. 2) состоял из трех линз и источника света — эта основа сохраняется и в современной микроскопии. Однако достичь больших увеличений удалось с помощью более простой конструкции — Антони ван Левенгук использовал, казалось бы, примитивный микроскоп всего с одной линзой (рис. 2). Однако благодаря высочайшему качеству этой линзы ему удалось достичь 200-кратного увеличения и описать клетки простейших и даже крупные бактерии. Использование всего одной линзы не создавало оптических аберраций, которые только множились при конструировании более сложной оптической системы.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Генеральный партнер цикла «12 методов» — компания «Диаэм»

«Диаэм» — крупнейшая российская компания, специализирующаяся на поставке оборудования и реагентов ведущих мировых производителей в области микроскопии: от микроскопов начального уровня до исследовательских, конфокальных и мультифотонных систем, а также автоматизированных биоимиджинговых систем, способных поддерживать жизнеспособность клеток при постановке длительных экспериментов.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Материал предоставлен партнёром — компанией «Диаэм»

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 1. Микроскопия: этапы большого пути. 1590 г. — Захарий и Ханс Янсены создают первый микроскоп. 1665 г. — первое издание книги Роберта Гука Micrographia: описание и иллюстрации первых микроскопических исследований. 1674 г. — Антони ван Левенгук с помощью своего микроскопа описывает инфузории, а в дальнейшем — бактерии, сперматозоиды, вакуоли внутри клетки и т.п. 1858 г. — Йозеф фон Герлах разрабатывает окрашивание кармином — одной из первых гистологических красок. 1878 г. — Эрнст Аббе выводит формулу Аббе, позволяющую вычислить максимальное разрешение, исходя из длины волны. 1911 г. — Оскар Хеймштадт изобретает первый флуоресцентный микроскоп. 1929 г. — Филипп Эллингер и Август Хирт конструируют эпифлуоресцентный микроскоп, в котором эффективно отфильтровывалось излучение от источника света. 1932 г. — Фриц Цернике изобретает фазовый контраст, позволяя рассматривать живые неокрашенные объекты с большим контрастом. 1933 г. — Эрнст Руска совместно с Максом Кноллем создает первый электронный микроскоп. В 1939 году с его помощью выпустили первый коммерческий электронный микроскоп. 1934 г. — Джон Маррак получает первый конъюгат антитела с красителем. Первое практическое использование Альбертом Кунсом, усовершенствовавшим технику конъюгацией с флуоресцентной меткой. 1942 г. — Эрнст Руска создает сканирующий электронный микроскоп. 1962 г. — первое описание GFP Осамой Симомурой. 1967 г. — первое использование конфокальной микроскопии Моймиром Петраном, Дэвидом Эггером и Робертом Галамбосом. 1969 и 1971 гг. — первое описание конфокальной лазерной микроскопии. 1981 г. — Герд Бинниг и Генрих Рорер создают первый сканирующий туннельный микроскоп. 1986 г. — Герд Бинниг, Келвин Куэйт и Кристофер Гербер изобретают атомно-силовую микроскопию. 1990 г. — Винфрид Денки и Джеймс Стиклер разрабатывают первый двухфотонный микроскоп. 1994 г. — Штефан Хелл: суперразрешающая электронная микроскопия на основе подавления спонтанного испускания (STED). 2006 г. — изобретение PALM/STROM-микроскопии. Чтобы увидеть рисунок в полном размере, нажмите на него.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 2а. Первые «ласточки». Микроскоп Гука (реконструкция).

Источник

Микроскопия в домашних условиях

Микроскопия в домашних условиях

Подсчёт эритроцитов в камере Горяева. Увеличение: 100×.

Автор
Редакторы

Статья на конкурс «био/мол/текст»: Повышенный уровень лейкоцитов, бактериальная инфекция, картофель содержит крахмал, насекомые переносят заболевания — эти и другие похожие высказывания приходится слышать отовсюду. Каждый день с экранов телевизоров, из уст знакомых, с полос газет и журналов нам в мозг поступает одна и та же информация. Информация, которая, как может показаться, является уделом лишь специалистов — медиков и биологов. Ведь именно они касаются этих вопросов в своей повседневной жизни. Простому же человеку достаются лишь только выводы из тех или иных исследований, сухие слова, не обладающие наглядностью. В этой статье я постараюсь рассказать просто о сложном. О том, как каждый может приблизить к себе неуловимый, на первый взгляд, мир клеток и микроорганизмов.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

«Био/мол/текст»-2013

Эта статья представлена на конкурс научно-популярных работ «био/мол/текст»-2013 в номинации «Своя работа».

