Что такое радиоактивный воздух

Большая Энциклопедия Нефти и Газа

Радиоактивность воздуха и минеральных вод вызывается главным образом содержащимся в них радоном. [1]

Наличие радиоактивности воздуха может постоянно регистрироваться в различных пунктах ззмли. Полученные записи должны собираться в одном месте и тщательно анализироваться так же, как это делается с мэтеосводками. [5]

Уменьшения радиоактивности воздуха достигают приточно-вытяж-ной вентиляцией. В помещении ядерного реактора поддерживают небольшое разрежение. Воздух из реакторного помещения и всей АЭС после специальной фильтрации удаляют через вентиляционную систему. [6]

Для непосредственного измерения радиоактивности воздуха можно использовать обладающие особенно высокой чувствительностью измерители у-излучения, к которым нередко подключают устройства тревожной сигнализации. [9]

До тех пор пока радиоактивность воздуха невысока и существенно не превышает значения, являющегося результатом природных процессов, подробные данные о ней не представляют интереса для специалиста-гигиениста. Однако в случае внезапного существенного превышения допустимых пределов необходимо в короткий срок получить исчерпывающие аналитические данные, чтобы обеспечить возможность принятия необходимых защитных мер. Поэтому соответствующие исследовательские учреждения должны быть заблаговременно оснащены необходимой аппаратурой и укомплектованы кадрами. [10]

Зоной с радиоактивным загрязнением воздуха считается помещение или зона, где радиоактивность воздуха превышает уровень, установленный регламентирующими органами. [13]

Источник

Радиоактивный газ радон ‒ что следует знать?

Многие люди даже не догадываются – сколько опасностей может таить в себе, вдыхаемый ими воздух. В его составе могут присутствовать самые разные элементы – одни полностью безвредны для человеческого организма, другие – возбудители самых серьезных и опасных заболеваний. Например, многие знают об опасности, которая таит в себе радиация, но не все догадываются, что повышенную долю можно легко получить и в повседневной жизни. Некоторые люди ошибочно принимают симптомы от воздействия повышенного уровня радиоактивности за признаки других болезней. Общее ухудшение самочувствия, головокружение, ломота в теле – человек привык их связывать совершенно с другими первопричинами. Но это очень опасно, так как радиация может привести к очень серьезным последствиям, а человек тратит время на борьбу с надуманными болезнями. Ошибкой многих людей является то, что они не верят в возможность получения дозы радиоактивного облучения в своей повседневной жизни.

Что такое радон?

Что такое радиоактивный воздух. Смотреть фото Что такое радиоактивный воздух. Смотреть картинку Что такое радиоактивный воздух. Картинка про Что такое радиоактивный воздух. Фото Что такое радиоактивный воздухМногие люди считают, что они достаточно защищены, так как проживают достаточно далеко от рабочих атомных электростанций, не посещают с экскурсиями военные корабли, работающие за счет ядерного топлива, а о Чернобыле слышали только по фильмам, книгам, новостям и играм. К сожалению, это не так! Радиация присутствует вокруг нас повсеместно – важно находится там, где ее количество находится в допустимых нормах.

Итак, что может скрывать обычный воздух, окружающий нас? Не знаете? Мы упростим вам задачу, дав наводящий вопрос, и сразу ответ на него:

Радиоактивный газ 5 букв?

Что такое радиоактивный воздух. Смотреть фото Что такое радиоактивный воздух. Смотреть картинку Что такое радиоактивный воздух. Картинка про Что такое радиоактивный воздух. Фото Что такое радиоактивный воздухПервые предпосылки к обнаружению этого элемента сделали в конце девятнадцатого века легендарные Пьер и Мари Кюри. Впоследствии, их исследованиями заинтересовались другие известные ученные, которые смогли выделить радон в чистом виде в 1908-ом году, а также описать некоторые из его характеристик. За свою историю официального существования этот газ поменял множество названий, и только в 1923 оду стал известен как радон – 86-й элемент в периодической таблице Менделеева.

Как газ радон попадает в помещения?

Что такое радиоактивный воздух. Смотреть фото Что такое радиоактивный воздух. Смотреть картинку Что такое радиоактивный воздух. Картинка про Что такое радиоактивный воздух. Фото Что такое радиоактивный воздух

Радон. Именно этот элемент может незаметно окружать человека в его доме, квартире, офисе. Постепенно приводить к ухудшению состояния здоровья людей, вызывать очень серьезные заболевания. Но избежать опасности очень трудно – одна из опасностей, которую таит в себе газ радон, заключается в том, что его невозможно определить по цвету или запаху. Радон ничем не выделяется из окружающего воздуха, поэтому может незаметно облучать человека в течение очень длительного времени.

Но как этот газ может появиться в обычных помещениях, где живут и работают люди?

Где и главное чем его можно обнаружить радон?

Вполне логичные вопросы. Одним из источников радона является слои почвы, которые расположены под зданиями. Существует множеств веществ, которые выделяют этот газ. Например, обычный гранит. То есть, материал, который активно используется при строительных работах (например, в качестве добавки в асфальт, бетон) или находится в больших количествах непосредственно в Земле. На поверхность газ могут вынести грунтовые воды, особенно во время обильных дождей, не стоит забывать и об глубоководных скважинах, откуда многие люди черпают бесценную жидкость. Еще одним источником этого радиоактивного газа является пища – в сельском хозяйстве используется радон для активации кормов.

Главная неприятность заключается в том, что человек может поселиться в экологически чистом месте, но это не даст ему полной гарантии защиты от пагубного воздействия радона. Газ может проникнуть в его обитель с едой, водопроводной водой, в качестве испарений после дождя, от окружающих элементов отделки здания и материалов, из которого оно было возведено. Не будет же человек каждый раз, заказывая или покупая что-то интересоваться об уровне радиации в месте производства приобретаемой продукции?

Итог – газ радон может концентрироваться в опасных количествах в помещениях, где живут и работают люди. Поэтому важно знать ответ и на второй, поставленный выше вопрос.

Помещения, попадающие в группу риска

Радон значительно тяжелее воздуха. То есть, при попадании в воздушную среду его основной объем концентрируется в нижних слоях воздуха. Поэтому потенциально-опасными местами считаются квартиры многоэтажных домов на первых этажах, частные домовладения, подвалы и полуподвалы. Эффективным способом избавления от этой угрозы является постоянное проветривание помещений и обнаружение источника поступления радона. В первом случае можно избежать опасной концентрации радона, который мог появиться в строении случайным образом. Во втором – уничтожить источник его постоянного возникновения. Естественно, что большинство людей не сильно задумываются о некоторых характеристиках использованных строительных материалов, а в холодное время года не всегда проветривают помещения. Многие подвалы вообще не имеют естественной или принудительной вентиляционной системы, поэтому и становятся источником концентрации опасного количества этого радиоактивного газа.

Как обнаружить газ радон?

Что такое радиоактивный воздух. Смотреть фото Что такое радиоактивный воздух. Смотреть картинку Что такое радиоактивный воздух. Картинка про Что такое радиоактивный воздух. Фото Что такое радиоактивный воздухУчитывая все выше написанное, важно знать – как можно обнаружить радон в бытовых условиях, чтобы вовремя начать борьбу с его пагубным воздействием на человеческий организм. К счастью, существует оборудование, которое можно сегодня легко приобрести в специализированных магазинах, и способное решить поставленную задачу. Современные датчики радона (монитор радона) – компактные и удобные в использовании приборы, которые стоят недорого, по крайней мере – значительно дешевле стоимость дальнейшего излечения от целого списка опасных заболеваний, который включает в себя лейкемию и появление раковых опухолей.

Одной из неприятных особенностей радона является то, что воздух в помещении остается радиоактивным в течение недели, даже если вынести из него источник, выделяющий этот газ. Следовательно, избавиться от этой опасности можно только:

Только такой вариант последовательных действий гарантирует нужный результат и безопасность здоровья человека. Поэтому не стоит просто бежать отламывать куски гранита, выбрасывать их, и успокаиваться на этом.

Источник

Что такое радиационный туман и опасен ли он

Что такое радиационный туман

Что такое радиоактивный воздух. Смотреть фото Что такое радиоактивный воздух. Смотреть картинку Что такое радиоактивный воздух. Картинка про Что такое радиоактивный воздух. Фото Что такое радиоактивный воздух

Радиационный туман является результатом радиационного охлаждения земной поверхности и массы влажного приземного воздуха до точки росы. То есть это туман, возникший над поверхностью почвы, выхолодившейся путем излучения, отсюда и его название.

При каких условиях возникает

Что такое радиоактивный воздух. Смотреть фото Что такое радиоактивный воздух. Смотреть картинку Что такое радиоактивный воздух. Картинка про Что такое радиоактивный воздух. Фото Что такое радиоактивный воздух

Радиационный туман возникает чаще всего именно в ночное время в условиях антициклона при безоблачной погоде и небольшом ветре. Часто этому способствует температурная инверсия, которая препятствует подъему воздушной массы.

Как правило, такие туманы рассеиваются к утру — после восхода солнца. Однако в холодное время года они могут сохраняться по несколько суток. В промышленных районах иногда превращаются в смог.

Разновидности радиационного тумана

Что такое радиоактивный воздух. Смотреть фото Что такое радиоактивный воздух. Смотреть картинку Что такое радиоактивный воздух. Картинка про Что такое радиоактивный воздух. Фото Что такое радиоактивный воздух

Радиационный туман может быть высоким и поземным.

Высокий туман возникает над большими площадями суши в холодное время года вследствие длительного выхолаживания земной поверхности. Образуется преимущественно сверху, а затем постепенно распространяется вниз до земной поверхности.

Поземный туман возникает невысоко над почвой — всего лишь в метрах или десятках метров в ночное время. Его образованию способствуют низины и близость болот.

Летом быстрый прогрев поверхности рассеивает радиационный туман через 1-2 часа после восхода солнца. Осенью он может сохраняться в течение 3-5 часов после восхода солнца. Зимой — в течение всего дня, если не изменится синоптическая обстановка.

Опасен ли радиационный туман для человека

Что такое радиоактивный воздух. Смотреть фото Что такое радиоактивный воздух. Смотреть картинку Что такое радиоактивный воздух. Картинка про Что такое радиоактивный воздух. Фото Что такое радиоактивный воздух

Как объясняют специалисты, радиационный туман не страшен для человека, потому что не имеет ничего общего с опасной радиацией — ядерным ионизирующим излучением.

Это всего лишь часть радиационного обмена между нижними слоями атмосферы и поверхностью земли.

Увидели ошибку в тексте? Выделите ее и нажмите «Ctrl+Enter»

Источник

Радон и его воздействие на здоровье человека

Основные факты

Что такое радон?

Радон — это радиоактивный газ без запаха, цвета и вкуса. Радон образуется в процессе природного радиоактивного распада урана, который присутствует во всех горных породах и почвах. Радон может также присутствовать в воде.

Высвобождаясь из грунта в воздух, радон распадается с образованием радиоактивных частиц. Когда мы дышим, эти частицы осаждаются на клетках эпителия дыхательных путей, что чревато повреждением ДНК клеток и может привести к развитию рака легких.

Неблагоприятное воздействие радона на здоровье

Радон является одной из основных причин развития рака легких. По оценкам, радон вызывает от 3% до 14% всех случаев рака легких в зависимости от среднего по стране уровня концентрации радона и распространенности курения.

Впервые повышенная заболеваемость раком легких была отмечена у шахтеров, работающих в урановых рудниках и подвергающихся воздействию радона в очень высоких концентрациях. Кроме того, исследования, проведенные в Европе, Северной Америке и Китае, подтвердили, что даже низкие концентрации радона, которые, например, часто регистрируются в жилых помещениях, также создают риски для здоровья и способствуют развитию рака легких у людей во всем мире.

Увеличение средней концентрации радона за длительный период времени на 100 Бк/м 3 увеличивает примерно на 16% риск развития рака легких. Считается, что соотношение доза-ответ является линейным, то есть риск развития рака легких возрастает пропорционально увеличению воздействия радона.

По оценкам, вероятность развития рака легких в результате воздействия радона у курильщиков в 25 раз выше, чем у некурящих. На сегодняшний день не установлен риск развития других видов рака или других неблагоприятных последствий для здоровья. В то же время в результате вдыхания радона радиация может проникать в другие органы, но при этом ее уровень будет гораздо ниже, чем уровень радиации в легких.

Присутствие радона в зданиях

Большинство людей подвергаются наиболее сильному воздействию радона в жилых домах, где они проводят много времени. Однако рабочие места внутри зданий могут также являться источником неблагоприятного воздействия. Концентрация радона внутри зданий зависит от следующих факторов:

Радон поступает в здания через щели в полах или на стыках полов и стен, неуплотненные технологические отверстия вокруг труб или кабелей, небольшие поры в стенах, возведенных из пустотелых бетонных блоков, полости в стенах, а также через внутренние водостоки и дренажные системы. Концентрация радона обычно выше в подвалах, цокольных помещениях и жилых помещениях, соприкасающихся с грунтом. Однако значительная концентрация радона в здании может наблюдаться и выше уровня земли.

Уровни концентрации радона в соседних зданиях могут сильно различаться, а в одном и том же здании меняться каждый день и даже каждый час. Ввиду таких колебаний наиболее предпочтительным методом определения среднегодового уровня концентрации радона в воздухе внутри помещений считается проведение замеров по крайней мере в течение трех месяцев. Существуют недорогие и простые способы определения уровней концентрации радона в жилых помещениях при помощи небольших по размеру пассивных дозиметров. В целях обеспечения согласованности и достоверности данных, необходимых для принятия решений, замеры должны производиться на основе национальных протоколов. Краткосрочное радоновое тестирование, которое проводится в соответствии с национальными протоколами, может пригодиться для принятия решений в ситуациях, когда очень важен фактор времени, например, при продаже жилья или при проверке эффективности проведенных работ по смягчению воздействия радона.

Способы снижения концентрации радона внутри помещений

Существуют проверенные, надежные и эффективные по стоимости методы предотвращения проникновения радона в строящиеся здания и снижения концентрации радона в существующем жилом фонде. Следует предусматривать меры по предупреждению загрязнения строящихся сооружений радоном, особенно в радоноопасных районах. Во многих странах Европы, в Соединенных Штатах Америки и в Китае в строительные нормы и правила включены меры по защите строящихся зданий от радона.

Вот лишь некоторые общепринятые способы снижения концентрации радона в уже существующих зданиях:

Пассивные системы смягчения воздействия радона позволяют снижать концентрацию этого газа внутри помещений более чем на 50%. Добавление принудительной вентиляции обеспечивает еще более существенное уменьшение концентрации радона.

Радон в питьевой воде

Во многих странах питьевая вода поступает из подземных источников – родников, колодцев и артезианских скважин. Как правило, концентрация радона в воде из этих источников выше, чем в воде из поверхностных источников водоснабжения, таких как водохранилища, реки или озера.

На сегодняшний день результаты эпидемиологических исследований не подтверждают, что потребление питьевой воды, содержащей радон, увеличивает риск заболевания раком желудка. Растворенный в питьевой воде радон поступает в воздух внутри помещений. Как правило, при поступлении радона в организм ингаляционным путем полученная доза радона оказывается выше, чем при его поступлении в пищеварительный тракт.

Руководство по обеспечению качества питьевой воды [1] (2011 г.) рекомендует устанавливать скрининговые уровни содержания радона в воде на основе национального референтного уровня содержания радона в атмосфере. В том случае, если есть основания полагать, что в питьевой воде может обнаружиться высокая концентрация радона, целесообразно измерить содержание радона в воде. Существуют простые и эффективные способы снижения концентрации радона в питьевой воде, такие как аэрация или использование фильтров с гранулированным активированным углем. Дополнительные рекомендации можно найти в документе Management of Radioactivity in Drinking-water [2] (2018 г.).

Деятельность ВОЗ

Присутствие радона внутри помещений является предупреждаемым фактором риска, которому можно противостоять с помощью эффективных мер национальной политики и нормативного регулирования. В справочном пособии ВОЗ WHO Handbook on Indoor Radon: A Public Health Perspective [3] изложены варианты политики по сокращению рисков для здоровья, обусловленных воздействием радона на организм в помещениях, за счет осуществления следующих мер:

Эти рекомендации соответствуют Международным основным нормам безопасности [4] (2014 г.), разработанным при поддержке со стороны ВОЗ и других международных организаций. ВОЗ содействует внедрению норм безопасности в отношении радона, которые в конечном счете способствуют реализации Повестки дня в области устойчивого развития на период до 2030 г., достижению закрепленных в ней целей (ЦУР) и решению поставленных задач, а именно задачи 3.4, касающейся неинфекционных заболеваний. В рамках Глобальной обсерватории здравоохранения ВОЗ сформировала базу данных по радону [5].

Примечания

1 Единицей измерения радиоактивности является беккерель (Бк). Один беккерель соответствует одному акту спонтанного изменения состава (акту распада) одного атомного ядра в секунду. Концентрация радона в воздухе равна числу радиоактивных распадов в секунду в одном кубическом метре воздуха (Бк/м 3 ).

Источники

Источник

Раздел 2. Источники ионизирующих излучений и загрязнений окружающей среды радиоактивными веществами

Ю.А. Александров
Основы радиационной экологии
Учебное пособие. – Йошкар-Ола: Мар. гос. ун-т, 2007. – 268 с.

Раздел 2. Источники ионизирующих излучений и загрязнений окружающей среды радиоактивными веществами

2.2. Естественные источники ионизирующего излучения

2.2.2. Природные (естественные) радиоактивные вещества

Встречающиеся в природе радиоактивные элементы принято называть естественными. Большинство из них – тяжелые элементы с порядковыми номерами от 81 до 96. Природные радиоактивные элементы путем альфа- и бета-распада превращаются в другие радиоактивные изотопы. Эта цепь радиоактивных превращений называется радиоактивным рядом или семейством.

Тяжелые естественные радиоизотопы образуют четыре радиоактивных семейства: урана-радия; тория; актиния; нептуния. Массовые числа членов урано-радиевого ряда всегда четные и подчиняются закону: А = 4n + 2, где n изменяется от 51 до 59. Для ториевого ряда массовые числа четные и определяются по формуле: А = 4n, где n изменяется от 52 до 58. Для актиниевого ряда массовые числа элементов всегда нечетные и могут быть определены по формуле: А = 4n + 3, где n изменяется от 51 до 58. Массовые числа элементов ряда нептуния нечетные и определяются по формуле: А = 4n + 1, где n изменяется от 52 до 60.

Родоначальники каждого семейства характеризуются очень большими периодами полураспада (см. табл. 2), которые сопоставимы с временем жизни Земли и всей Солнечной системы.

Таблица 2 – Родоначальники естественных радиоактивных семейств

Период полураспада – Tфиз., годы

Самый большой период полураспада у тория (14 млрд лет), поэтому он со времени аккреации Земли сохранился почти полностью. Уран-238 распался в значительной степени, распалась подавляющая часть урана-235, а изотоп нептуния-232 распался весь. По этой причине в земной коре много тория (почти в 20 раз больше урана), а урана-235 в 140 раз меньше, чем урана-238. Поскольку родоначальник четвертого семейства (нептуний) со времени аккреации Земли весь распался, то в горных породах его почти нет. В ничтожных количествах нептуний обнаружен в урановых рудах. Но происхождение его вторичное и обязано бомбардировке ядер урана-238 нейтронами космических лучей. Сейчас нептуний получают с помощью искусственных ядерных реакций. Для эколога он не представляет интереса.

Периоды полураспада и типы распада членов естественных радиоактивных рядов приведены в таблице 2.

Естественные радиоактивные семейства обладают рядом общих особенностей, которые заключаются в следующем:

2. Каждое семейство имеет в середине цепи превращений изотоп элемента, относящийся к группе благородных газов (эманацию).

3. За радиоактивными газами следуют твердые короткоживущие элементы.

4. Все изотопы трех радиоактивных семейств распадаются двумя путями: альфа- и бета-распадами. Причем короткоживущие ядра семейств испытывают конкурирующие альфа- и бета-распад, тем самым образуя разветвления рядов. Если при альфа- и бета-распадах ядра не переходят сразу в нормальное состояние, то эти акты сопровождаются гамма-излучением.

Ряды заканчиваются стабильными изотопами свинца с массовыми числами 206, 208 и 207, соответственно, для уранового, ториевого, актиноуранового ряда.

Семейства урана-радия и тория являются активными гамма-излучателями по сравнению с семейством актиния, мощность дозы гамма-излучения которого весьма невелика.

Таким образом, в радиоактивных семействах имеются альфа-, бета- и гамма-излучатели, причем мощность дозы каждого излучения в разных семействах неодинакова. Общее число излучателей того или иного рода для разных семейств приведено в таблице 3.

Таблица 3 – Количество излучателей естественных рядов

В ряду урана-238 всего 19 радионуклидов и один стабильный изотоп – свинец-206. Наиболее важные альфа-излучатели этого семейства: уран-238, уран-234, торий-230, радий-226, радон-222, полоний-218, полоний-214 и полоний-210. Относительное количество других альфа-излучателей ряда невелико, поэтому они не представляют практического интереса.

К числу существенных бета-излучателей ураново-радиевого ряда относятся: протактиний-234, свинец-214, висмут-214 и висмут-210. Причем, бета-излучение протактиния-234 составляет около 50% от
бета-излучения всех изотопов семейства.

Основную долю (97,9%) в мощность гамма-излучения этого семейства вносят продукты распада радия-226 (свинец-214 и висмут-214) и радона-218 (полоний-214). Торий-234 и протактиний-234 – продукты распада родоначальника семейства (урана-238), дают около 2,1% общей мощности гамма-излучения. Вклад остальных членов ряда в суммарную интенсивность гамма-квантов ничтожно мал.

В ряду актиния находится 14 радиоизотопов и один стабильный изотоп – свинец-207. Поскольку в природном уране актиноурана (урана-235) очень мало, альфа-излучение актиниевого семейства составляет не более 5%, а гамма-излучение – около 1,25% от интенсивности соответствующих лучей ураново-радиевого ряда.

Ряд тория содержит 12 радионуклидов и один стабильный изотоп – свинец-208. Главными альфа-излучателями здесь являются: торий-232,
торий-228, радий-224, радон-220, полоний-216, висмут-212 и полоний-212.

К основным бета-излучателям в ториевом ряду относятся: актиний-228, свинец-212, висмут-212 и таллий-208.

Основной вклад в гамма-излучение ряда тория вносят продукты распада тория-228 (полоний-216, свинец-212, висмут-212 и таллий-208). Их доля – 60,2% всей интенсивности гамма-квантов. Остальная мощность гамма-излучения (39,8%) принадлежит продукту распада радия-228 (актинию-228). Доля остальных гамма-излучателей в общей мощности гамма-излучения ничтожна.

Ниже приведена краткая характеристика важнейших радиоизотопов, входящих в естественные семейства.

Уран (U). Химический элемент с порядковым номером 92. Имеет три природных изотопа 238 U, 235 U и 234 U. Период полураспада первого 4,5×10 9 лет, второго – 7,13×10 8 лет, третьего – 2,52×10 5 лет. Их относительную распространенность в рудах можно выразить так: 99,28; 0,71; 0,006% соответственно.

Уран широко распространен в земной коре. Он содержится в горных породах, почве, воде озер, рек и морей.

Уран-238 является родоначальником уранового семейства. В первичных минералах он практически всегда находится в равновесии со своими короткоживущими продуктами распада, а также со своим долгоживущим изотопом – ураном-235.

Уран-235 (актиноуран) является родоначальником актиноуранового семейства, которое в природе всегда сопутствует семейству урана-238. Актиноуран открыт сравнительно недавно (в 1935 г.), т.е. значительно позднее продуктов его распада, чем и объясняется несоответствие названий актиниевого семейства и его родоначальника.

Ядро урана-235 обладает замечательным свойством. Кроме спонтанного распада он способен делиться при захвате нейтрона с освобождением колоссальной энергии, поэтому является одним из ядерных горючих.

Уран, химически выделенный из руд (естественно, что это смесь всех трех природных изотопов урана) и приготовленный в виде окиси (U3O8), является стабильным источником альфа-излучения. Примерно через год после его выделения устанавливается радиоактивное равновесие между ураном-238 и короткоживущими бета-активными продуктами его распада. Тогда этот препарат может служить в качестве стабильного источника бета-излучения.

Уран связан с рудами осадочного, гидротермального и магматического происхождения. Он содержится более чем в 100 минералах. Среди них наиболее часты окислы урана, соли фосфорной, ванадиевой, кремниевой, мышьяковой, титановой и ниобиевой кислот. Наиболее важные промышленные руды урана представлены первичным минералом – уранинитом (урановой смолкой), представляющим собой окисел урана черного цвета. Кроме того есть множество вторичных минералов урана, которые называются урановыми слюдками. Наиболее распространенные из них:
торбернит – Си(UО2)2(PO4)2×nH2О, отенит – Са(UO2)2(РО4)2×nН2О,
карнотит – K2(UО2)2(VО4)2×3H2О, тюямунит – Ca(UO2)2(VO4)2×8H2О.
Из урановых слюдок крупные промышленные скопления образуют только карнотит и тюямунит. Они же являются рудой для получения ванадия и радия.

Уран и радий в России впервые были получены из руды месторождения Тюя-Муюн в Фергане. Носителями этих металлов здесь оказались два минерала из группы урановых слюдок – тюямунит и ферганит. Первый минерал открыт К.А. Ненадкевичем в 1912 г., а второй – И.А. Антиповым в 1899 году.

Торий (Th). Химический элемент с порядковым номером 90. Это светло-серый металл с плотностью 11,72 г/см 3 и температурой плавления 1750°С, открытый Берцелиусом в 1828 году. Трудно поддается действию кислот. Он имеет 6 изотопов, из которых долгоживущие только два: торий-232 (Тфиз. = 1,39×10 10 лет) и ионий-230 (Тфиз. = 8×10 4 лет).

Скорость распада тория очень мала. За 14 миллиардов лет количество атомов тория-232 уменьшается только в 2 раза. Поскольку возраст Земли всего лишь 4,5 млрд лет, то можно полагать, что значительное количество этого элемента сохранилось со времени аккреации нашей планеты.

Руды тория по своему генезису являются магматическими. При разрушении таких месторождений образуются россыпи, обогащенные минералами тория. Основным источником тория служат пески, содержащие минерал монацит – (Се, La, Nd, Th) PО4. Особенно богаты монацитом морские россыпи. Промышленное значение имеет также минерал торит – ThSiО4.

Актиний (Ас). Химический элемент с порядковым номером 89. Серебристо-белый металл с температурой плавления 1050°С, имеющий два изотопа: актиний-227 (Тфиз. = 21,8 года) и мезоторий-228 (Тфиз. = 6,13 часа).

Актиний, претерпевая альфа- и бета-распад, образует одно из разветвлений ряда актиния. В основном он является бета-излучателем. Ядерных гамма-лучей этот радионуклид не имеет. В смеси с бериллием актиний служит для приготовления источников нейтронов. Актиний встречается в рудах урана и тория.

Радий (Ra). Химический элемент с порядковым номером 88. Это серебристо-белый блестящий металл с плотностью 6 г/см 3 и температурой плавления 700°С, открытый в начале XX века супругами Кюри, имеет 4 изотопа: радий-226 (Тфиз. = 1602 года), мезоторий-228 (Тфиз. = 6,7 года), актиний Х-223 (Тфиз. = 11,4 сут.) и торий Х-224
физ. = 3,64 сут.). По химическим свойствам радий близок к барию, изоморфно замещает последний в минералах: барите (сульфат бария) и витерите (карбонат бария). В природных водах радий встречается в виде хлорида.

В результате альфа-распада радия-226, сопровождаемого гамма-излучением, образуется радиоактивный газ – радон (эманация). В закрытом сосуде радон через 40 дней приходит в состояние радиоактивного равновесия с радием, находящимся в сосуде. После этого срока препарат можно использовать в качестве эталонного источника гамма-излучения.

Радон приходит в равновесие со своими короткоживущими продуктами распада (Ra A, Ra В, и Ra С) через 3 часа. Другой изотоп радия – мезоторий-1, обладает мягким бета-излучением, интенсивность гамма-излучения его невелика.

Изотопы радия широко распространены в горных породах и рудах, но в чрезвычайно малых концентрациях. На 3 тонны урана приходится 1 г равновесного радия. Поскольку в различных горных породах радий встречается в неодинаковых концентрациях, то это его свойство используется для диагностики петрографических разностей по гамма-лучам. Добывается радий из урановых руд. Он широко применяется в медицине для лучевой терапии.

В незначительных количествах астат входит во все три естественные радиоактивные семейства. Его изотопы альфа-активны. Небольшая часть астата претерпевает бета-распад.

Полоний является чистым альфа-излучателем, что позволяет широко использовать его в лабораторных исследованиях. В смеси с бериллием он представляет собой лучший источник нейтронов.

Свинец (Рв). Химический элемент с порядковым номером 82. Представляет собой синевато-серый мягкий ковкий металл с плотностью 11,34 г/см 3 и температурой плавления 327,4°С, химически стойкий. Свинец имеет 3 устойчивых изотопа: свинец-206 (радий G), свинец-207 (актиний D), свинец-208 (торий D), и 4 радиоактивных: свинец-210 (радий D, Т = 22 года), свинец-212 (торий В, Т = 10,6 часа), свинец-211 (актиний В, Т = 36,1 мин), свинец-214 (радий В, Т = 26,8 мин).

Устойчивые изотопы свинца с массовыми числами 206, 207 и 208 являются конечными продуктами распада трех естественных радиоактивных рядов. Эти изотопы нерадиоактивны, но всегда присутствуют в радиоактивных рудах. Отношение количества нерадиоактивного свинца к содержанию радиоактивных элементов (урана, тория) в горных породах и рудах позволяет определить абсолютный возраст геологических образований. Остальные четыре изотопа свинца радиоактивны. Все они распадаются путем бета-излучения. Продукты распада радия D кроме бета-лучей выделяют альфа-лучи, поэтому из свинца-210 получают стандартные источники бета- и альфа-излучения.

Свинец применяют в качестве экранов и фильтров для гамма-излучения. Применение его для экранирования альфа- и бета-излучения нецелесообразно, поскольку в свинце всегда содержится некоторое количество радиоактивных изотопов, особенно радия D. В природе встречаются и другие радиоактивные изотопы свинца (с массовыми числами 200, 201 и 203), но количество их ничтожно.

Естественные радиоизотопы, не входящие в радиоактивные семейства. Кроме естественных радиоактивных элементов, являющихся членами трех рассмотренных выше естественных рядов, в природе имеются изотопы, генетически не связанные между собой, но обладающие радиоактивностью. Количество таких радиоизотопов превышает 200, период полураспада их колеблется от долей секунды до миллиардов лет.

Интерес для эколога представляют изотопы с большим периодом полураспада: калий-40, рубидий-87, самарий-147, углерод-14, лютеций-176 и рений-187. Радиоактивный распад ядер этих элементов представляет собой изолированный акт, т.е. после распада образуется устойчивый дочерний изотоп. Как видно из таблицы 4, все перечисленные ядра подвержены бета-распаду, за исключением самария, который претерпевает альфа-распад.

Таблица 4 – Естественные радиоактивные изотопы, не входящие в семейства

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *