Что можно найти с помощью определенного интеграла
Интегралы для чайников: как решать, правила вычисления, объяснение
Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл. Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?
Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.
Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.
Изучаем понятие « интеграл »
Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц, но суть вещей не изменилась.
Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных, необходимые и для понимания интегралов, уже есть у нас в блоге.
Неопределенный интеграл
Пусть у нас есть какая-то функция f(x).
Неопределенным интегралом функции f(x) называется такая функция F(x), производная которой равна функции f(x).
Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.
Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.
Простой пример:
Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.
Полная таблица интегралов для студентов
Определенный интеграл
Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.
В качестве примера представим себе график какой-нибудь функции.
Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:
Точки а и b называются пределами интегрирования.
Бари Алибасов и группа
Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы
Правила вычисления интегралов для чайников
Свойства неопределенного интеграла
Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.
Свойства определенного интеграла
Как считать определенный интеграл? С помощью формулы Ньютона-Лейбница.
Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:
Примеры решения интегралов
Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.
Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.
Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.
Определенный интеграл. Как вычислить площадь фигуры
Переходим к рассмотрению приложений интегрального исчисления. На этом уроке мы разберем типовую и наиболее распространенную задачу – как с помощью определенного интеграла вычислить площадь плоской фигуры. Наконец-то ищущие смысл в высшей математике – да найдут его. Мало ли. Придется вот в жизни приближать дачный участок элементарными функциями и находить его площадь с помощью определенного интеграла.
Для успешного освоения материала, необходимо:
1) Разбираться в неопределенном интеграле хотя бы на среднем уровне. Таким образом, чайникам для начала следует ознакомиться с уроком Неопределенный интеграл. Примеры решений.
2) Уметь применять формулу Ньютона-Лейбница и вычислять определенный интеграл. Наладить теплые дружеские отношения с определенными интегралами можно на странице Определенный интеграл. Примеры решений.
В действительности, для того чтобы находить площадь фигуры не надо так уж много знаний по неопределенному и определенному интегралу. Задание «вычислить площадь с помощью определенного интеграла» всегда предполагает построение чертежа, поэтому гораздо более актуальным вопросом будут ваши знания и навыки построения чертежей. В этой связи полезно освежить в памяти графики основных элементарных функций, а, как минимум, уметь строить прямую, параболу и гиперболу. Сделать это можно (многим – нужно) с помощью методического материала Графики и свойства элементарных функций и статьи о геометрических преобразованиях графиков.
Собственно, с задачей нахождения площади с помощью определенного интеграла все знакомы еще со школы, и мы мало уйдем вперед от школьной программы. Этой статьи вообще могло бы и не быть, но дело в том, что задача встречается в 99 случаев из 100, когда студент мучается от ненавистной вышки с увлечением осваивает курс высшей математики.
Материалы данного практикума изложены просто, подробно и с минимумом теории.
Начнем с криволинейной трапеции.
Криволинейной трапецией называется плоская фигура, ограниченная осью , прямыми
,
и графиком непрерывной на отрезке
функции
, которая не меняет знак на этом промежутке. Пусть данная фигура расположена не ниже оси абсцисс:
Тогда площадь криволинейной трапеции численно равна определенному интегралу . У любого определенного интеграла (который существует) есть очень хороший геометрический смысл. На уроке Определенный интеграл. Примеры решений я говорил, что определенный интеграл – это число. А сейчас пришла пора констатировать еще один полезный факт. С точки зрения геометрии определенный интеграл – это ПЛОЩАДЬ.
То есть, определенному интегралу (если он существует) геометрически соответствует площадь некоторой фигуры. Например, рассмотрим определенный интеграл . Подынтегральная функция
задает на плоскости кривую, располагающуюся выше оси
(желающие могут выполнить чертёж), а сам определенный интеграл
численно равен площади соответствующей криволинейной трапеции.
Вычислить площадь фигуры, ограниченной линиями ,
,
,
.
Это типовая формулировка задания. Первый и важнейший момент решения – построение чертежа. Причем, чертеж необходимо построить ПРАВИЛЬНО.
При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом – параболы, гиперболы, графики других функций. Графики функций выгоднее строить поточечно, с техникой поточечного построения можно ознакомиться в справочном материале Графики и свойства элементарных функций. Там же можно найти очень полезный применительно к нашему уроку материал – как быстро построить параболу.
В данной задаче решение может выглядеть так.
Выполним чертеж (обратите внимание, что уравнение задает ось
):
Штриховать криволинейную трапецию я не буду, здесь очевидно, о какой площади идет речь. Решение продолжается так:
На отрезке график функции
расположен над осью
, поэтому:
Ответ:
У кого возникли трудности с вычислением определенного интеграла и применением формулы Ньютона-Лейбница , обратитесь к лекции Определенный интеграл. Примеры решений.
После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка – в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.
Вычислить площадь фигуры, ограниченной линиями ,
,
и осью
Это пример для самостоятельного решения. Полное решение и ответ в конце урока.
Что делать, если криволинейная трапеция расположена под осью ?
Вычислить площадь фигуры, ограниченной линиями ,
и координатными осями.
Решение: Выполним чертеж:
Если криволинейная трапеция расположена под осью (или, по крайней мере, не выше данной оси), то её площадь можно найти по формуле:
В данном случае:
Ответ:
Внимание! Не следует путать два типа задач:
1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.
2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.
На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам.
Найти площадь плоской фигуры, ограниченной линиями ,
.
Решение: Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой
. Это можно сделать двумя способами. Первый способ – аналитический. Решаем уравнение:
Значит, нижний предел интегрирования , верхний предел интегрирования
.
Этим способом лучше, по возможности, не пользоваться.
Гораздо выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Техника поточечного построения для различных графиков подробно рассмотрена в справке Графики и свойства элементарных функций. Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). И такой пример, мы тоже рассмотрим.
Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж:
Повторюсь, что при поточечном построении пределы интегрирования чаще всего выясняются «автоматом».
А теперь рабочая формула: Если на отрезке некоторая непрерывная функция
больше либо равна некоторой непрерывной функции
, то площадь фигуры, ограниченной графиками данных функций и прямыми
,
, можно найти по формуле:
Здесь уже не надо думать, где расположена фигура – над осью или под осью, и, грубо говоря, важно, какой график ВЫШЕ (относительно другого графика), а какой – НИЖЕ.
В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из
необходимо вычесть
Завершение решения может выглядеть так:
Искомая фигура ограничена параболой сверху и прямой
снизу.
На отрезке , по соответствующей формуле:
Ответ:
На самом деле школьная формула для площади криволинейной трапеции в нижней полуплоскости (см. простенький пример №3) – частный случай формулы . Поскольку ось
задается уравнением
, а график функции
расположен не выше оси
, то
А сейчас пара примеров для самостоятельного решения
Найти площадь фигуры, ограниченной линиями ,
.
Найти площадь фигуры, ограниченной линиями ,
.
В ходе решения задач на вычисление площади с помощью определенного интеграла иногда случается забавный казус. Чертеж выполнен правильно, расчеты – правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз лажался ваш покорный слуга. Вот реальный случай из жизни:
Вычислить площадь фигуры, ограниченной линиями ,
,
,
.
Решение: Сначала выполним чертеж:
…Эх, чертеж хреновенький вышел, но вроде всё разборчиво.
Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована зеленым цветом!
Этот пример еще полезен и тем, что в нём площадь фигуры считается с помощью двух определенных интегралов. Действительно:
1) На отрезке над осью
расположен график прямой
;
2) На отрезке над осью
расположен график гиперболы
.
Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:
Ответ:
Переходим еще к одному содержательному заданию.
Вычислить площадь фигуры, ограниченной линиями ,
Представим уравнения в «школьном» виде ,
и выполним поточечный чертеж:
Из чертежа видно, что верхний предел у нас «хороший»: .
Но чему равен нижний предел?! Понятно, что это не целое число, но какое? Может быть ? Но где гарантия, что чертеж выполнен с идеальной точностью, вполне может оказаться что
. Или корень. А если мы вообще неправильно построили график?
В таких случаях приходиться тратить дополнительное время и уточнять пределы интегрирования аналитически.
Найдем точки пересечения прямой и параболы
.
Для этого решаем уравнение:
,
Действительно, .
Дальнейшее решение тривиально, главное, не запутаться в подстановках и знаках, вычисления здесь не самые простые.
На отрезке , по соответствующей формуле:
Ответ:
Ну, и в заключение урока, рассмотрим два задания сложнее.
Вычислить площадь фигуры, ограниченной линиями ,
,
Решение: Изобразим данную фигуру на чертеже.
Блин, забыл график подписать, а переделывать картинку, простите, не хотца. Не чертёжный, короче, сегодня день =)
Для поточечного построения необходимо знать внешний вид синусоиды (и вообще полезно знать графики всех элементарных функций), а также некоторые значения синуса, их можно найти в тригонометрической таблице. В ряде случаев (как в этом) допускается построение схематического чертежа, на котором принципиально правильно должны быть отображены графики и пределы интегрирования.
С пределами интегрирования здесь проблем нет, они следуют прямо из условия: – «икс» изменяется от нуля до «пи». Оформляем дальнейшее решение:
На отрезке график функции
расположен над осью
, поэтому:
(1) Как интегрируются синусы и косинусы в нечетных степенях можно посмотреть на уроке Интегралы от тригонометрических функций. Это типовой прием, отщипываем один синус.
(2) Используем основное тригонометрическое тождество в виде
(3) Проведем замену переменной , тогда:
Новые пределы интегрирования:
У кого совсем плохи дела с заменами, прошу пройти на урок Метод замены в неопределенном интеграле. Кому не очень понятен алгоритм замены в определенном интеграле, посетите страницу Определенный интеграл. Примеры решений.
(4) Здесь мы использовали свойство определенного интеграла , расположив пределы интегрирования в «привычном» порядке
Ответ:
Вычислить площадь фигуры, ограниченной линиями ,
,
Это пример для самостоятельного решения. Полное решение и ответ на нижнем этаже.
Вот, пожалуй, и все основные принципиальные приёмы нахождения площадей. Помимо рассмотренных методов интегрирования, иногда приходится применять формулу интегрирования по частям в определенном интеграле, что не представляет собой особых трудностей. Какой-то интересный пример придумать сложно, … хотя… арккотангенса вроде еще нигде не встречалось:
Вычислить площадь фигуры, ограниченной линиями ,
и координатными осями.
Полного решения не будет, надо же вас немного помучить. А правильный ответ скажу: . Весь необходимый материал для выполнения задания на сайте есть! 😉 И даже больше – через долгие три года, наконец-то появились статьи Вычисление площади в полярных координатах и Вычисление площади, если линия задана параметрически.
Пример 2: Решение:
Выполним чертеж:
На отрезке график функции
расположен над осью
, поэтому:
Ответ:
Примечание: В задачах на нахождение площадей преподаватели часто требуют записывать ответ не только точно, но и, в том числе, приближенно.
Пример 5: Решение:
Выполним чертеж:
На отрезке , по соответствующей формуле:
Ответ:
Пример 6: Решение:
Выполним чертеж.
На отрезке , по соответствующей формуле:
Ответ:
Пример 10: Решение:
Изобразим данную фигуру на чертеже:
На отрезке график функции
расположен над осью
, поэтому:
Ответ:
Примечание: обратите внимание, как берется интеграл от тангенса в кубе, здесь использовано следствие основного тригонометрического тождества . Далее в интегралах я использовал метод подведения функций под знак дифференциала (можно было использовать замену в определенном интеграле, но решение получилось бы длиннее). Если возникли трудности с данными интегралами, посетите урок Интегралы от тригонометрических функций.
Автор: Емелин Александр
(Переход на главную страницу)
Zaochnik.com – профессиональная помощь студентам
cкидкa 15% на первый зaкaз, прoмoкoд: 5530-hihi5
Tutoronline.ru – онлайн репетиторы по математике и другим предметам