Спонсор конкурса — дальновидная компания Thermo Fisher Scientific. Спонсор приза зрительских симпатий — фирма Helicon.

Вот уже два года, как я наблюдаю за этим миром у себя дома, и год, как делаю фотоснимки. За это время я успел увидеть собственными глазами, какие бывают клетки крови, что опадает с крыльев бабочек и молей, как бьётся сердце у улитки. Конечно, многое можно было бы почерпнуть из учебников, видеолекций и с тематических веб-сайтов. Единственное, что осталось бы не почерпнутым — это ощущение присутствия и близости к тому, чего не видно невооружённым глазом. То, что прочитано в книге или увидено в телепередаче, скорее всего, сотрется из памяти в весьма сжатые сроки. Что увидено лично в объектив микроскопа — останется с тобой навсегда. И останется не столько сам образ увиденного, сколько понимание, что мир устроен именно так, а не иначе. Что это не просто слова из книжки, а личный опыт. Опыт, который в наше время доступен каждому.

Что купить?

Театр начинается с вешалки, а исследование — с покупки оборудования. В нашем случае это будет микроскоп, ибо в лупу много не разглядишь. Из основных характеристик микроскопа «для домашних нужд» стоит выделить, конечно же, набор доступных увеличений, которые определяются произведением увеличений окуляра и объектива. Не всякий биологический образец хорош для исследования на больших увеличениях. Связано это с тем, что большее увеличение оптической системы предполагает меньшую глубину резкости. Следовательно, изображение неровных поверхностей препарата частично будет размыто. Поэтому важно иметь набор объективов и окуляров, позволяющий вести наблюдения во всем диапазоне увеличения: 10–20×, 40–60×, 100–200×, 400–600×, 900–1000×. Иногда бывает оправдано увеличение 1500×, достигающееся при покупке окуляра 15× и объектива 100×. Всё, что увеличивает сильнее, разрешающей способности заметно не прибавит, так как на увеличениях около 2000–2500× уже близок так называемый «оптический предел», обусловленный дифракционными явлениями.

Следующим немаловажным моментом является тип насадки. Обычно выделяют монокулярную, бинокулярную и тринокулярную разновидности. Принцип классификации основывается на том, «сколькими глазами» вы хотите смотреть на объект. В случае монокулярной системы вам придётся щуриться, постоянно меняя глаза от усталости при длительном наблюдении. Здесь вам на помощь придёт бинокулярная насадка, в которую, как и следует из её названия, можно глядеть обоими глазами. В целом, это более благоприятно скажется на самочувствии ваших глаз. Не следует путать бинокуляр со стереомикроскопом. Последний позволяет добиться объёмного восприятия наблюдаемого объекта за счёт наличия двух объективов, в то время как бинокулярные микроскопы просто подают на оба глаза одно и то же изображение. Для фото- и видеосъёмки микрообъектов понадобится «третий глаз», а именно насадка для установки камеры. Многие производители выпускают специальные камеры для своих моделей микроскопов, хотя можно использовать и обычный фотоаппарат (правда, при этом придётся купить переходник).

Наблюдение при больших увеличениях требует хорошего освещения в силу небольшой апертуры соответствующих объективов. Канули те времена, когда препарат исследовали в отражённом от зеркала свете. Сейчас микроскопы представляют собой комплексные оптико-механо-электрические приборы, в которых всецело используются достижения научно-технического прогресса. В современных устройствах имеется своя лампочка, свет от которой распространяется через специальное устройство — конденсор, — которое и освещает препарат. В зависимости от типа конденсора можно выделить различные способы наблюдения, самыми популярными из которых являются методы светлого и тёмного поля. Первый метод, знакомый многим ещё со школы, предполагает, что препарат освещается равномерно снизу. При этом в тех местах, где препарат оптически прозрачен, свет распространяется от конденсора в объектив, а в непрозрачной среде свет поглощается, приобретает окраску и рассеивается. Поэтому на белом фоне получается тёмное изображение — отсюда и название метода.

