Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ 7 ΠΊΠ»Π°ΡΡ
ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ
Π£ΡΠΎΠΊ 15. ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° 6 ΠΊΠ»Π°ΡΡ
Π Π΄Π°Π½Π½ΡΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ Π²Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠ΅ΡΡ ΠΈΠ»ΠΈ ΡΠ°Π·Π΄Π°ΡΡ Π²ΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊ ΡΡΠ΅Π½ΠΈΠΊΠ°ΠΌ
Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠΈΡΡ Π΄ΠΎΡΡΡΠΏ ΠΊ ΡΡΠΎΠΌΡ ΠΈ Π΄ΡΡΠ³ΠΈΠΌ Π²ΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊΠ°ΠΌ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ°, Π²Π°ΠΌ Π½ΡΠΆΠ½ΠΎ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ Π΅Π³ΠΎ Π² Π»ΠΈΡΠ½ΡΠΉ ΠΊΠ°Π±ΠΈΠ½Π΅Ρ, ΠΏΡΠΈΠΎΠ±ΡΠ΅Π² Π² ΠΊΠ°ΡΠ°Π»ΠΎΠ³Π΅.
ΠΠΎΠ»ΡΡΠΈΡΠ΅ Π½Π΅Π²Π΅ΡΠΎΡΡΠ½ΡΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ
ΠΠΎΠ½ΡΠΏΠ΅ΠΊΡ ΡΡΠΎΠΊΠ° «ΠΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ»
Π‘Π΅Π³ΠΎΠ΄Π½Ρ Π½Π° ΡΡΠΎΠΊΠ΅ ΠΌΡ Π²ΡΠΏΠΎΠΌΠ½ΠΈΠΌ ΡΠΆΠ΅ ΠΈΠ·Π²Π΅ΡΡΠ½ΠΎΠ΅ Π²Π°ΠΌ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌ Π΅Π³ΠΎ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ ΠΈ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ².
ΠΠ»Ρ Π½Π°ΡΠ°Π»Π° Π΄Π°Π²Π°ΠΉΡΠ΅ Π²ΡΠΏΠΎΠΌΠ½ΠΈΠΌ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ ΠΈ Π·Π°ΠΏΠΈΡΠ΅ΠΌ ΠΈΡ Π² Π±ΡΠΊΠ²Π΅Π½Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅.
ΠΡΠ°ΠΊ, ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π³Π»Π°ΡΠΈΡ, ΡΡΠΎ Π΄Π»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΡΠΌΠΌΡ Π½Π° ΡΠΈΡΠ»ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° ΡΡΠΎ ΡΠΈΡΠ»ΠΎ
ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ ΠΈ ΡΠ»ΠΎΠΆΠΈΡΡ ΠΏΠΎΠ»ΡΡΠΈΠ²ΡΠΈΠ΅ΡΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ.
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ Π³ΠΎΠ²ΠΎΡΠΈΡ, ΡΡΠΎ
Π΄Π»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠ°Π·Π½ΠΎΡΡΡ Π½Π° ΡΠΈΡΠ»ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° ΡΡΠΎ ΡΠΈΡΠ»ΠΎ
ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΠΌΠΎΠ΅ ΠΈ Π²ΡΡΠΈΡΠ°Π΅ΠΌΠΎΠ΅ ΠΈ ΠΈΠ· ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π²ΡΡΠ΅ΡΡΡ Π²ΡΠΎΡΠΎΠ΅.
Π’Π°ΠΊΠΆΠ΅ ΠΌΡ Ρ Π²Π°ΠΌΠΈ Π·Π½Π°Π΅ΠΌ, ΡΡΠΎ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΎΡΠ΅Π½Ρ ΡΠ΄ΠΎΠ±Π½ΠΎ ΡΠΏΡΠΎΡΠ°ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ. Π Π΅ΡΡ ΠΌΡ ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ°ΡΠΊΡΡΠ²Π°ΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ ΠΈ Π²ΡΠ½ΠΎΡΠΈΡΡ ΠΎΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ.
ΠΡΠ°ΠΊ, ΠΌΡ Π²ΠΎΠΎΡΡΠΆΠΈΠ»ΠΈΡΡ Π·Π½Π°Π½ΠΈΡΠΌΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ, Π° Π·Π½Π°ΡΠΈΡ, ΡΠ΅ΠΏΠ΅ΡΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΏΡΠΈΡΡΡΠΏΠΈΡΡ ΠΊ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π½ΠΎΠ²ΠΎΠΉ ΡΠ΅ΠΌΡ.
ΠΡΡΠ°Π²Π΅ΠΉ Π·Π° ΠΎΠ΄Π½Ρ ΠΌΠΈΠ½ΡΡΡ ΠΏΡΠΎΠ±Π΅Π³Π°Π΅Ρ Π΄ΠΌ. ΠΠ°ΠΊΠΎΠ΅ ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠ΅ ΠΏΡΠΎΠ±Π΅ΠΆΠΈΡ ΠΌΡΡΠ°Π²Π΅ΠΉ Π·Π° 6 ΠΌΠΈΠ½ΡΡ?
ΠΠΎ ΡΠΌΠΎΡΡΠΈΡΠ΅, ΡΡΡ Π·Π°Π΄Π°ΡΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ ΠΏΡΠΎΡΠ΅. ΠΡ ΠΏΠΎΠΌΠ½ΠΈΠΌ, ΡΡΠΎ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΡΡΠΎ ΡΡΠΌΠΌΠ° ΡΠ΅Π»ΠΎΠΉ ΠΈ Π΄ΡΠΎΠ±Π½ΠΎΠΉ ΡΠ°ΡΡΠΈ, Π·Π½Π°ΡΠΈΡ, ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ Π² Π²ΠΈΠ΄Π΅ ΡΡΠΌΠΌΡ. Π§ΡΠΎ ΠΌΡ ΡΠ΅ΠΉΡΠ°Ρ ΠΈ ΡΠ΄Π΅Π»Π°Π΅ΠΌ.
ΠΡ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠ»ΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ ΡΠΏΡΠΎΡΡΠΈΠ»ΠΈ ΡΠ΅Π±Π΅ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ.
Π§ΡΠΎΠ±Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π½Π° Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ:
1) ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠ΅Π»ΡΡ ΡΠ°ΡΡΡ Π½Π° Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ;
2) ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π΄ΡΠΎΠ±Π½ΡΡ ΡΠ°ΡΡΡ Π½Π° ΡΡΠΎ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ;
ΠΠΎΠΌΠ½ΠΈΡΠ΅, ΡΡΠΎ Π²ΡΠ΅Π³Π΄Π° Π½Π°Π΄ΠΎ ΡΠΌΠΎΡΡΠ΅ΡΡ, ΠΊΠ°ΠΊ ΡΠ΄ΠΎΠ±Π½Π΅Π΅ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ!
ΠΡΠ°Π²ΠΈΠ»ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ ΡΠΈΡΠ΅Π»:
ΠΠ»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π½Π° ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ:
1) ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ ΠΎΠ΄Π½ΠΎ ΡΠΌΠ΅ΡΠ°Π½Π½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π² Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΡ Π΄ΡΠΎΠ±Ρ;
2) ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠ΅Π»ΡΡ ΡΠ°ΡΡΡ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π½Π° Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΡ Π΄ΡΠΎΠ±Ρ;
3) ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π΄ΡΠΎΠ±Π½ΡΡ ΡΠ°ΡΡΡ Π²ΡΠΎΡΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π½Π° Π½Π΅ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΡΡ Π΄ΡΠΎΠ±Ρ;
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ:
ΠΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΏΡΠΎΡΠ°ΡΡ ΠΈ Π±ΡΠΊΠ²Π΅Π½Π½ΡΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ.
ΠΡΠ°ΠΊ, ΡΠ΅Π³ΠΎΠ΄Π½Ρ Π½Π° ΡΡΠΎΠΊΠ΅ ΠΌΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Π²ΡΠ²Π΅Π»ΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΌΠ΅ΡΠ°Π½Π½ΡΡ ΡΠΈΡΠ΅Π».
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ β Π²Π°ΠΆΠ½ΠΎΠ΅ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, ΠΏΠΎΠ»Π΅Π·Π½ΠΎΠ΅ Π² ΡΡΡΠ½ΠΎΠΌ ΡΡΠ΅ΡΠ΅ ΠΈ ΠΏΡΠΈ ΡΠ°ΡΠΊΡΡΡΠΈΠΈ ΡΠΊΠΎΠ±ΠΎΠΊ.
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ:
Π§ΡΠΎΠ±Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠΈΡΠ»ΠΎ Π½Π° ΡΡΠΌΠΌΡ Π΄Π²ΡΡ ΡΠΈΡΠ΅Π», ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ»ΠΎΠΆΠΈΡΡ.
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π±ΡΠΊΠ² ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π·Π°ΠΏΠΈΡΡΠ²Π°ΡΡ ΡΠ°ΠΊ:
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ:
Π§ΡΠΎΠ±Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠΈΡΠ»ΠΎ Π½Π° ΡΠ°Π·Π½ΠΎΡΡΡ Π΄Π²ΡΡ ΡΠΈΡΠ΅Π», ΠΌΠΎΠΆΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ Π½Π° ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΠΌΠΎΠ΅ ΠΈ Π½Π° Π²ΡΡΠΈΡΠ°Π΅ΠΌΠΎΠ΅, ΠΈ ΠΈΠ· ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π²ΡΡΠ΅ΡΡΡ Π²ΡΠΎΡΠΎΠ΅.
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ Π±ΡΠΊΠ² ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ Π·Π°ΠΏΠΈΡΡΠ²Π°ΡΡ ΡΠ°ΠΊ:
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Π²Π΅ΡΠ½ΠΎ ΠΈ Π΄Π»Ρ Π±ΠΎΠ»ΡΡΠ΅Π³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΡΠΈΡΠ΅Π». ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ, Π΄Π»Ρ ΡΡΠ΅Ρ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈΠΌΠ΅Π΅Ρ Π²ΠΈΠ΄:
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠΏΡΠΎΡΠ°Π΅Ρ ΡΡΡΠ½ΡΠΉ ΡΡΠ΅Ρ.
ΠΡΠΎΡ ΠΏΡΠΈΠΌΠ΅Ρ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ ΡΠ°ΠΊΠΆΠ΅ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ:
Π‘ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ°ΡΠΊΡΡΠ²Π°ΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ.
(ΠΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ ΡΠ΅ΠΌΠ° ΡΠ°ΡΠΊΡΡΡΠΈΡ ΡΠΊΠΎΠ±ΠΎΠΊ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΡΡΡ ΠΏΠΎΡΠ»Π΅ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ ΡΠΈΡΠ΅Π»).
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΠΈΡΡ ΠΈ Π² ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΌ ΠΏΠΎΡΡΠ΄ΠΊΠ΅:
ΠΠΎΠ²ΠΎΡΡΡ: Β«ΠΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ a Π²ΡΠ½ΠΎΡΠΈΠΌ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ. Π ΡΠΊΠΎΠ±ΠΊΠ°Ρ ΠΎΡΡΠ°Π΅ΡΡΡ b ΠΏΠ»ΡΡ cΒ».
ΠΠΎΠ²ΠΎΡΡΡ: Β«ΠΠ±ΡΠΈΠΉ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ a Π²ΡΠ½ΠΎΡΠΈΠΌ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ. Π ΡΠΊΠΎΠ±ΠΊΠ°Ρ ΠΎΡΡΠ°Π΅ΡΡΡ b ΠΌΠΈΠ½ΡΡ cΒ».
ΠΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ Π²ΡΠ½Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ Π·Π° ΡΠΊΠΎΠ±ΠΊΠΈ ΠΈΠ·ΡΡΠ°ΡΡ Π² ΠΊΡΡΡΠ΅ Π°Π»Π³Π΅Π±ΡΡ 7 ΠΊΠ»Π°ΡΡΠ°.
Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΡ
Π‘ΡΠ°ΡΡΡ Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π½Π° ΠΏΡΠΎΠ²Π΅ΡΠΊΠ΅ Ρ ΠΌΠ΅ΡΠΎΠ΄ΠΈΡΡΠΎΠ² Skysmart.
ΠΡΠ»ΠΈ Π²Ρ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ ΠΎΡΠΈΠ±ΠΊΡ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π² ΠΎΠ½Π»Π°ΠΉΠ½-ΡΠ°Ρ
(Π² ΠΏΡΠ°Π²ΠΎΠΌ Π½ΠΈΠΆΠ½Π΅ΠΌ ΡΠ³Π»Ρ ΡΠΊΡΠ°Π½Π°).
Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ
Π£ΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ β Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΡΠ°ΡΡΠ²ΡΡΡ Π΄Π²Π° Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ°: ΠΌΠ½ΠΎΠΆΠΈΠΌΡΠΉ ΠΈ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ. Π Π΅Π·ΡΠ»ΡΡΠ°Ρ ΠΈΡ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ.
Π£Π·Π½Π°Π΅ΠΌ, ΠΊΠ°ΠΊΠΈΠ΅ Π±ΡΠ²Π°ΡΡ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΊΠ°ΠΊ ΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ.
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ
ΠΡ ΠΏΠ΅ΡΠ΅ΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΌΠ΅ΡΡ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΌΠ΅Π½ΡΠ΅ΡΡΡ.
Π’ΠΎ Π΅ΡΡΡ, Π΄Π»Ρ Π»ΡΠ±ΡΡ ΡΠΈΡΠ΅Π» a ΠΈ b Π²Π΅ΡΠ½ΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ: a * b = b * a.
ΠΡΠΎ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΠΊ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡΠΌ, Π² ΠΊΠΎΡΠΎΡΡΡ Π±ΠΎΠ»ΡΡΠ΅ Π΄Π²ΡΡ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ.
Π‘ΠΎΡΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ
ΠΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΡΡΠ΅Ρ ΠΈ Π±ΠΎΠ»Π΅Π΅ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡΡ, Π΅ΡΠ»ΠΈ ΠΊΠ°ΠΊΡΡ-ΡΠΎ Π³ΡΡΠΏΠΏΡ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ Π·Π°ΠΌΠ΅Π½ΠΈΡΡ ΠΈΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ΠΌ.
Π’ΠΎ Π΅ΡΡΡ, Π΄Π»Ρ Π»ΡΠ±ΡΡ ΡΠΈΡΠ΅Π» a, b ΠΈ c Π²Π΅ΡΠ½ΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ: a * b * c = (a * b) * c = a * (b * c).
Π‘ΠΎΡΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ, ΡΡΠΎΠ±Ρ ΡΠΏΡΠΎΡΡΠΈΡΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ ΠΏΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ. ΠΠ°ΠΏΡΠΈΠΌΠ΅Ρ: 25 * 15 * 4 = (25 * 4) * 15 = 100 * 15 = 1500.
ΠΡΠ»ΠΈ Π½Π΅ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠΎΡΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΠΈ Π²ΡΡΠΈΡΠ»ΡΡΡ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ½Π΅Π΅: 25 * 15 * 4 = (25 * 15) * 4 = 375 * 4 = 1500.
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ
Π§ΡΠΎΠ±Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΡΠΌΠΌΡ Π½Π° ΡΠΈΡΠ»ΠΎ, Π½ΡΠΆΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ ΠΈ ΡΠ»ΠΎΠΆΠΈΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ.
Π’ΠΎ Π΅ΡΡΡ, Π΄Π»Ρ Π»ΡΠ±ΡΡ ΡΠΈΡΠ΅Π» a, b ΠΈ c Π²Π΅ΡΠ½ΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ: (a + b) * c = a * c + b * c.
ΠΡΠΎ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ Ρ Π»ΡΠ±ΡΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ : (a + b + Ρ + d) * k = a * k + b * k + c * k + d * k.
Π ΠΎΠ±ΡΠ°ΡΠ½ΡΡ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π·Π²ΡΡΠΈΡ ΡΠ°ΠΊ:
Π§ΡΠΎΠ±Ρ ΡΠΈΡΠ»ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° ΡΡΠΌΠΌΡ ΡΠΈΡΠ΅Π», Π½ΡΠΆΠ½ΠΎ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ ΡΠ»ΠΎΠΆΠΈΡΡ.
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ
Π§ΡΠΎΠ±Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠ°Π·Π½ΠΎΡΡΡ Π½Π° ΡΠΈΡΠ»ΠΎ, Π½ΡΠΆΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΡΠ½Π°ΡΠ°Π»Π° ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΠΌΠΎΠ΅, Π·Π°ΡΠ΅ΠΌ Π²ΡΡΠΈΡΠ°Π΅ΠΌΠΎΠ΅, ΠΈ ΠΈΠ· ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π²ΡΡΠ΅ΡΡΡ Π²ΡΠΎΡΠΎΠ΅.
Π’ΠΎ Π΅ΡΡΡ, Π΄Π»Ρ Π»ΡΠ±ΡΡ ΡΠΈΡΠ΅Π» a, b ΠΈ c Π²Π΅ΡΠ½ΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ: (a β b) * c = a * c β b * c.
Π ΠΎΠ±ΡΠ°ΡΠ½ΡΡ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ Π·Π²ΡΡΠΈΡ ΡΠ°ΠΊ:
Π§ΡΠΎΠ±Ρ ΡΠΈΡΠ»ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° ΡΠ°Π·Π½ΠΎΡΡΡ ΡΠΈΡΠ΅Π», Π½ΡΠΆΠ½ΠΎ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎ Π½Π° ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΠΌΠΎΠ΅ ΠΈ Π²ΡΡΠΈΡΠ°Π΅ΠΌΠΎΠ΅ ΠΈ ΠΈΠ· ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π²ΡΡΠ΅ΡΡΡ Π²ΡΠΎΡΠΎΠ΅.
Π‘Π²ΠΎΠΉΡΡΠ²ΠΎ Π½ΡΠ»Ρ ΠΏΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ
ΠΡΠ»ΠΈ Π² ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠΈ Ρ ΠΎΡΡ Π±Ρ ΠΎΠ΄ΠΈΠ½ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΡΠ°Π²Π΅Π½ Π½ΡΠ»Ρ, ΡΠΎ ΡΠ°ΠΌΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π±ΡΠ΄Π΅Ρ ΡΠ°Π²Π½ΠΎ Π½ΡΠ»Ρ.
Π’ΠΎ Π΅ΡΡΡ, Π΄Π»Ρ Π»ΡΠ±ΡΡ
ΡΠΈΡΠ΅Π» a, b ΠΈ c Π²Π΅ΡΠ½ΠΎ ΡΠ°Π²Π΅Π½ΡΡΠ²ΠΎ:
0 * a * b * c = 0.
Π‘Π²ΠΎΠΉΡΡΠ²ΠΎ Π΅Π΄ΠΈΠ½ΠΈΡΡ ΠΏΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ
ΠΡΠ»ΠΈ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π»ΡΠ±ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ, ΡΠΎ Π² ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ ΡΡΠΎ ΠΆΠ΅ ΡΠΈΡΠ»ΠΎ.
Π’ΠΎ Π΅ΡΡΡ, ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π½Π° Π΅Π΄ΠΈΠ½ΠΈΡΡ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅Ρ ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌΠΎΠ΅ ΡΠΈΡΠ»ΠΎ: a * 1 = a.
Π‘Π²ΠΎΠΉΡΡΠ²Π° Π΄Π΅Π»Π΅Π½ΠΈΡ
ΠΠ΅Π»Π΅Π½ΠΈΠ΅ β Π°ΡΠΈΡΠΌΠ΅ΡΠΈΡΠ΅ΡΠΊΠΎΠ΅ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ΅ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ. Π ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ΅ Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΡΠΈΡΠ»ΠΎ (ΡΠ°ΡΡΠ½ΠΎΠ΅), ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΡΠΈ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΠΈ Π½Π° Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ Π΄Π°Π΅Ρ Π΄Π΅Π»ΠΈΠΌΠΎΠ΅.
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ΅Π»ΡΡ ΡΠΈΡΠ΅Π»
Π Π΅ΡΠ΅ ΠΎΠ΄Π½ΠΎ Π²Π°ΠΆΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π΄Π΅Π»Π΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΡΠΎΡ ΠΎΠ΄ΡΡ Π² 5 ΠΊΠ»Π°ΡΡΠ΅:
ΠΡΠ»ΠΈ Π΄Π΅Π»ΠΈΠΌΠΎΠ΅ ΠΈ Π΄Π΅Π»ΠΈΡΠ΅Π»Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΠΈΠ»ΠΈ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ Π½Π° ΠΎΠ΄Π½ΠΎ ΠΈ ΡΠΎΠΆΠ΅ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΡΠΎ ΠΈΡ ΡΠ°ΡΡΠ½ΠΎΠ΅ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡΡ.
Π Π±ΡΠΊΠ²Π΅Π½Π½ΠΎΠΉ ΡΠΎΡΠΌΠ΅ ΡΡΠΎ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ: a : b = (a * k) : (b * k), Π³Π΄Π΅ k β Π»ΡΠ±ΠΎΠ΅ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ.
ΠΡΠΈΠΌΠ΅Π½ΠΈΠΌ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π΄Π΅Π»Π΅Π½ΠΈΡ Π½Π° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅.
ΠΡΠΈΠΌΠ΅Ρ 1
ΠΠ°ΠΌΠ° ΠΊΡΠΏΠΈΠ»Π° 6 ΠΊΠ³ ΠΊΠΎΠ½ΡΠ΅Ρ ΠΈ ΡΠ°Π·Π»ΠΎΠΆΠΈΠ»Π° ΠΈΡ Π² ΡΡΠΈ ΠΏΠ°ΠΊΠ΅ΡΠ°. Π‘ΠΊΠΎΠ»ΡΠΊΠΎ ΠΊΠΈΠ»ΠΎΠ³ΡΠ°ΠΌΠΌΠΎΠ² ΠΊΠΎΠ½ΡΠ΅Ρ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΏΠ°ΠΊΠ΅ΡΠ΅?
Π’Π°ΠΊ ΠΊΠ°ΠΊ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΏΠ°ΠΊΠ΅ΡΠ΅ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΠ½ΡΠ΅Ρ, ΡΠ°Π·Π΄Π΅Π»ΠΈΠΌ 6 ΠΊΠ³ Π½Π° ΡΡΠΈ ΡΠ°Π²Π½ΡΠ΅ ΡΠ°ΡΡΠΈ: 6 : 3 = 2. ΠΠ½Π°ΡΠΈΡ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΏΠ°ΠΊΠ΅ΡΠ΅ ΠΏΠΎ 2 ΠΊΠ³ ΠΊΠΎΠ½ΡΠ΅Ρ.
ΠΡΠΈΠΌΠ΅Ρ 2
ΠΡΡΠΈΡΠ»ΠΈΡΡ: 500 * (100 : 5).
ΠΠ°ΠΊ ΡΠ΅ΡΠ°Π΅ΠΌ: 500 * (100 : 5) = (500 * 100) : 5 = 50000 : 5 = 10000.
ΠΡΠ²Π΅Ρ: 500 * (100 : 5) = 10000.
ΠΡΠΈΠΌΠ΅Ρ 3
Π£ΠΏΡΠΎΡΡΠΈΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅: 27a β 16a.
Π‘Π²ΠΎΠΉΡΡΠ²Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΏΠΎΠΌΠΎΠ³Π°ΡΡ ΡΠΏΡΠΎΡΠ°ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ. Π’ΠΎ Π΅ΡΡΡ, Π΅ΡΠ»ΠΈ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡΡ ΡΡΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π° ΠΈ Π½Π°ΡΡΠΈΡΡΡΡ ΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ, ΡΠΎ ΡΠ΅ΡΠ°ΡΡ Π·Π°Π΄Π°ΡΠΊΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π±ΡΡΡΡΠ΅Π΅.
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ
ΠΠ½Π»Π°ΠΉΠ½-ΠΊΠΎΠ½ΡΠ΅ΡΠ΅Π½ΡΠΈΡ
Β«Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ ΠΏΡΠΎΡΠΎΡΠΈΠ΅Π½ΡΠ°ΡΠΈΡ ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΎΠ²
ΠΈ ΡΠΎΠ΄ΠΈΡΠ΅Π»Π΅ΠΉ, ΠΏΠ΅ΡΡΠΏΠ΅ΠΊΡΠΈΠ²Ρ ΡΡΠ½ΠΊΠ° ΡΡΡΠ΄Π°
ΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ Π»ΠΈΡΠ½ΠΎΡΡΠΈ ΠΏΠΎΠ΄ΡΠΎΡΡΠΊΠ°Β»
Π‘Π²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΠΎ ΠΈ ΡΠΊΠΈΠ΄ΠΊΠ° Π½Π° ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡ ΡΡΠ°ΡΡΠ½ΠΈΠΊΡ
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΠΏΡΠ΅Π·Π΅Π½ΡΠ°ΡΠΈΠΈ ΠΏΠΎ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠΌ ΡΠ»Π°ΠΉΠ΄Π°ΠΌ:
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
Π’Π΅ΠΌΠ° ΡΡΠΎΠΊΠ°:
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
ΠΠ°Π΄Π°ΡΠΈ ΡΡΠΎΠΊΠ°:
1.ΠΡΡΡΠΈΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ ΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ.
2.ΠΠ°ΡΡΠΈΡΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Π΄Π»Ρ ΡΠΏΡΠΎΡΠ΅Π½ΠΈΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉ, ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΉ ΠΈ ΡΠ΅ΠΊΡΡΠΎΠ²ΡΡ
Π·Π°Π΄Π°Ρ.
3.Π Π°Π·Π²ΠΈΠ²Π°ΡΡ Π½Π°Π±Π»ΡΠ΄Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ, ΠΏΠ°ΠΌΡΡΡ.
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
Π£ΡΡΠ½ΡΠ΅ ΡΠΏΡΠ°ΠΆΠ½Π΅Π½ΠΈΡ
72 * 4
15 * 7
61 * 6
44 * 5
24 * 3
130 * 4
124 * 3
288
105
366
220
72
520
372
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
ΠΡΡΠΈΡΠ»ΠΈ ΡΠ΄ΠΎΠ±Π½ΡΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ
(2593 + 1389) β 1593
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
Π£ Π Π Π Π‘ Π’ Π
(125 + m) + 75
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
ΠΠ°Π΄Π°ΡΠ°.
1.Π‘ΠΊΠΎΠ»ΡΠΊΠΎ Π²ΡΠ΅Π³ΠΎ Π½ΠΎΠ³ Ρ 15 ΠΊΠΎΡΡΡ ΠΈ 15 ΡΡΠΏΠ»ΡΡ?
15 * 4 + 15 * 2 =90 ΠΈΠ»ΠΈ (4 + 2) * 15 = 90
ΠΡΠ²ΠΎΠ΄: 15*4+15*2 = (4+2)*15
2. ΠΠ° ΡΠΊΠΎΠ»ΡΠΊΠΎ Π½ΠΎΠ³ Ρ 15 ΠΊΠΎΡΡΡ Π±ΠΎΠ»ΡΡΠ΅, ΡΠ΅ΠΌ Ρ 15 ΡΡΠΏΠ»ΡΡ?
15 * 4 β 15 * 2 = 30 ΠΈΠ»ΠΈ (4 β 2) * 15 = 30
ΠΡΠ²ΠΎΠ΄: 15*4- 15*2 = (4-2) *15
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
(Π° +Π²) ο΄ Ρ = Π° ο΄ Ρ +Π² ο΄ Ρ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ
ΠΡΠ°Π²ΠΈΠ»ΠΎ:
ΡΡΠΎΠ±Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΡΠΌΠΌΡ Π½Π° ΡΠΈΡΠ»ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ ΠΈ ΡΠ»ΠΎΠΆΠΈΡΡ ΠΏΠΎΠ»ΡΡΠΈΠ²ΡΠΈΠ΅ΡΡ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ
ΠΡΠ°Π²ΠΈΠ»ΠΎ:
ΡΡΠΎΠ±Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠ°Π·Π½ΠΎΡΡΡ Π½Π° ΡΠΈΡΠ»ΠΎ, ΠΌΠΎΠΆΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° ΡΡΠΎ ΡΠΈΡΠ»ΠΎ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΠΌΠΎΠ΅ ΠΈ Π²ΡΡΠΈΡΠ°Π΅ΠΌΠΎΠ΅ ΠΈ ΠΈΠ· ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡ Π²ΡΡΠ΅ΡΡΡ Π²ΡΠΎΡΠΎΠ΅.
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΏΡΠΎΡΠ°ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ°ΡΠΊΡΡΠ²Π°ΡΡ ΡΠΊΠΎΠ±ΠΊΠΈ
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ ΡΠ΅ΡΠ°ΡΡ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ
7x +41x =192 17x β 4x =195
48x =192 13x = 195
x = 192:48 x=195:13
x=4 x=15
630: (63x- 42x) +53 = 68
630:(21x) +53 =68
630:(21x)=68-53
630:(21x)=15
21x=630:15
21x=42
x=42:21
x=2
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΡΠΈΠΌΠ΅Π½ΡΡΡ ΠΏΡΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ
ΠΠ°Π΄Π°ΡΠ°.
Π― Π·Π°Π΄ΡΠΌΠ°Π»Π° ΡΠΈΡΠ»ΠΎ. ΠΡΠ»ΠΈ Π΅Π³ΠΎ ΡΠ²Π΅Π»ΠΈΡΠΈΡΡ Π½Π° 20, Π° ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° 6, ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΡΡΡ 150. ΠΊΠ°ΠΊΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Ρ Π·Π°Π΄ΡΠΌΠ°Π»Π°?
ΠΡΡΡΡ Ρ Π·Π°Π΄ΡΠΌΠ°Π»Π° ΡΠΈΡΠ»ΠΎ X.
Π‘ΠΎΡΡΠ°Π²ΠΈΠΌ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅: (X +20)*6=150
Π Π΅ΡΠΈΠΌ Π΅Π³ΠΎ: 6Π₯ + 120 =150
6Π₯ = 150-120
6Π₯ = 30
Π₯=30:6
Π₯ = 5
ΠΡΠ²Π΅Ρ. ΠΠ°Π΄ΡΠΌΠ°Π½ΠΎ ΡΠΈΡΠ»ΠΎ 5.
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
ΠΠΎΠ΄Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΈΡΠΎΠ³ΠΎΠ²
1 ΠΠ°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ Π±ΡΠΊΠ²Ρ x, y, z.
2.ΠΠ°ΠΏΠΈΡΠ°ΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠ²ΠΎΠΉΡΡΠ²ΠΎ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²ΡΡΠΈΡΠ°Π½ΠΈΡ,ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡ Π±ΡΠΊΠ²Ρ x, y, z.
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
Π’Π΅ΡΡ. Π£ΠΏΡΠΎΡΡΠΈΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
ΠΠΎΠΌΠ°ΡΠ½Π΅Π΅ Π·Π°Π΄Π°Π½ΠΈΠ΅
ΠΡΠΎΡΠΈΡΠ°ΡΡ ΠΏ.14 ΠΈ Π²ΡΡΡΠΈΡΡ ΠΏΡΠ°Π²ΠΈΠ»Π°
Π Π΅ΡΠΈΡΡ ΡΠΏΡΠ°ΠΆΠ½Π΅Π½ΠΈΡ
β595 Π°)Π±)
β596 Π°)Π²)
β600
β604
ΠΠΏΠΈΡΠ°Π½ΠΈΠ΅ ΡΠ»Π°ΠΉΠ΄Π°:
ΠΡΠ΅Π·Π΅Π½ΡΠ°ΡΠΈΡ ΡΡΠΎΠΊΠ° ΡΠΎΠ·Π΄Π°Π½Π°
ΡΡΠΈΡΠ΅Π»Π΅ΠΌ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ
ΠΠΠ£ Π‘ΠΠ¨ β 511
ΠΠΎΠ½ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΠΠ°Π»Π΅Π½ΡΠΈΠ½ΠΎΠΉ ΠΠΈΠΊΠΎΠ»Π°Π΅Π²Π½ΠΎΠΉ
Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΡΡΠΎΠΊΠΎΠ² Β«Π£ΠΏΡΠΎΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΉΒ» ΡΡΠΈΡΠ΅Π»Π΅ΠΉ:
Π‘Π»Π΅ΡΠ°ΡΠ΅Π²Π° Π.Π., Π‘Π°Π»ΠΊΠΎΠ²ΠΎΠΉ Π.Π., Π¨ΠΌΡΡ Π.Π‘.
ΠΡΠ»ΠΈ ΠΡ ΡΡΠΈΡΠ°Π΅ΡΠ΅, ΡΡΠΎ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» Π½Π°ΡΡΡΠ°Π΅Ρ Π°Π²ΡΠΎΡΡΠΊΠΈΠ΅ ΠΏΡΠ°Π²Π° Π»ΠΈΠ±ΠΎ ΠΏΠΎ ΠΊΠ°ΠΊΠΈΠΌ-ΡΠΎ Π΄ΡΡΠ³ΠΈΠΌ ΠΏΡΠΈΡΠΈΠ½Π°ΠΌ Π΄ΠΎΠ»ΠΆΠ΅Π½ Π±ΡΡΡ ΡΠ΄Π°Π»Π΅Π½ Ρ ΡΠ°ΠΉΡΠ°, ΠΡ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΎΡΡΠ°Π²ΠΈΡΡ ΠΆΠ°Π»ΠΎΠ±Ρ Π½Π° ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π».
ΠΡΡΡ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΡ ΠΊΠ²Π°Π»ΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ
ΠΡ ΡΠ°Π½Π° ΡΡΡΠ΄Π°
ΠΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ
ΠΠΈΠ±Π»ΠΈΠΎΡΠ΅ΡΠ½ΠΎ-Π±ΠΈΠ±Π»ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΠ΅ Π·Π½Π°Π½ΠΈΡ Π² ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠΌ ΠΏΡΠΎΡΠ΅ΡΡΠ΅
ΠΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΏΠΎΠ΄Π³ΠΎΡΠΎΠ²ΠΊΠΈ
ΠΡ ΡΠ°Π½Π° ΡΡΡΠ΄Π°
ΠΡΠ΅ΠΌ ΠΏΠ΅Π΄Π°Π³ΠΎΠ³ΠΎΠ² Π² ΠΊΠΎΠΌΠ°Π½Π΄Ρ Β«ΠΠ½ΡΠΎΡΡΠΎΠΊΒ»
ΠΠ°ΠΉΠ΄ΠΈΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΊ Π»ΡΠ±ΠΎΠΌΡ ΡΡΠΎΠΊΡ, ΡΠΊΠ°Π·Π°Π² ΡΠ²ΠΎΠΉ ΠΏΡΠ΅Π΄ΠΌΠ΅Ρ (ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΡ), ΠΊΠ»Π°ΡΡ, ΡΡΠ΅Π±Π½ΠΈΠΊ ΠΈ ΡΠ΅ΠΌΡ:
ΡΠ°ΠΊΠΆΠ΅ ΠΡ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π²ΡΠ±ΡΠ°ΡΡ ΡΠΈΠΏ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Π°:
ΠΠ±ΡΠ°Ρ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ
ΠΠΎΡ ΠΎΠΆΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ
ΠΠ΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΡ Π ΠΎΡΡΠΎΠ²ΡΠΊΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΠΎ-ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΠ½Π°Ρ ΡΠΈΡΡΠ΅ΠΌΠ° ΡΠ°Π±ΠΎΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π½ΡΡΠ° ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΡ Π³ΠΎΡΡΠ΄Π°ΡΡ
Π‘ΠΠ‘Π’ΠΠΠ ΠΠ ΠΠΠΠ’ΠΠΠΠ ΠΠΠ€ΠΠ ΠΠΠ ΠΠΠΠΠΠ―: Π‘Π ΠΠΠΠΠ’ΠΠΠ¬ΠΠ-ΠΠ ΠΠΠΠΠΠ ΠΠ‘ΠΠΠΠ’
ΠΠ±ΡΠ°Ρ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΡ ΠΡΠ΅Π΄Π½Π°Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π° ΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΡΠΈΠ½ΡΠΈΠΏΡ ΡΠ°Π±ΠΎΡΡ ΠΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ ΠΠΎΡΠΏΠΎΡΠ°ΡΠΈΠ²Π½ΡΠ΅ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΡ Π§Π°Ρ
ΠΠ²ΡΠΎΠΌΠ°ΡΠΈΠ·Π°ΡΠΈΡ ΠΎΠ±ΡΠ΅Π³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΊΡΠΎΠ²ΠΈ ΠΠ΅ΠΌΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠ΅ Π°Π½Π°Π»ΠΈΠ·Π°ΡΠΎΡΡ Diatron (ΠΠ²ΡΡΡΠΈΡ)
Mirapolis Virtual Room
Π€ΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½Π°Ρ ΡΡΠ°Π½Π΄Π°ΡΡΠΈΠ·Π°ΡΠΈΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΠΎ-ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΡΠ΅Π΄Ρ Π²ΡΠ·Π°
Net Languages βΡΠ°ΠΌΠ°Ρ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½Π°Ρ ΡΠ·ΡΠΊΠΎΠ²Π°Ρ ΡΠΊΠΎΠ»Π° Π² ΡΠ΅ΡΠΈβ magistre.netlanguages.com
ΠΠ΅ΠΊΡΠΈΡ ΠΏΠΎ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠ΅
ΠΠ΅ Π½Π°ΡΠ»ΠΈ ΡΠΎ ΡΡΠΎ ΠΈΡΠΊΠ°Π»ΠΈ?
ΠΠΎΡΠΏΠΎΠ»ΡΠ·ΡΠΉΡΠ΅ΡΡ ΠΏΠΎΠΈΡΠΊΠΎΠΌ ΠΏΠΎ Π½Π°ΡΠ΅ΠΉ Π±Π°Π·Π΅ ΠΈΠ·
5378276 ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ².
ΠΠ°ΠΌ Π±ΡΠ΄ΡΡ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½Ρ ΡΡΠΈ ΠΊΡΡΡΡ:
ΠΡΡΠ°Π²ΡΡΠ΅ ΡΠ²ΠΎΠΉ ΠΊΠΎΠΌΠΌΠ΅Π½ΡΠ°ΡΠΈΠΉ
ΠΠ²ΡΠΎΡΠΈΠ·ΡΠΉΡΠ΅ΡΡ, ΡΡΠΎΠ±Ρ Π·Π°Π΄Π°Π²Π°ΡΡ Π²ΠΎΠΏΡΠΎΡΡ.
ΠΠ΅ΠΆΠ΄ΡΠ½Π°ΡΠΎΠ΄Π½ΡΠΉ ΠΊΠΎΠ½Π³ΡΠ΅ΡΡ-Π²ΡΡΡΠ°Π²ΠΊΠ° Β«ΠΠΎΠ»ΠΎΠ΄ΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΒ» ΠΏΡΠΎΠΉΠ΄Π΅Ρ Ρ 12 ΠΏΠΎ 14 Π΄Π΅ΠΊΠ°Π±ΡΡ Π² ΠΠΎΡΠΊΠ²Π΅
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
Π£ΡΠΈΡΠ΅Π»ΡΠΌ ΠΏΡΠ΅Π΄Π»Π°Π³Π°ΡΡ 1,5 ΠΌΠΈΠ»Π»ΠΈΠΎΠ½Π° ΡΡΠ±Π»Π΅ΠΉ Π·Π° ΠΏΠ΅ΡΠ΅Π΅Π·Π΄ Π² ΠΠ»Π°ΡΠΎΡΡΡ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
ΠΡΡΠΈΠ½ ΠΏΠΎΡΡΡΠΈΠ» Π½Π΅ ΡΡΠΈΡΠ°ΡΡ Π²ΡΠΏΠ»Π°ΡΡ Π·Π° ΠΊΠ»Π°ΡΡΠ½ΠΎΠ΅ ΡΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²ΠΎ Π² ΡΡΠ΅Π΄Π½Π΅ΠΉ Π·Π°ΡΠΏΠ»Π°ΡΠ΅
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
ΠΠΠ Π΄Π»Ρ ΡΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² Π² 2022 Π³ΠΎΠ΄Ρ ΠΏΡΠΎΠΉΠ΄ΡΡ Π²Π΅ΡΠ½ΠΎΠΉ
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
ΠΠΎ Π€ΡΠ°Π½ΡΠΈΠΈ ΠΏΠ»Π°Π½ΠΈΡΡΡΡ Π²Π²Π΅ΡΡΠΈ ΡΠ³ΠΎΠ»ΠΎΠ²Π½ΠΎΠ΅ Π½Π°ΠΊΠ°Π·Π°Π½ΠΈΠ΅ Π·Π° Π±ΡΠ»Π»ΠΈΠ½Π³ Π² ΡΠΊΠΎΠ»Π΅
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 1 ΠΌΠΈΠ½ΡΡΠ°
ΠΠΠ£ ΠΎΡΠΊΡΠΎΠ΅Ρ ΠΏΠ΅ΡΠ²ΡΡ Π² Π ΠΎΡΡΠΈΠΈ ΠΌΠ°Π³ΠΈΡΡΠ΅ΡΡΠΊΡΡ ΠΏΡΠΎΠ³ΡΠ°ΠΌΠΌΡ ΠΏΠΎ Π±ΠΈΠΎΡΡΠΈΠΊΠ΅
ΠΡΠ΅ΠΌΡ ΡΡΠ΅Π½ΠΈΡ: 2 ΠΌΠΈΠ½ΡΡΡ
ΠΠΎΠ΄Π°ΡΠΎΡΠ½ΡΠ΅ ΡΠ΅ΡΡΠΈΡΠΈΠΊΠ°ΡΡ
ΠΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎΡΡΡ Π·Π° ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π»ΡΠ±ΡΡ ΡΠΏΠΎΡΠ½ΡΡ ΠΌΠΎΠΌΠ΅Π½ΡΠΎΠ², ΠΊΠ°ΡΠ°ΡΡΠΈΡ ΡΡ ΡΠ°ΠΌΠΈΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΈ ΠΈΡ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΡ, Π±Π΅ΡΡΡ Π½Π° ΡΠ΅Π±Ρ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΠΈ, ΡΠ°Π·ΠΌΠ΅ΡΡΠΈΠ²ΡΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» Π½Π° ΡΠ°ΠΉΡΠ΅. ΠΠ΄Π½Π°ΠΊΠΎ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΡ ΡΠ°ΠΉΡΠ° Π³ΠΎΡΠΎΠ²Π° ΠΎΠΊΠ°Π·Π°ΡΡ Π²ΡΡΡΠ΅ΡΠΊΡΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π»ΡΠ±ΡΡ Π²ΠΎΠΏΡΠΎΡΠΎΠ², ΡΠ²ΡΠ·Π°Π½Π½ΡΡ Ρ ΡΠ°Π±ΠΎΡΠΎΠΉ ΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΡΠ°ΠΉΡΠ°. ΠΡΠ»ΠΈ ΠΡ Π·Π°ΠΌΠ΅ΡΠΈΠ»ΠΈ, ΡΡΠΎ Π½Π° Π΄Π°Π½Π½ΠΎΠΌ ΡΠ°ΠΉΡΠ΅ Π½Π΅Π·Π°ΠΊΠΎΠ½Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ ΠΎΠ± ΡΡΠΎΠΌ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΡΠ°ΠΉΡΠ° ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΌΡ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ.
ΠΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ, ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ Π½Π° ΡΠ°ΠΉΡΠ΅, ΡΠΎΠ·Π΄Π°Π½Ρ Π°Π²ΡΠΎΡΠ°ΠΌΠΈ ΡΠ°ΠΉΡΠ° Π»ΠΈΠ±ΠΎ ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Ρ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΡΠΌΠΈ ΡΠ°ΠΉΡΠ° ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ Π½Π° ΡΠ°ΠΉΡΠ΅ ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄Π»Ρ ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠ»Π΅Π½ΠΈΡ. ΠΠ²ΡΠΎΡΡΠΊΠΈΠ΅ ΠΏΡΠ°Π²Π° Π½Π° ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ ΠΈΡ Π·Π°ΠΊΠΎΠ½Π½ΡΠΌ Π°Π²ΡΠΎΡΠ°ΠΌ. Π§Π°ΡΡΠΈΡΠ½ΠΎΠ΅ ΠΈΠ»ΠΈ ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΊΠΎΠΏΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΡΠ°ΠΉΡΠ° Π±Π΅Π· ΠΏΠΈΡΡΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΡ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΡΠ°ΠΉΡΠ° Π·Π°ΠΏΡΠ΅ΡΠ΅Π½ΠΎ! ΠΠ½Π΅Π½ΠΈΠ΅ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ Π½Π΅ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡΡ Ρ ΡΠΎΡΠΊΠΎΠΉ Π·ΡΠ΅Π½ΠΈΡ Π°Π²ΡΠΎΡΠΎΠ².
ΠΠ°ΠΊΠΎΠ½Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ
Π Π½Π°ΡΠ΅ΠΉ ΠΆΠΈΠ·Π½ΠΈ Π΅ΡΡΡ Π·Π°ΠΊΠΎΠ½Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π°Π΄ΠΎ ΡΠΎΠ±Π»ΡΠ΄Π°ΡΡ. Π‘ΠΎΠ±Π»ΡΠ΄Π΅Π½ΠΈΠ΅ Π·Π°ΠΊΠΎΠ½ΠΎΠ² Π³Π°ΡΠ°Π½ΡΠΈΡΡΠ΅Ρ ΡΡΠ°Π±ΠΈΠ»ΡΠ½ΠΎΡΡΡ ΠΈ Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ½ΠΎΠ΅ ΡΠ°Π·Π²ΠΈΡΠΈΠ΅. ΠΠ΅ΡΠΎΠ±Π»ΡΠ΄Π΅Π½ΠΈΠ΅ ΠΆΠ΅ Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΠΏΠ΅ΡΠ°Π»ΡΠ½ΡΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΠ²ΠΈΡΠΌ.
Π£ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ Π΅ΡΡΡ ΡΠ²ΠΎΠΈ Π·Π°ΠΊΠΎΠ½Ρ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΎΠΆΠ΅ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΠΎΠ±Π»ΡΠ΄Π°ΡΡ. ΠΠ΅ΡΠΎΠ±Π»ΡΠ΄Π΅Π½ΠΈΠ΅ Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ Π² Π»ΡΡΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΊ ΡΠΎΠΌΡ, ΡΡΠΎ ΠΎΡΠ΅Π½ΠΊΠ° ΡΡΠ°ΡΠ΅Π³ΠΎΡΡ ΡΠ½ΠΈΠΆΠ°Π΅ΡΡΡ, Π° Π² Ρ ΡΠ΄ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠΎΠΌΡ, ΡΡΠΎ ΠΏΠ°Π΄Π°ΡΡ ΡΠ°ΠΌΠΎΠ»ΡΡΡ, Π·Π°Π²ΠΈΡΠ°ΡΡ ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΡ, ΡΠ»Π΅ΡΠ°ΡΡ ΠΊΡΡΡΠΈ Π΄ΠΎΠΌΠΎΠ² ΠΎΡ ΡΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ Π²Π΅ΡΡΠ°, ΡΠ½ΠΈΠΆΠ°Π΅ΡΡΡ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΡΠ²ΡΠ·ΠΈ ΠΈ ΡΠΎΠΌΡ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΠ΅ Π½Π΅Ρ ΠΎΡΠΎΡΠΈΠ΅ ΡΠ²Π»Π΅Π½ΠΈΡ.
ΠΠ°ΠΊΠΎΠ½Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ ΡΠΎΡΡΠΎΡΡ ΠΈΠ· ΠΏΡΠΎΡΡΡΡ ΡΠ²ΠΎΠΉΡΡΠ². ΠΡΠΈ ΡΠ²ΠΎΠΉΡΡΠ²Π° Π½Π°ΠΌ Π·Π½Π°ΠΊΠΎΠΌΡ ΡΠΎ ΡΠΊΠΎΠ»Ρ. ΠΠΎ Π½Π΅ ΠΌΠ΅ΡΠ°Π΅Ρ Π²ΡΠΏΠΎΠΌΠ½ΠΈΡΡ ΠΈΡ Π΅ΡΡ ΡΠ°Π·, Π° Π»ΡΡΡΠ΅ Π²ΡΠ΅Π³ΠΎ Π·Π°ΠΏΠΈΡΠ°ΡΡ ΠΈΠ»ΠΈ Π²ΡΡΡΠΈΡΡ Π½Π°ΠΈΠ·ΡΡΡΡ.
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΡΠΎΠΊΠ΅ ΠΌΡ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ Π»ΠΈΡΡ ΠΌΠ°Π»ΡΡ ΡΠ°ΡΡΡ Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ. ΠΡ Π½Π°ΠΌ Π±ΡΠ΄Π΅Ρ Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ Π΄Π»Ρ Π΄Π°Π»ΡΠ½Π΅ΠΉΡΠ΅Π³ΠΎ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ.
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΡΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΡΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π³ΠΎΠ²ΠΎΡΠΈΡ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΠΎΡ ΠΏΠ΅ΡΠ΅ΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΌΠ΅ΡΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ ΡΡΠΌΠΌΠ° Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ. ΠΠ΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ, ΠΏΡΠΈΠ±Π°Π²ΡΡΠ΅ ΠΏΡΡΠ΅ΡΠΊΡ ΠΊ Π΄Π²ΠΎΠΉΠΊΠ΅ β ΠΏΠΎΠ»ΡΡΠΈΡΠ΅ ΡΠ΅ΠΌΡΡΠΊΡ. Π Π½Π°ΠΎΠ±ΠΎΡΠΎΡ, ΠΏΡΠΈΠ±Π°Π²ΡΡΠ΅ Π΄Π²ΠΎΠΉΠΊΡ ΠΊ ΠΏΡΡΠ΅ΡΠΊΠ΅ β ΠΎΠΏΡΡΡ ΠΏΠΎΠ»ΡΡΠΈΡΠ΅ ΡΠ΅ΠΌΡΡΠΊΡ:
ΠΡΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΡ Π½Π° ΠΎΠ΄Π½Ρ ΡΠ°ΡΡ Π²Π΅ΡΠΎΠ² 10 ΠΊΠΈΠ»ΠΎΠ³ΡΠ°ΠΌΠΌ ΡΠ±Π»ΠΎΠΊ ΠΈ Π½Π° Π΄ΡΡΠ³ΡΡ ΡΠ°ΡΡ ΡΠ°ΠΊ ΠΆΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΡ 10 ΠΊΠΈΠ»ΠΎΠ³ΡΠ°ΠΌΠΌ ΡΠ±Π»ΠΎΠΊ, ΡΠΎ Π²Π΅ΡΡ Π²ΡΡΠΎΠ²Π½ΡΡΡΡ, ΠΈ Π½Π΅ Π²Π°ΠΆΠ½ΠΎ, ΡΡΠΎ ΡΠ±Π»ΠΎΠΊΠΈ Π² ΠΏΠ°ΠΊΠ΅ΡΠ°Ρ Π»Π΅ΠΆΠ°Ρ Π²ΡΠ°Π·Π±ΡΠΎΡ. ΠΡΠ»ΠΈ ΠΌΡ Π²ΠΎΠ·ΡΠΌΡΠΌ ΠΏΠ°ΠΊΠ΅Ρ Ρ Π²Π΅ΡΠΎΠ² ΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΠ°Π΅ΠΌ ΡΠ±Π»ΠΎΠΊΠΈ Π½Π°Ρ ΠΎΠ΄ΡΡΠΈΠ΅ΡΡ Π² Π½ΡΠΌ, ΡΠ»ΠΎΠ²Π½ΠΎ ΡΠ°ΡΡ Π² Π»ΠΎΡΠ΅ΡΠ΅ΠΉΠ½ΠΎΠΌ ΠΌΠ΅ΡΠΊΠ΅, ΠΏΠ°ΠΊΠ΅Ρ Π²ΡΡ ΡΠ°ΠΊ ΠΆΠ΅ Π±ΡΠ΄Π΅Ρ Π²Π΅ΡΠΈΡΡ 10 ΠΊΠΈΠ»ΠΎΠ³ΡΠ°ΠΌΠΌ. ΠΡ ΠΏΠ΅ΡΠ΅ΡΡΠ°Π½ΠΎΠ²ΠΊΠΈ ΠΌΠ΅ΡΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ ΡΡΠΌΠΌΠ° Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡΡ. Π‘Π»Π°Π³Π°Π΅ΠΌΡΠ΅ Π² Π΄Π°Π½Π½ΠΎΠΌ ΡΠ»ΡΡΠ°Π΅ ΡΡΠΎ ΡΠ±Π»ΠΎΠΊΠΈ, Π° ΡΡΠΌΠΌΠ° ΡΡΠΎ ΠΈΡΠΎΠ³ΠΎΠ²ΡΠΉ Π²Π΅Ρ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΠ΅ΠΆΠ΄Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡΠΌΠΈ 5 + 2 ΠΈ 2 + 5 ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡΠ°Π²ΠΈΡΡ Π·Π½Π°ΠΊ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°. ΠΡΠΎ Π±ΡΠ΄Π΅Ρ ΠΎΠ·Π½Π°ΡΠ°ΡΡ, ΡΡΠΎ ΠΈΡ ΡΡΠΌΠΌΠ° ΡΠ°Π²Π½Π°:
ΠΠΎΠ»Π°Π³Π°Π΅ΠΌ ΡΡΠΎ, Π²Ρ ΠΈΠ·ΡΡΠΈΠ»ΠΈ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠΈΡ ΡΡΠΎΠΊΠΎΠ², ΠΊΠΎΡΠΎΡΡΠΉ Π½Π°Π·ΡΠ²Π°Π»ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΌΡ Π±Π΅Π· ΡΠ΅Π½ΠΈ ΡΠΌΡΡΠ΅Π½ΠΈΡ Π·Π°ΠΏΠΈΡΠ΅ΠΌ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΡΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ :
Π‘ΠΎΡΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ
Π‘ΠΎΡΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π³ΠΎΠ²ΠΎΡΠΈΡ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ Π½Π΅ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΠΏΠΎΡΡΠ΄ΠΊΠ° Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ. ΠΡΠΎΡ Π·Π°ΠΊΠΎΠ½ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π³ΡΡΠΏΠΏΠΈΡΠΎΠ²Π°ΡΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΠ΅ Π΄Π»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° ΠΈΡ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΠΉ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΡΠΌΠΌΡ ΠΈΠ· ΡΡΡΡ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ :
Π§ΡΠΎΠ±Ρ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π΄Π°Π½Π½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅, ΠΌΠΎΠΆΠ½ΠΎ ΡΠ½Π°ΡΠ°Π»Π° ΡΠ»ΠΎΠΆΠΈΡΡ ΡΠΈΡΠ»Π° 2 ΠΈ 3 ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠ»ΠΎΠΆΠΈΡΡ Ρ ΡΠΈΡΠ»ΠΎΠΌ 5. ΠΠ»Ρ ΡΠ΄ΠΎΠ±ΡΡΠ²Π° ΡΡΠΌΠΌΡ ΡΠΈΡΠ΅Π» 2 ΠΈ 3 ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΊΠ»ΡΡΠΈΡΡ Π² ΡΠΊΠΎΠ±ΠΊΠΈ, ΡΠΊΠ°Π·ΡΠ²Π°Ρ ΡΠ΅ΠΌ ΡΠ°ΠΌΡΠΌ, ΡΡΠΎ ΡΡΠ° ΡΡΠΌΠΌΠ° Π±ΡΠ΄Π΅Ρ Π²ΡΡΠΈΡΠ»Π΅Π½Π° Π² ΠΏΠ΅ΡΠ²ΡΡ ΠΎΡΠ΅ΡΠ΅Π΄Ρ:
2 + 3 + 5 = (2 + 3) + 5 = 5 + 5 = 10
ΠΠΈΠ±ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ»ΠΎΠΆΠΈΡΡ ΡΠΈΡΠ»Π° 3 ΠΈ 5, Π·Π°ΡΠ΅ΠΌ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠ»ΠΎΠΆΠΈΡΡ Ρ ΡΠΈΡΠ»ΠΎΠΌ 2
2 + 3 + 5 = 2 + (3 + 5) = 2 + 8 = 10
ΠΠΈΠ΄Π½ΠΎ, ΡΡΠΎ Π² ΠΎΠ±ΠΎΠΈΡ ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΠΎΠ΄ΠΈΠ½ ΠΈ ΡΠΎΡ ΠΆΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ.
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΠ΅ΠΆΠ΄Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡΠΌΠΈ (2 + 3) + 5 ΠΈ 2 + (3 + 5) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡΠ°Π²ΠΈΡΡ Π·Π½Π°ΠΊ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΎΠ½ΠΈ ΡΠ°Π²Π½Ρ ΠΎΠ΄Π½ΠΎΠΌΡ ΠΈ ΡΠΎΠΌΡ ΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ:
(2 + 3) + 5 = 2 + (3 + 5)
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΡΠΎΡΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ :
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΡΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ
ΠΠ΅ΡΠ΅ΠΌΠ΅ΡΡΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Π³ΠΎΠ²ΠΎΡΠΈΡ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ Π΅ΡΠ»ΠΈ ΠΌΠ½ΠΎΠΆΠΈΠΌΠΎΠ΅ ΠΈ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΏΠΎΠΌΠ΅Π½ΡΡΡ ΠΌΠ΅ΡΡΠ°ΠΌΠΈ, ΡΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡΡ. ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΡΠΎΠ²Π΅ΡΠΈΠΌ ΡΠ°ΠΊ Π»ΠΈ ΡΡΠΎ. Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ ΠΏΡΡΠ΅ΡΠΊΡ Π½Π° Π΄Π²ΠΎΠΉΠΊΡ, Π° Π·Π°ΡΠ΅ΠΌ Π½Π°ΠΎΠ±ΠΎΡΠΎΡ Π΄Π²ΠΎΠΉΠΊΡ Π½Π° ΠΏΡΡΠ΅ΡΠΊΡ.
Π ΠΎΠ±ΠΎΠΈΡ ΡΠ»ΡΡΠ°ΡΡ ΠΏΠΎΠ»ΡΡΠ°Π΅ΡΡΡ ΠΎΠ΄ΠΈΠ½ ΠΈ ΡΠΎΡ ΠΆΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ, ΠΏΠΎΡΡΠΎΠΌΡ ΠΌΠ΅ΠΆΠ΄Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡΠΌΠΈ 5 Γ 2 ΠΈ 2 Γ 5 ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡΠ°Π²ΠΈΡΡ Π·Π½Π°ΠΊ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΎΠ½ΠΈ ΡΠ°Π²Π½Ρ ΠΎΠ΄Π½ΠΎΠΌΡ ΠΈ ΡΠΎΠΌΡ ΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ:
5 Γ 2 = 2 Γ 5
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΡΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ :
Π‘ΠΎΡΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ
Π‘ΠΎΡΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Π³ΠΎΠ²ΠΎΡΠΈΡ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ Π΅ΡΠ»ΠΈ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΡΠΎΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΉ, ΡΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½Π΅ Π±ΡΠ΄Π΅Ρ Π·Π°Π²ΠΈΡΠ΅ΡΡ ΠΎΡ ΠΏΠΎΡΡΠ΄ΠΊΠ° Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅:
ΠΠ°Π½Π½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΡΡΡ Π² Π»ΡΠ±ΠΎΠΌ ΠΏΠΎΡΡΠ΄ΠΊΠ΅. Π‘Π½Π°ΡΠ°Π»Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠΈΡΠ»Π° 2 ΠΈ 3, ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° 4:
ΠΠΈΠ±ΠΎ ΡΠ½Π°ΡΠ°Π»Π° ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΠΈΡΠ»Π° 3 ΠΈ 4, ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠΉ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ ΠΏΠ΅ΡΠ΅ΠΌΠ½ΠΎΠΆΠΈΡΡ Ρ ΡΠΈΡΠ»ΠΎΠΌ 2
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΠΌΠ΅ΠΆΠ΄Ρ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡΠΌΠΈ (2 Γ 3) Γ 4 ΠΈ 2 Γ (3 Γ 4) ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΡΡΠ°Π²ΠΈΡΡ Π·Π½Π°ΠΊ ΡΠ°Π²Π΅Π½ΡΡΠ²Π°, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΠΎΠ½ΠΈ ΡΠ°Π²Π½Ρ ΠΎΠ΄Π½ΠΎΠΌΡ ΠΈ ΡΠΎΠΌΡ ΠΆΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ:
ΠΠ°ΠΏΠΈΡΠ΅ΠΌ ΡΠΎΡΠ΅ΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ :
a Γ b Γ Ρ = (a Γ b) Γ Ρ = a Γ (b Γ Ρ)
ΠΡΠΈΠΌΠ΅Ρ 2. ΠΠ°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ 1 Γ 2 Γ 3 Γ 4
ΠΠ°Π½Π½ΠΎΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π²ΡΡΠΈΡΠ»ΡΡΡ Π² Π»ΡΠ±ΠΎΠΌ ΠΏΠΎΡΡΠ΄ΠΊΠ΅. ΠΡΡΠΈΡΠ»ΠΈΠΌ Π΅Π³ΠΎ ΡΠ»Π΅Π²Π° Π½Π°ΠΏΡΠ°Π²ΠΎ Π² ΠΏΠΎΡΡΠ΄ΠΊΠ΅ ΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ:
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ
Π Π°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΡΡΠΌΠΌΡ Π½Π° ΡΠΈΡΠ»ΠΎ ΠΈΠ»ΠΈ ΡΠΈΡΠ»ΠΎ Π½Π° ΡΡΠΌΠΌΡ.
Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅:
ΠΡ Π·Π½Π°Π΅ΠΌ, ΡΡΠΎ ΡΠ½Π°ΡΠ°Π»Π° Π½Π°Π΄ΠΎ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ . ΠΡΠΏΠΎΠ»Π½ΡΠ΅ΠΌ:
Π Π³Π»Π°Π²Π½ΠΎΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠΈ (3 + 5) Γ 2 Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ Π·Π°ΠΌΠ΅Π½ΠΈΠΌ Π½Π° ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ Π²ΠΎΡΡΠΌΡΡΠΊΡ:
8 Γ 2 = 16
ΠΠΎΠ»ΡΡΠΈΠ»ΠΈ ΠΎΡΠ²Π΅Ρ 16. ΠΡΠΎΡ ΠΆΠ΅ ΠΏΡΠΈΠΌΠ΅Ρ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ. ΠΠ»Ρ ΡΡΠΎΠ³ΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ , Π½ΡΠΆΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ Π½Π° 2, Π·Π°ΡΠ΅ΠΌ ΡΠ»ΠΎΠΆΠΈΡΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ:
ΠΡ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π»ΠΈ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΡΠ»ΠΈΡΠΊΠΎΠΌ ΡΠ°Π·Π²ΡΡΠ½ΡΡΠΎ ΠΈ ΠΏΠΎΠ΄ΡΠΎΠ±Π½ΠΎ. Π ΡΠΊΠΎΠ»Π΅ ΡΡΠΎΡ ΠΏΡΠΈΠΌΠ΅Ρ Π·Π°ΠΏΠΈΡΠ°Π»ΠΈ Π±Ρ ΠΎΡΠ΅Π½Ρ ΠΊΠΎΡΠΎΡΠΊΠΎ. Π ΡΠ°ΠΊΠΎΠΉ Π·Π°ΠΏΠΈΡΠΈ ΡΠΎΠΆΠ΅ Π½Π°Π΄ΠΎ ΠΏΡΠΈΠ²ΡΠΊΠ°ΡΡ. ΠΡΠ³Π»ΡΠ΄ΠΈΡ ΠΎΠ½Π° ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ:
(3 + 5) Γ 2 = 3 Γ 2 + 5 Γ 2 = 6 + 10 = 16
(3 + 5) Γ 2 = 6 + 10 = 16
Π’Π΅ΠΏΠ΅ΡΡ Π·Π°ΠΏΠΈΡΠ΅ΠΌ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π·Π°ΠΊΠΎΠ½ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ :
(a + b) Γ c = a Γ c + b Γ c
ΠΠ°Π²Π°ΠΉΡΠ΅ Π²Π½ΠΈΠΌΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ Π½Π° Π½Π°ΡΠ°Π»ΠΎ ΡΡΠΎΠ³ΠΎ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ. ΠΠ°ΡΠ°Π»ΠΎ Ρ Π½Π΅Π³ΠΎ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ ΡΠ°ΠΊ: (a + b) Γ c.
ΠΡΠ»ΠΈ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ (a + b), ΠΊΠ°ΠΊ Π΅Π΄ΠΈΠ½ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅, ΡΠΎ ΡΡΠΎ Π±ΡΠ΄Π΅Ρ ΠΌΠ½ΠΎΠΆΠΈΠΌΠΎΠ΅, Π° ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½Π°Ρ Ρ Π±ΡΠ΄Π΅Ρ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Π΅ΠΌ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠΎΠ΅Π΄ΠΈΠ½Π΅Π½Ρ ΠΎΠ½ΠΈ Π·Π½Π°ΠΊΠΎΠΌ ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ Γ
ΠΠ· ΠΏΠ΅ΡΠ΅ΠΌΠ΅ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π·Π°ΠΊΠΎΠ½Π° ΡΠΌΠ½ΠΎΠΆΠ΅Π½ΠΈΡ ΠΌΡ ΡΠ·Π½Π°Π»ΠΈ, ΡΡΠΎ Π΅ΡΠ»ΠΈ ΠΌΠ½ΠΎΠΆΠΈΠΌΠΎΠ΅ ΠΈ ΠΌΠ½ΠΎΠΆΠΈΡΠ΅Π»Ρ ΠΏΠΎΠΌΠ΅Π½ΡΡΡ ΠΌΠ΅ΡΡΠ°ΠΌΠΈ, ΡΠΎ ΠΏΡΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡΡ.
c Γ (a + b) = c Γ a + c Γ b
ΠΡΠΈΠΌΠ΅Ρ 2. ΠΠ°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ 5 Γ (3 + 2)
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ ΡΠΈΡΠ»ΠΎ 5 Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ»ΠΎΠΆΠΈΠΌ:
5 Γ (3 + 2) = 5 Γ 3 + 5 Γ 2 = 15 + 10 = 25
ΠΡΠΈΠΌΠ΅Ρ 3. ΠΠ°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ 6 Γ (5 + 2)
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ ΡΠΈΡΠ»ΠΎ 6 Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠ»Π°Π³Π°Π΅ΠΌΠΎΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΡΠ»ΠΎΠΆΠΈΠΌ:
6 Γ (5 + 2) = 6 Γ 5 + 6 Γ 2 = 30 + 12 = 42
ΠΡΠ»ΠΈ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ ΡΠ°ΡΠΏΠΎΠ»Π°Π³Π°Π΅ΡΡΡ Π½Π΅ ΡΡΠΌΠΌΠ°, Π° ΡΠ°Π·Π½ΠΎΡΡΡ, ΡΠΎ ΡΠ½Π°ΡΠ°Π»Π° Π½ΡΠΆΠ½ΠΎ ΡΠΌΠ½ΠΎΠΆΠΈΡΡ ΠΌΠ½ΠΎΠΆΠΈΠΌΠΎΠ΅ Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΊΠΎΡΠΎΡΠΎΠ΅ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ . ΠΠ°ΡΠ΅ΠΌ ΠΈΠ· ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° Π²ΡΡΠ΅ΡΡΡ Π²ΡΠΎΡΠΎΠ΅ ΡΠΈΡΠ»ΠΎ. Π ΠΏΡΠΈΠ½ΡΠΈΠΏΠ΅, Π½ΠΈΡΠ΅Π³ΠΎ Π½ΠΎΠ²ΠΎΠ³ΠΎ.
ΠΡΠΈΠΌΠ΅Ρ 4. ΠΠ°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ 5 Γ (6 β 2)
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ 5 Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ . ΠΠ°ΡΠ΅ΠΌ ΠΈΠ· ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° Π²ΡΡΡΠ΅ΠΌ Π²ΡΠΎΡΠΎΠ΅ ΡΠΈΡΠ»ΠΎ:
5 Γ (6 β 2) = 5 Γ 6 β 5 Γ 2 = 30 β 10 = 20
ΠΡΠΈΠΌΠ΅Ρ 5. ΠΠ°ΠΉΡΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ 7 Γ (3 β 2)
Π£ΠΌΠ½ΠΎΠΆΠΈΠΌ 7 Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π² ΡΠΊΠΎΠ±ΠΊΠ°Ρ . ΠΠ°ΡΠ΅ΠΌ ΠΈΠ· ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° Π²ΡΡΡΠ΅ΠΌ Π²ΡΠΎΡΠΎΠ΅ ΡΠΈΡΠ»ΠΎ: