Что такое рациональный показатель степени
1.1.6 Степень с рациональным показателем и её свойства
Видеоурок 1: Степень с рациональным показателем
Видеоурок 2: Степень с рациональным показателем. Решение примеров
Лекция: Степень с рациональным показателем и её свойства
Степень с рациональным показателем
Любую степень с рациональным показателем можно представить в виде корня, чья степень будет равна знаменателю дроби, находящейся в показателе степени, а числитель будет степенью подкоренного выражения.
Свойства степени с рациональным показателем
Все, перечисленные ниже степени используются для рациональных чисел p, q и для положительных a, b.
1. Если Вам необходимо умножить две степени с рациональными показателями, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели сложить.
2. Если необходимо разделить две степени c рациональными показателями, которые имеют одинаковые основания, то в таком случае основание необходимо оставить без изменения, а показатели вычесть.
3. Если необходимо возвести одну степень в другую, основанием результата останется то же число, а показатели степени перемножаются.
4. Если в некоторую степень необходимо возвести произведение произвольных чисел, то можно воспользоваться неким распределительным законом, при котором получим произведение различных оснований в одной и той же степени.
5. Аналогичное свойство можно применять для деления степеней, иначе говоря, для возведения обыкновенной двоби в степень.
6. Если некоторая дробь имеет отрицательный рациональный показатель степени, то для избавления от знака минуса, её следует перевернуть.
Очень важно помнить, что знак степени не влияет на знак выражения при возведении в степень.
Степень с рациональным показателем
Мы уже знакомы с понятием степени с целым показателем. Давайте разберемся, что такое степень с рациональным показателем.
Рациональный показатель – это выражение вида \(\frac
\), где \(p\)-некоторое целое число, а \(q\) – натуральное число, причем \(q\ge2\).
Положительное число \(a\) в рациональной степени \(\frac
\) является арифметическим корнем степени \(q\) из числа \(a\) в степени \(p\):
Обращаем ваше внимание, что
Неважно в каком порядке – сначала извлечь корень или возвести в степень, от этого смысл выражения не теряется. Как удобнее, так и считайте.
Пусть есть некоторое положительное число \(a\) и целое число \(p\), тогда справедливы следующие соотношения:
где \(k\) и \(q\) – натуральные числа большие 1.
Давайте попробуем их доказать:
Из определения степени с рациональным показателем следует, что:
Опять из определения и свойства корня n-й степени следует:
Третья формула на наш взгляд очевидна, просто сократить степень справа и получите исходное выражение.
Свойства степени с рациональным показателем
Пусть \(a\) и \(b\) – некоторые положительные числа, а числа \(m\) и \(n\) – рациональные числа. Тогда выполняются соотношения:
При умножении степеней с рациональным показателем и одинаковым основанием их показатели степени складываются.
При делении степеней с рациональным показателем и одинаковым основанием их показатели степени вычитаются.
При возведении степени с рациональным показателем в степень с рациональным показателем их показатели перемножаются.
Степень с рациональным показателем от произведения двух положительных чисел равна произведению степеней этих множителей.
Степень с рациональным показателем от частного двух положительных чисел равна частному степеней этих чисел.
И еще два очень важных свойства степеней. Они вам понадобятся при решении показательных уравнений и неравенств.
Пусть опять есть некоторое положительное число \(a>1\) и рациональные числа \(n\) и \(m\).
При \(n \gt 0\) \(a^n \gt 1\),
При \(n \lt 0\) \(0 \lt a^n \lt 1\).
Если же \(a \gt 1\) и \(n \gt m\), то
Если \( 0 \lt a \lt 1 \) и \(n \gt m\), то
Разберем несколько примеров:
Так как основание степени больше единицы \(3 \gt 1\) и \(\frac<1> <3>\lt \frac<1><2>\).
Так как \(0 \lt \frac<1> <5>\lt 1\) и \(\frac<1> <3>\lt \frac<1><2>\)
Описание урока
От успешной сдачи государственного экзамена по математике зависит поступление в высшее учебное заведение. Степень с рациональным показателем – важная тема, изучение которой необходимо для успешной подготовки к ЕГЭ. От того, насколько хорошо она освоена, зависит в будущем, насколько легко будет решать уравнения и производить более сложные операции с числами. Задание номер 15 строится на умении работать с такими степенями. Чтобы понимать, о чём идёт речь, стоит ознакомиться с определением степени с рациональным показателем и её основными свойствами, которые пригодятся и при работе с функциями.
Важно запомнить, что число А не должно быть меньше 0, а число q не равно 1.
Свойства степени с рациональным показателем
Знание свойств степеней с показателем, равным рациональному числу, облегчает работу с уравнениями и функциями, где содержатся такие выражения. Внимательно их изучив, можно достаточно быстро выполнять задания, что немаловажно в процессе написания ЕГЭ.
Одно из основных свойств: произведение двух степеней с одинаковым основанием равно основанию в степени, равной сумме степеней двух множителей.
При делении степеней с рациональным показателем из показателя делимого вычитают показатель делителя. У степени с рациональным показателем есть и другие свойства, которые также присущи степени с обыкновенным показателем. Их легко запомнить, а чтобы примеры помогли внимательнее рассмотреть свойства, посмотрите видео, в котором о них рассказывается подробнее.
Алгебра и начала математического анализа. 10 класс
Конспект урока
Алгебра и начала математического анализа, 10 класс
Урок №17. Степень с рациональным и действительным показателем.
Перечень вопросов, рассматриваемых в теме
2) определение степени с рациональным и действительным показателем;
3) нахождения значения степени с действительным показателем.
Если n- натуральное число, , m— целое число и частное
является целым числом, то при
справедливо равенство:
.
При любом действительном х и любом положительном а
) степень
является положительным числом:
Но если основание степени а=0, то степень определяют только при
и считают, что
При выражение
не имеет смысла.
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.
Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.
Теоретический материал для самостоятельного изучения
Пример: вычислим
Мы можем представить , тогда
Таким образом, мы можем записать
или
На основании данного примера можно сделать вывод:
Если n- натуральное число, , m— целое число и частное
является целым числом, то при
0 справедливо равенство:
.
Таким образом, степень определена для любого рационального показателя r и любого положительного основания а.
Если , то выражение
имеет смысл не только при
0, но и при а=0, причем,
Поэтому считают, что при r
0 выполняется равенство
Пользуясь формулой степень с рациональным показателем можно представить в виде корня и наоборот.
Рассмотрим несколько примеров:
Отметим, что все свойства степени с натуральным показателем, которые мы с вами повторили, верны для степени с любым рациональным показателем и положительным основанием, а именно, для любых рациональных чисел p и q и любых 0 и
0 ы следующие равенства:
Разберем несколько примеров, воспользовавшись данными свойствами:
В числителе вынесем общий множитель ab за скобки, в знаменателе представим корни в виде дробных показателей степени:
А теперь дадим определение степени с действительным показателем, на примере .
Пусть последовательность десятичных приближений с недостатком
:
Эта последовательность стремится к числу , т.е.
Числа являются рациональными, и для них определены степени
т.е. определена последовательность
Можно сделать вывод, что данная последовательность стремится к некоторому действительному числу, которое обозначают , т.е.
.
Опредление степени с действительным показателем.
При любом действительном х и любом положительном а
) степень
является положительным числом:
Но если основание степени а=0, то степень определяют только при
и считают, что
При выражение
не имеет смысла.
Для степени с действительным показателем сохраняются все известные свойства степени с рациональным показателем, из которых следует теорема.
Теорема. Пусть и
. Тогда
.
По условию . Поэтому, по свойству 1 имеем
а^(х₂). Умножив обе части этого равенства на положительное число
, получим
. По свойству умножения степеней получаем:
, т.е.
.
Из данной теоремы вытекают три следствия:
.
.
Эти теорема и следствия помогают при решении уравнений и неравенств, сравнении чисел.
Примеры и разборы решения заданий тренировочного модуля
Пример 1. Сравнить числа
Сравним показатели
Свойства степеней. Действия со степенями
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Что такое степень числа
В учебниках по математике можно встретить такое определение:
«Степенью n числа а является произведение множителей величиной а n раз подряд»
a — основание степени;
n — показатель степени.
Читается такое выражение, как a в степени n
Если говорить проще то, степень, а точнее показатель степени (n), говорит нам о том, сколько раз следует умножить это число (основание степени) само на себя.
А значит, если у нас есть задачка, где спрашивают, как возвести число в степень, например, число 2 в третью степень, то она решается довольно просто:
2 — основание степени;
3 — показатель степени.
Если вам нужно быстро возвести число в степень, можно использовать наш онлайн-калькулятор. Но чтобы не упасть в грязь лицом на контрольной по математике, придется все-таки разобраться с теорией.
Рассмотрим пример из жизни, чтобы было понятно, для чего можно использовать возведение чисел в степень на практике.
Задачка про миллион: представьте, что у вас есть миллион рублей. В начале каждого года вы зарабатываете на нем еще два. Получается, что миллион каждый год утраивается. Был один, а стало три — и так каждый год. Здорово, правда? А теперь посчитаем, какая сумма у вас будет через 4 года.
Как решаем: один миллион умножаем на три (1·3), затем результат умножаем на три, потом еще на три. Наверное, вам уже стало стало скучно, потому что вы поняли, что три нужно умножить само на себя четыре раза. Так и сделаем:
Математики заскучали и решили все упростить:
Ответ: через четыре года у вас будет 81 миллион.
Таблица степеней
Здесь мы приведем результаты возведения в степень натуральных чисел от 1 до 10 в квадрат (показатель степени два) и куб (показатель степени 3).