С темнопольным конденсором всё иначе. Он устроен так, что лучи света, выходящие из него, направлены в разные стороны, кроме непосредственно отверстия объектива. Поэтому они проходят сквозь оптически прозрачную среду, не попадая в поле зрения наблюдателя. С другой стороны, лучи, попавшие на непрозрачный объект, рассеиваются на нём во все стороны, в том числе и в направлении объектива. Поэтому в итоге на тёмном фоне будет виден светлый объект. Такой метод наблюдения хорош для исследования прозрачных объектов, которые на светлом фоне не являются контрастными. По умолчанию большинство микроскопов являются светлопольными. Поэтому, если вы планируете расширить набор методов наблюдения, то стоит выбирать модели микроскопов, в которых предусмотрена установка дополнительного оборудования: конденсоров, устройств фазового контраста, поляризаторов и т.п.

Как известно, оптические системы не идеальны: прохождение света через них сопряжено с искажениями изображения — аберрациями. Поэтому объективы и окуляры стараются изготавливать так, чтобы эти аберрации максимально устранить. Всё это сказывается на их конечной стоимости. Из соображений цены и качества имеет смысл покупать планахроматические объективы. Они используются при профессиональных исследованиях и имеют адекватную цену. Объективы с большим увеличением (например, 100×) имеют числовую апертуру больше 1, что предполагает использование масла при наблюдении — так называемая иммерсия. Поэтому, если кроме «сухих» объективов вы берёте ещё и иммерсионные, стоит заранее позаботиться об иммерсионном масле. Его показатель преломления обязательно должен соответствовать вашему конкретному объективу.

Конечно, это не весь список параметров, которые следует учитывать при покупке микроскопа. Иногда бывает важно обратить внимание на устройство и расположение предметного столика и рукояток для управления им. Стоит выбрать и тип осветителя, которым может быть как обычная лампа накаливания, так и светодиод, который светит ярче и греется меньше. Также микроскопы могут иметь индивидуальные особенности. Но основное, что стоило бы сказать об их устройстве, пожалуй, сказано. Каждая дополнительная опция — это добавка к цене, поэтому выбор модели и комплектации — это удел конечного потребителя.

В последнее время наметилась тенденция покупки микроскопов для детей. Такие устройства обычно являются монокулярами с небольшим набором объективов и скромными параметрами, стоят недорого и могут послужить хорошей отправной точкой не только для непосредственно наблюдений, но и для ознакомления с основными принципами работы микроскопа. После этого ребёнку уже можно будет купить более серьёзное устройство на основании выводов, сделанных при работе с «бюджетной» моделью.

Как смотреть?

Любительское наблюдение не предполагает исключительных навыков ни в работе с микроскопом, ни в подготовке препаратов. Конечно, можно купить далеко не дешёвые наборы уже готовых препаратов, но тогда не таким ярким будет ощущение вашего личного присутствия в исследовании, да и готовые препараты рано или поздно наскучат. Поэтому, купив микроскоп, стоит задуматься о реальных объектах для наблюдения. Кроме того, вам понадобятся хоть и специальные, но доступные средства для подготовки препаратов.

Наблюдение в проходящем свете предполагает, что исследуемый объект является достаточно тонким. Даже не каждая кожура с ягоды или фрукта сама по себе обладает необходимой толщиной, поэтому в микроскопии исследуют срезы. В домашних условиях достаточно адекватные срезы можно делать обычными лезвиями для бритья. При определённой сноровке можно достигнуть толщины среза в несколько клеточных слоёв, что во многом повысит дифференцируемость объектов препарата. В идеале стоит работать с моноклеточным слоем ткани, ибо несколько слоёв клеток, наложенных друг на друга, создают нечёткое и сумбурное изображение.

Исследуемый препарат помещается на стекло предметное и, в случае необходимости, накрывается стеклом покровным. Поэтому, если в комплекте к микроскопу стёкла не прилагаются, их следует купить отдельно. Сделать это можно в ближайшем магазине медицинской техники. Однако не каждый препарат хорошо прилегает к стеклу, поэтому применяют методы фиксации. Основными являются фиксация огнём и спиртом. Первый метод требует определённого навыка, так как можно попросту «спалить» препарат. Второй способ зачастую более оправдан. Чистый спирт достать не всегда возможно, поэтому в аптеке в качестве заменителя можно приобрести антисептик, который, по сути, является спиртом с примесями. Там же стоит купить йод и зелёнку. Эти привычные для нас средства дезинфекции на деле оказываются ещё и хорошими красителями для препаратов. Ведь не всякий препарат открывает свою сущность при первом взгляде. Иногда ему нужно «помочь», подкрасив его форменные элементы: ядро, цитоплазму, органеллы.

Для взятия образцов крови следует приобрести скарификаторы, пипетки и вату. Всё это есть в продаже в медицинских магазинах и аптеках. Кроме того, для сбора объектов из дикой природы следует запастись маленькими пакетиками и баночками. Брать с собой баночку для набора воды из ближайшего водоёма при выезде на природу должно стать у вас хорошей привычкой.

Что смотреть?

Микроскоп приобретён, инструменты закуплены — пора начинать. И начать следует с самого доступного. Что может быть доступнее кожуры репчатого лука (рис. 1 и 2)? Являясь тонкой сама по себе, кожура лука, будучи подкрашенной йодом, обнаруживает в своём строении чётко дифференцируемые ядра. Этот опыт, хорошо знакомый со школы, пожалуй, и стоит провести первым. Саму кожуру лука нужно залить йодом и оставить окрашиваться на 10–15 минут, после чего нужно промыть её под струёй воды.

Кроме того, йод можно использовать для окраски картофеля (рис. 3). Не стоит забывать, что срез необходимо делать как можно более тонким. Буквально 5–10 минут пребывания среза картофеля в йоде проявят пласты крахмала, которые окрасятся в синий цвет. Йод является достаточно универсальным красителем. Им можно окрашивать широкий спектр препаратов.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 1. Кожица лука (увеличение: 1000×). Окраска йодом. На фотографии дифференцируется ядро в клетке.

Фотография автора статьи.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 2. Кожица лука (увеличение: 1000×). Окраска Азур-Эозином. На фотографии в ядре дифференцируется ядрышко.

Фотография автора статьи.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 3. Зерна крахмала в картофеле (увеличение: 100×). Окраска йодом.

Фотография автора статьи.

Это явление называется гидрофобностью. Подробно мы о нем говорили в статье «Физическая водобоязнь». — Ред.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 4. Крыло божьей коровки (увеличение: 400×).

Фотография автора статьи.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 5. Крыло бибионида (увеличение: 400×).

Фотография автора статьи.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 6. Крыло бабочки боярышницы (увеличение: 100×).

Фотография автора статьи.

Если вы когда-нибудь задевали крыло бабочки или моли, то, наверное, замечали, что с неё слетает какая-то «пыль». На фотографиях отчётливо видно, что этой пылью являются чешуйки с их крыльев (рис. 7). Они имеют разную форму и достаточно легки на отрыв.

Кроме того, можно поверхностно изучить строение конечностей членистоногих (рис. 8), рассмотреть хитиновые плёнки — например, на спине таракана (рис. 9). При должном увеличении можно убедиться, что такие плёнки состоят из плотно прилегающих (возможно, сросшихся) чешуек.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 7. Чешуйки с крыльев моли (увеличение: 400×).

Фотография автора статьи.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 8. Конечность паука (увеличение: 100×).

Фотография автора статьи.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 9. Плёнка на спине таракана (увеличение: 400×).

Фотография автора статьи.

Следующее, что стоило бы понаблюдать — это кожура ягод и фруктов (рис. 10 и 11). Не все фрукты и ягоды обладают приемлемой для наблюдения в микроскоп кожурой. Либо её клеточное строение может быть не дифференцируемым, либо толщина не позволит добиться чёткого изображения. Так или иначе, придётся сделать немало попыток, прежде чем вы получите хороший препарат. Вам придётся перебрать разные сорта винограда — например, для того, чтобы найти тот, у которого красящие вещества в кожуре имели бы «приятную для глаза» форму, или сделать несколько срезов кожицы сливы, пока не добьётесь моноклеточного слоя. В любом случае, вознаграждение за проделанную работу будет достойным.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 10. Кожура чёрного винограда (увеличение: 1000×).

Фотография автора статьи.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 11. Кожура сливы (увеличение: 1000×).

Фотография автора статьи.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 12. Лист клевера (увеличение: 100×). Некоторые клетки содержат тёмнокрасный пигмент.

Фотография автора статьи.

Достаточно доступным для исследования объектом является зелень: трава, водоросли, листья (рис. 12 и 13). Но, несмотря на повсеместную распространённость, выбрать и приготовить хороший образец бывает не так-то просто.

Самым интересным в зелени являются, пожалуй, хлоропласты (рис. 14 и 15). Поэтому срез должен быть исключительно тонким. Нередко приемлемой толщиной обладают зелёные водоросли, встречающиеся в любых открытых водоёмах.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 13. Лист земляники (увеличение: 40×).

Фотография автора статьи.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 14. Хлоропласты в клетках травы (увеличение: 1000×).

Фотография автора статьи.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 15. Хлоропласты в клетках водоросли (увеличение: 1000×).

Фотография автора статьи.

Там же вы встретите и плавучие водоросли и других водных микроорганизмов (рис. 16). Вам также может посчастливиться встретить малька улитки или другого животного, живущего в водоёме (рис. 17 и 18). Маленький детёныш улитки, будучи достаточно оптически прозрачным, позволяет разглядеть у себя биение сердца (видео 1).

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 16. Плавающая водоросль со жгутиком (увеличение: 400×).

Фотография автора статьи.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 17. Детёныш улитки (увеличение: 40×).

Фотография автора статьи.

Что можно изучить с помощью микроскопа. Смотреть фото Что можно изучить с помощью микроскопа. Смотреть картинку Что можно изучить с помощью микроскопа. Картинка про Что можно изучить с помощью микроскопа. Фото Что можно изучить с помощью микроскопа

Рисунок 18. Мазок крови. Окраска Азур-Эозином по Романовскому (увеличение: 1000×). На фотографии эозинофил на фоне эритроцитов.

Фотография автора статьи.

Сам себе учёный

Видео 1. Биение сердца улитки (увеличение оптического микроскопа 100×).

После исследования простых и доступных препаратов естественным желанием является усложнение техник наблюдения и расширение класса изучаемых объектов. Для этого, во-первых, понадобится литература по специальным методам исследования, а, во-вторых, специальные средства. Эти средства, хотя и являются своими для каждого типа объектов, всё-таки обладают некоторой общностью и универсальностью. Например, всеобще известный метод окраски по Граму, когда разные виды бактерий после окраски дифференцируются по цветам, может быть применён и при окраске других, не бактериальных, клеток. Близким к нему по сути является и метод окраски мазков крови по Романовскому. В продаже имеется как уже готовый жидкий краситель, так и порошок, состоящий из таких красящих веществ, как азур и эозин. Все красители можно купить в специализированных медико-биологических магазинах, либо заказать в интернете. Если же по каким-то причинам вы не можете достать краситель для крови, можно попросить лаборанта, делающего вам анализ крови в больнице, приложить к анализу стёклышко с окрашенным мазком вашей крови.

Продолжая тему исследования крови, нельзя не упомянуть камеру Горяева — устройство для подсчёта форменных элементов крови. Будучи важным инструментом для оценки количества эритроцитов в крови ещё в те времена, когда не было устройств для автоматического анализа её состава, камера Горяева также позволяет измерять размеры объектов благодаря нанесённой на неё разметке с известными размерами делений. Методы исследования крови и других жидкостей с помощью камеры Горяева описаны в специальной литературе.

Заключение

В данной статье я постарался рассмотреть основные моменты, связанные с выбором микроскопа, подручных средств и основные классы объектов для наблюдения, которые нетрудно встретить в быту и на природе. Как уже было сказано, специальные средства наблюдения предполагают наличие хотя бы начальных навыков работы с микроскопом, поэтому их обзор выходит за рамки данной статьи. Как видно из фотографий, микроскопия может стать приятным хобби, а может быть, для кого-то даже и искусством.

В современном мире, где разнообразные технические средства и устройства находятся в шаговой доступности, каждый сам решает, на что ему потратить собственные деньги. Из развлекательных соображений это может быть дорогостоящий ноутбук или телевизор с запредельным размером диагонали. Но находятся и те, кто отводит свой взор от экранов и направляет его либо далеко в космос, приобретая телескоп, либо, смотря в окуляр микроскопа, проникают взглядом глубоко внутрь. Внутрь той природы, частью которой мы являемся.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *