Что такое рациональный способ вычисления
Рациональные приёмы вычислений на уроках математики
Разделы: Математика
Класс: 4
Ключевые слова: математика
«Мозг хорошо устроенный ценится больше,
чем мозг хорошо наполненный.»
Умения рационально производить вычисления характеризуют довольно высокий уровень математического развития. Знакомство и применение рациональных способов вычислений развивает вариативность мышления, показывает ценность знаний, которые при этом используются. Эти умения чрезвычайно сложны, формируются они медленно и за время обучения в начальной школе далеко не у всех детей могут быть достаточно сформированы.
Говорят, если хотите научиться плавать, вы должны войти в воду, а если хотите уметь решать задачи, то должны начать их решать. Но для начала надо освоить азы арифметики. Научиться считать быстро. Считать в уме можно только при большом желании и систематической тренировки. И тогда перед вами откроется совсем другая математика: живая, полезная, понятная.
Скажите, пожалуйста, как рациональнее сложить 1+ 7, 4 * 8? Какие законы применили?
27 + 46+13? 27 – 19 – 7? Какие свойства, законы? Т.е основы рациональных приёмов вычислений основаны на чём?
Методика преподавания математики в начальных классах раскрывает основы рациональных приёмов вычислений, связанных с выполнением разных математических действий с натуральными числами.
Рациональные приёмы сложения основываются
1. Коммуникативный закон сложения а +в =в +а
2. Ассоциативный закон сложения а+в+с = а+ (в+с)
на коммуникативном и ассоциативном приёмах сложения, а так же свойствах изменения суммы. Рассмотрим некоторые из них.
Свойства сложения.
а+в+с =У, то (а – к) +с+в = У –к
а+в+с=У, то (а+ к) +в +с = У+к
38 + 24+15 = 77, то 40+ 24 + 15 =?
Какие ещё рациональные приёмы сложения можно применить на уроке математики?
Округление одного из слагаемых; поразрядного сложения; приём группировки вокруг одного и того же «корневого» числа.
Рассмотрим эти приёмы:
13 + 49 + 76 + 61 = (поразрядное сложение)
38 + 59 = 38 + (…округление слагаемого)
26 + 24 + 23 +25 + 24 = (группировка вокруг одного и того же «корневого» числа
Все приёмы рациональных вычислений, связанных с вычитанием, основываются на законах вычитания.
Если уменьшаемое увеличить или уменьшить на число, то соответственно разность увеличится или уменьшится на это же самое число
74 – 28 = 46, то 77 – 28 = 49
74 – 28 = 46, то 71 – 28 = 43
Если вычитаемое увеличить или уменьшить на несколько единиц, то разность измениться в противоположную сторону.
Если уменьшаемое и вычитаемое уменьшить или увеличить на одно и тоже число, то разность не измениться.
Найди верные равенства.
229 – 36 = (229 – 9 ) – ( 36 – 6)
174 – 58 = (174 – 4) – ( 58 – 4)
358 – 39 = ( 358 – 8 ) – (39 – 8)
617 – 48 = ( 617 – 7 ) – (48 – 8)
Для рациональных вычислений используют частичные приёмы умножения и деления.
Приём замены множителя или делителя на произведение.
75 * 8 = 75 * 2*2*2=
960 : 15 = 960 : 3 : 5 =
Приём умножения на 9, 99,999, 11 …
87 * 99 = 87 * 100- 87 = 8700 – 87 = 8613
87 * 11 = 87 *10 + 87 = 870+ 87 = 957
Успешное применение различных приёмов зависит от умения подмечать особенности чисел и их сочетаний. Например, познакомив детей в первом классе с натуральным рядом чисел и имея его перед глазами, легко закрепить состав числа.
0 1 2 3 4 5 6 7
Отработав, таким образом, состав чисел в пределах 10 и познакомившись с переместительным законом сложения, дети легко справляются с заданием найти сумму чисел в пределах 10, а в дальнейшем, используя переместительное и сочетательное свойство сложения, легко можно найти сумму других чисел. Например:
Существуют приёмы на знаниях некоторых свойств чисел или результатов действий. Легко находить сумму последовательных нечётных чисел, начиная с 1.
Она равна произведению количества слагаемых на самого себя. (проверить)
Рационализация может осуществляться за счет возможности выполнять некоторые арифметические действия. Для этого очень важно научить детей внимательно рассматривать условия задания, суметь подметить все его особенности. Такие задания, как поставь нужный знак действия16 … 17 = 33 ( рассуждать), далее подобные задания усложняются. 8…6…33 = 15
Сравни, не вычисляя
51 : 3 … 30 : 3 + 21 :5
636 :6 … 600 : 6+ 30 : 6+ 6 :6
Используй рациональные приёмы вычисления, разгадай слово
Какие приёмы использовали?
Важно показать ученикам красоту и изящество устных вычислений, используя разнообразные вычислительные приёмы, помогающие значительно облегчить процесс вычисления.
СЧЁТ НА ПАЛЬЦАХ: способ быстрого умножения чисел первого десятка на 9. Допустим нам надо умножить 7 на 9. Повернём ладошки к себе, загнём седьмой палец, число пальцев слева от загнутого пальца – это число десятков, а число – справа, количество единиц.
Все задания, которые рассматривались, воспитывают интерес к математике, развивают их математические способности. Такую работу можно продолжать на математическом кружке.
Приемы рациональных вычислений на уроках математики в начальной школе
В школьной практике мы постоянно сталкиваемся с тем, что ребенок использует привычные, во многом навязанные ему способы решения. Так, например, некоторые дети, после того как изучены приемы письменных вычислений, начинают применять эти способы и при устном решении примеров. Это заставляет задуматься, что же побуждает детей обращаться к такому нерациональному приему решения? Думаю, стремление действовать в соответствии с определенными алгоритмами, избегая при этом активных усилий мысли. Т.о. перед нами встает одна из главнейших задач обучения математике – пробудить у школьника потребность активно мыслить, искать наиболее рациональные пути решения.
Прививая любовь к устным упражнениям, учитель будет помогать ученикам активно действовать с учебным материалом, пробуждать у них стремление совершенствовать способы вычислений и решения задач, менее рациональные заменять более совершенными и экономичными. А это – важнейшее условие сознательного усвоения материала. Направленность мыслительной деятельности ученика на поиск рациональных путей решения проблемы свидетельствует о вариативности мышления.
Важно показать ученикам красоту и изящество устных вычислений, используя разнообразные вычислительные приемы, помогающие значительно облгчить процесс вычисления. Некоторые из таких приемов не предусмотрены программой начальной школы, а между тем детей довольно легко подвести к ознакомлению с ними, используя современную программу и учебник.
Успешное применение различных приемов зависит в значительной мере от находчивости, изобретательности и умения подмечать особенности чисел и их сочетаний. Приемы устных вычислений основываются на знании нумерации, основных свойств действий, на сведении вычислений к более простым, результаты которых могут быть получены из табличных результатов.
Работа над приемами устных вычислений должна вестись с первого класса. Например, познакомив детей с натуральным рядом чисел и имея его перед глазами, легко закрепить состав чисел. Например, ряд чисел от 0 до 7. Поставив пальчики на крайние числа и передвигая их к центру, дети хором говорят: 7 – это 0 и 7; 1 и 6; 2 и 5 и т.д. Отработав таким образом состав чисел в пределах 10 и познакомившись с приемами перестановки слагаемых, дети легко справляются с заданием: найти сумму чисел от 1 до 10. Важно показать детям при этом и вычисления по порядку для сравнения, чтобы выделить более легкий и рациональный чисел. В дальнейшем, используя переместительное и сочетательное свойства сложения, легко можно найти сумму чисел: 18 + 23 + 22 + 17.
Например: 27 + 59 = 27 + 50 + 3 + 6 (традиционный способ)
53 – 28 = 53 – 20 – 3 – 5 (традиционный способ)
А можно: 53 – 28 = 53 – 30 + 2 и т.д.
Здесь приемы следующие:
— округление одного или нескольких слагаемых;
— округление уменьшаемого или вычитаемого.
Существуют приемы, основанные на знаниях некоторых свойств чисел или результатов действий. Наблюдая примеры:
1 + 3 + 5 + 7 = 16 = 4 * 4 и т.д.,
легко находить сумму любого количества последовательных нечетных чисел, начиная с 1. Она равна произведению количества слагаемых на самого себя.
Можно использовать для вычислений такую закономерность:
9 + 10 + 11 + 12 = 13 + 14 + 15 и т.д.
Рационализация может осуществляться за счет возможности выполнять некоторые арифметические действия в исходной вычислительной программе.
Например: 6 + 2 – 2; 7580 : 20 * 20; 783 * 4 + 783 * 6 – 703 * 8 * 0 и т.п.
Задания можно давать и в занимательной форме, например “Математический лабиринт”. Дети, выбирая то или иное арифметическое действие, сравнивают числа, им приходится мыслить целенаправленно, обосновывать сказанное.
Все эти приемы основаны на конкретном смысле умножения и помогают расширять знания детей о свойствах умножения и возможности рациональных вычислений задолго до знакомства с этими приемами в средней школе.
Вот как можно просто и быстро перемножать числа от 10 до 20: к одному из чисел надо прибавить количество единиц другого, умножить на 10 и прибавить произведение единиц чисел. Например: 16 * 18 = (16+8)*10 + 6*8 = 240 + 48 = 288
Используя описанный прием, ученик умножает на 10 и применяет табличное умножение, т.е. выполняет довольно простые мыслительные операции.
Овладение некоторыми приемами тождественных преобразований и рациональных вычислений готовит детей к успешному изучению математики в средней школе, а кроме того, перед учениками открывается совсем другая математика: живая, полезная и понятная. И очень жаль, если непонимание математических связей начинается в начальной школе. Как правило, к сожалению, такие дети не могут предложить нестандартное решение. Им трудно объяснить свой выбор, потому что они бояться ошибиться.
Приёмы рациональных вычислений.
Одно из самых важных умений человека – это умение быстро и правильно выполнять вычисления.
Рационализация вычислений означает выполнение вычислений более лёгким, более целесообразным способом.
Устные вычисления способствуют активизации мыслительной деятельности, развитию логического мышления, сообразительности, памяти, творческих начал и волевых
качеств. Способность к умственному (устному) счёту полезна
в отношении практическом и, как средство, для здоровой умственной гимнастики.
1. Приём, основанный на использовании свойств
арифметических действий.
· 89 + 67 + 11 = 89 + 11 + 67 = 167
· 357 + 996 + 48 = 357 + 996 + (43 + 4 + 1) =
= (357 + 43) + (996 + 4) + 1 = 400 + 1000 +1 = 1401
· 25 × 37 × 4 = 37 × (25 × 4) = 37 × 100 =3700
· 87 × 4 + 4 × 13 = (87 + 13) × 4 = 100 × 4 = 400
· 367 : 5 – 167 : 5 = ( 367 – 167) : 5 = 200 : 5 = 40
2. Приём округления.
· 399 + 473 = 400 +472 = 872
· 497 + 196 + 299 = 492 + 200 + 300 = 992
· 196 + 199 + 197 = 200 × 3 – 8 = 592
· 752 – 298 = 754 – 300 = 454
· 134 + 27 + 29 + 38 = 150 + 20 + 30 + 37 = 200 + 37 = 237
· 427 + 28 + 7 + 20 + 652 = 430 + 649 + 30 + 5 + 20 =
= 1079 + 1 + 54 = 1080 + 20 + 34 = 1134
· 198 × 3 = (200 – 2) × 3 = 600 – 6 = 594
· 35 × 18 = 35 × (20 – 2) = 700 – 70 = 630
3. Приём, основанный на зависимости результата от
изменения компонентов действий.
· 56 – 38 = 60 – 42 = 18
· 225 : 75 = (225 2) : (75 2) = 450 : 150 = 3
· 440 : 55 = 880 : 110 = 8
· 364 : 6 + 118 : 3 = 364 : 6 + 236 : 6 = (364 + 236) : 6 = 600 : 6 = 100
4. Приёмы последовательного умножения и деления.
· 75 × 8 = 75 × 2 × 2 × 2 = 150 × 2 × 2 = 300 × 2 = 600
· 35 × 18 = 35 × 2 × 9 = 70 × 9 = 630
· 23 × 55 = 23 × (5 × 11) = 115 × 11 = 1150 + 115 = 1 265
· 540 : 4 = (540 : 2) : 2 = 270 : 2 = 135
· 960 : 15 = (960 : 3) : 5 = 320 : 5 = 64
5. Приёмы умножения и деления на 5, 50, 500, 25, 250, 15, 125.
· 36 × 5 = (36 : 2) × 10 = 180
· 826 × 50 = (826 : 2) × 100 = 41 300
· 84 × 25 = (84 : 4) × 100 = 2 100
· 24 × 15 = 12 × 30 = 360
· 496 × 125 = (496 : 8) × 1000 = 62 000
· 4 340 : 5 = (4 340 : 10) × 2 = 868
· 4 000 : 125 = (4 000 × 8) : (125 × 8) = 32 000 : 1 000 = 32
6. Приёмы умножения на 9, 99, 11, 101. 1001.
· 26 × 9 = 25 × (10 – 1) = 250 – 25 = 225
· 35 × 99 = 3 500 – 35 = 3 465
· 37 × 11 = 37 × (10 + 1) = 370 + 37 = 407
· 73 × 101 = 7 300 + 73 = 7 373
· 735 × 1 001 = 735 000 + 735 = 735 735
Так, наблюдая и выявляя свойства чисел и действий над
ними, ученики накапливают сведения и используют их затем при
вычислениях. Овладение некоторыми приёмами рациональных
вычислений готовит детей к успешному изучению математики в
Действия с рациональными числами: правила, примеры, решения
Ниже рассмотрим правила основных математических действий над рациональными числами: сложение, вычитание, умножение и деление. Разберем теорию на практических примерах.
Действие сложения рациональных чисел
Рациональные числа содержат натуральные, тогда смысл действия сложения рациональных чисел сопоставим со смыслом сложения натуральных. Например, сумму рациональных чисел, записанную как 5 + 1 4 возможно описать следующим образом: к 5 целым предметам добавили четверть такого предмета, после чего полученное количество рассматривается совместно.
Сформулируем правила сложения рациональных чисел:
Сложение нуля с отличным от него рациональным числом
Прибавление нуля к любому числу дает то же число. Данное правило возможно записать в виде равенства: a + 0 = a (для любого рационального числа а). Используя переместительное свойство сложения, получим также верное равенство: 0 + a = a .
Сложение противоположных рациональных чисел
Сумма противоположных чисел равна нулю.
Сложение положительных рациональных чисел
В виде обыкновенной дроби возможно представить любое положительное рациональное число и использовать далее схему сложения обыкновенных дробей.
Решение
Осуществим сложение дробей с разными знаменателями:
6 10 + 5 9 = 54 90 + 50 90 = 104 90 = 1 7 45
Рациональные числа, которые подвергают действию сложения, возможно записать в виде конечных десятичных дробей или в виде смешанных чисел и, таким образом, осуществить сложение десятичных дробей и смешанных чисел соответственно.
Сложение рациональных чисел с разными знаками
Для того, чтобы осуществить сложение рациональных чисел с разными знаками, необходимо из бОльшего модуля слагаемых вычесть меньший и перед полученным результатом поставить знак того числа, модуль которого больше.
Решение
Сложение отрицательных рациональных чисел
Для того, чтобы произвести сложение отрицательных рациональных чисел, необходимо сложить модули заданных слагаемых, затем полученному результату присвоить знак минус.
Решение
Действие вычитания рациональных чисел
При вычитании из бОльшего положительного рационального числа мы либо производим вычитание обыкновенных дробей, либо, если это уместно, вычитание десятичных дробей или смешанных.
Решение
Необходимо из рационального числа 2 7 вычесть рациональное число 5 3 7
Решение
Действие умножения рациональных чисел
Общее понятие числа расширяется от натуральных чисел к целым, так же как от целых к рациональным. Все действия с целыми числами имеют те же свойства, что и действия с натуральными. В таком случае, и действия с рациональными числами также должны характеризоваться всеми свойствами действий с целыми числами. Но для действия умножения рациональных чисел присуще дополнительное свойство: свойство умножения взаимообратных чисел. Вышесказанному соответствуют все правила умножения рациональных чисел. Укажем их.
Умножение на нуль
Произведение любого рационального числа a на нуль есть нуль.
Умножение на единицу
Т.е. a · 1 = a или 1 · a = a (для любого рационального a ). Единица здесь является нейтральным числом по умножению.
Умножение взаимообратных чисел
К примеру, результатом произведения чисел 5 6 и 6 5 будет единица.
Умножение положительных рациональных чисел
В общих случаях умножение положительных рациональных чисел сводится к умножению обыкновенных дробей. Первым действием множители представляются в виде обыкновенных дробей, если заданные числа таковыми не являются.
Решение
Можно также работать и с конечными десятичными дробями. Удобнее будет в данном случае не переходить к действиям над обыкновенными дробями.
Решение
Перемножим десятичные дроби столбиком:
В частных случаях нахождение произведения рациональных чисел представляет собой умножение натуральных чисел, умножение натурального числа на обыкновенную или десятичную дробь.
Умножение рациональных чисел с разными знаками
Чтобы найти произведение рациональных чисел с разными знаками, необходимо перемножить модули множителей и полученному результату присвоить знак минус.
Решение
Умножение отрицательных рациональных чисел
Для того, чтобы найти произведение отрицательных рациональных чисел, необходимо перемножить модули множителей.
Перемножим их столбиком:
Полученный результат и будет являться искомым произведением.
Деление рациональных чисел
На множестве рациональных чисел деление не считается самостоятельным действием, поскольку оно производится через действие умножения. Собственно, этот смысл заложен в правило деления рациональных чисел.
Таким образом, деление рационального числа на другое рациональное число, отличное от нуля, сводится к действию умножения рациональных чисел.
Решение
Приёмы рационального вычисления в начальной школе.
Онлайн-конференция
«Современная профориентация педагогов
и родителей, перспективы рынка труда
и особенности личности подростка»
Свидетельство и скидка на обучение каждому участнику
« Мозг хорошо устроенный ценится больше,
чем мозг хорошо наполненный»
Рациональные приёмы вычисления на уроках математики.
учитель начальных классов Хохонина Марина Викторовна
МАОУ СОШ № 65 город Тюмень
Умения рационально производить вычисления характеризуют довольно высокий уровень математического развития. Знакомство и применение рациональных способов вычислений развивает вариативность мышления, показывает ценность знаний, которые при этом используются. Эти умения чрезвычайно сложны, формируются они медленно и за время обучения в начальной школе далеко не у всех детей могут быть достаточно сформированы.
Говорят, если хотите научиться плавать, вы должны войти в воду, а если хотите уметь решать задачи, то должны начать их решать. Но для начала надо освоить азы арифметики. Научиться считать быстро. Считать в уме можно только при большом желании и систематической тренировки. И тогда перед вами откроется совсем другая математика: живая, полезная, понятная.
Методика преподавания математики в начальных классах раскрывает основы рациональных приёмов вычислений, связанных с выполнением разных математических действий с натуральными числами.
Рациональные приёмы сложения основываются (слайд 2)
Коммуникативный закон сложения а +в =в +а
Ассоциативный закон сложения а+в+с = а+ (в+с)
на коммуникативном и ассоциативном приёмах сложения, а так же свойствах изменения суммы. Рассмотрим некоторые из них.
а+в+с =У, то (а – к) +с+в = У –к
38 + 24+15 = 77, то 40+ 24 + 15 =?
Какие ещё рациональные приёмы сложения можно применить на уроке математики?
Округление одного из слагаемых, поразрядного сложения, приём группировки вокруг одного и того же « корневого» числа.
Рассмотрим эти приёмы: (листочки)
13 + 49 + 76 + 61 = (поразрядное сложение)
38 + 59 = 38 + (…округление слагаемого)
26 + 24 + 23 +25 + 24 = ( группировка вокруг одного и того же « корневого» числа
Все приёмы рациональных вычислений, связанных с вычитанием, основываются на законах вычитания.
Если уменьшаемое увеличить или уменьшить на число, то соответственно разность увеличится или уменьшится на это же самое число
74 – 28 = 46, то 77 – 28 = 49
74 – 28 = 46, то 71 – 28 = 43
Если вычитаемое увеличить или уменьшить на несколько единиц, то разность измениться в противоположную сторону.
Если уменьшаемое и вычитаемое уменьшить или увеличить на одно и тоже число, то разность не измениться.
Найди верные равенства.( слайд)
229 – 36 = (229 – 9 ) – ( 36 – 6)
174 – 58 = (174 – 4) – ( 58 – 4)
358 – 39 = ( 358 – 8 ) – (39 – 8)
617 – 48 = ( 617 – 7 ) – (48 – 8)
Для рациональных вычислений используют частичные приёмы умножения и деления.
Приём замены множителя или делителя на произведение.
960 : 15 = 960 : 3 : 5 =
Приём умножения на 9, 99,999, 11 …
87 * 99 = 87 * 100- 87 = 8700 – 87 =8613
87 * 11 = 87 *10 + 87 = 870+ 87 = 957
Успешное применение различных приёмов зависит от умения подмечать особенности чисел и их сочетаний. Например, познакомив детей в первом классе с натуральным рядом чисел и имея его перед глазами, легко закрепить состав числа.
( слайд) 0 1 2 3 4 5 6 7
Отработав, таким образом, состав чисел в пределах 10 и познакомившись с переместительным законом сложения, дети легко справляются с заданием найти сумму чисел в пределах 10, а в дальнейшем, используя переместительное и сочетательное свойство сложения, легко можно найти сумму других чисел. Например:
Существуют приёмы на знаниях некоторых свойств чисел или результатов действий. Легко находить сумму последовательных нечётных чисел, начиная с 1
Она равна произведению количества слагаемых на самого себя.
Сравни, не вычисляя 2+2+2 … 2*3
51 : 3 … 30 : 3 + 21 :5
636 :6 … 600 : 6+ 30 : 6+ 6 :6
(слайд) Используй рациональные приёмы вычисления, разгадай слово
18 *9 = 24 +29 = 21 *11=
53 – М 162 – И 231 – Р
Какие приёмы использовали?
Важно показать ученикам красоту и изящество устных вычислений, используя разнообразные вычислительные приёмы, помогающие значительно облегчить процесс вычисления.
СЧЁТ НА ПАЛЬЦАХ: способ быстрого умножения чисел первого десятка на 9 Допустим нам надо умножить 7 на 9. Повернём ладошки к себе, загнём седьмой палец, число пальцев слева от загнутого пальца – это число десятков, а число – справа, количество единиц.
Все задания, которые мы рассматривали, воспитывают интерес к математике, развивают их математические способности.
Все рациональные приёмы на уроках математики невозможно охватить, поэтому можно продолжать работать над этим на математическом кружке.