Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

I. ΠœΠ΅Ρ…Π°Π½ΠΈΠΊΠ°

ВСстированиС ΠΎΠ½Π»Π°ΠΉΠ½

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ЀизичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ·ΡƒΡŽΡ‰Π°Ρ Ρ‚ΠΎ, Π½Π° сколько ΠΊΠ°ΠΆΠ΄Ρ‹ΠΉ Ρ€Π°Π· увСличиваСтся ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ называСтся ускорСниСм.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

УскорСниС Ρ‚Π΅Π»Π°

Π­Ρ‚Ρƒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ Ρ‡Π°Ρ‰Π΅ всСго ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ ΠΏΡ€ΠΈΠΌΠ΅Π½ΡΡŽΡ‚ Π² Π²ΠΈΠ΄ΠΎΠΈΠ·ΠΌΠ΅Π½Π΅Π½Π½ΠΎΠΌ Π²ΠΈΠ΄Π΅:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

НаправлСниС Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ускорСния

НаправлСниС Π²Π΅ΠΊΡ‚ΠΎΡ€Π° ускорСния ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΎ Π½Π° рисунках

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

На этом рисункС машина двиТСтся Π² ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ вдоль оси Ox, Π²Π΅ΠΊΡ‚ΠΎΡ€ скорости всСгда совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ двиТСния (Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π²ΠΏΡ€Π°Π²ΠΎ). Когда Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСниС совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ скорости, это ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ машина разгоняСтся. УскорСниС ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅.

ΠŸΡ€ΠΈ Ρ€Π°Π·Π³ΠΎΠ½Π΅ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ускорСния совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ скорости. УскорСниС ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

На этом рисункС машина двиТСтся Π² ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΈ ΠΏΠΎ оси Ox, Π²Π΅ΠΊΡ‚ΠΎΡ€ скорости совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ двиТСния (Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ Π²ΠΏΡ€Π°Π²ΠΎ), ускорСниС НЕ совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ скорости, это ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ машина Ρ‚ΠΎΡ€ΠΌΠΎΠ·ΠΈΡ‚. УскорСниС ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅.

ΠŸΡ€ΠΈ Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ ускорСния ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ скорости. УскорСниС ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅.

РазбСрСмся, ΠΏΠΎΡ‡Π΅ΠΌΡƒ ΠΏΡ€ΠΈ Ρ‚ΠΎΡ€ΠΌΠΎΠΆΠ΅Π½ΠΈΠΈ ускорСниС ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅. НапримСр, Ρ‚Π΅ΠΏΠ»ΠΎΡ…ΠΎΠ΄ Π·Π° ΠΏΠ΅Ρ€Π²ΡƒΡŽ сСкунду сбросил ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ с 9ΠΌ/с Π΄ΠΎ 7ΠΌ/с, Π·Π° Π²Ρ‚ΠΎΡ€ΡƒΡŽ сСкунду Π΄ΠΎ 5ΠΌ/с, Π·Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ Π΄ΠΎ 3ΠΌ/с. Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ измСняСтся Π½Π° «-2ΠΌ/с». 3-5=-2; 5-7=-2; 7-9=-2ΠΌ/с. Π’ΠΎΡ‚ ΠΎΡ‚ΠΊΡƒΠ΄Π° появляСтся ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ускорСния.

ΠŸΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡, Ссли Ρ‚Π΅Π»ΠΎ замСдляСтся, ускорСниС Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ подставляСтся со Π·Π½Π°ΠΊΠΎΠΌ «ΠΌΠΈΠ½ΡƒΡ».

ΠŸΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π”ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π±Π΅Π·Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π€ΠΎΡ€ΠΌΡƒΠ»Π° Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°Ρ…

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Бвязь со срСднСй ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ

ΠŸΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡΡ€Π΅Π΄Π½ΡŽΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ ΠΊΠ°ΠΊ срСднСарифмСтичСскоС Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈ ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΉ скорости

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Из этого ΠΏΡ€Π°Π²ΠΈΠ»Π° слСдуСт Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°, ΠΊΠΎΡ‚ΠΎΡ€ΡƒΡŽ ΠΎΡ‡Π΅Π½ΡŒ ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΌΠ½ΠΎΠ³ΠΈΡ… Π·Π°Π΄Π°Ρ‡

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π‘ΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡƒΡ‚Π΅ΠΉ

Если Ρ‚Π΅Π»ΠΎ двиТСтся равноускорСнно, Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ нулСвая, Ρ‚ΠΎ ΠΏΡƒΡ‚ΠΈ, ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ Π² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, относятся ΠΊΠ°ΠΊ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ряд Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹Ρ… чисСл.

Π“Π»Π°Π²Π½ΠΎΠ΅ Π·Π°ΠΏΠΎΠΌΠ½ΠΈΡ‚ΡŒ

УпраТнСния

ПоСзд двиТСтся равноускорСнно с ускорСниСм a (a>0). Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΠΊ ΠΊΠΎΠ½Ρ†Ρƒ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ сСкунды ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΏΠΎΠ΅Π·Π΄Π° Ρ€Π°Π²Π½Π° 6ΠΌ/с. Π§Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π΅ ΠΏΡƒΡ‚ΠΈ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠΌ Π·Π° Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡƒΡŽ сСкунду? Π‘ΡƒΠ΄Π΅Ρ‚ Π»ΠΈ этот ΠΏΡƒΡ‚ΡŒ большС, мСньшС ΠΈΠ»ΠΈ Ρ€Π°Π²Π΅Π½ 6ΠΌ?

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠΎΠ΅Π·Π΄ двиТСтся с ускорСниСм, Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π΅Π³ΠΎ всС врСмя возрастаСт (a>0). Если ΠΊ ΠΊΠΎΠ½Ρ†Ρƒ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ сСкунды ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½Π° 6ΠΌ/с, Ρ‚ΠΎ Π² Π½Π°Ρ‡Π°Π»Π΅ Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΠΎΠΉ сСкунды ΠΎΠ½Π° Π±Ρ‹Π»Π° мСньшС 6ΠΌ/с. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΏΡƒΡ‚ΡŒ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ ΠΏΠΎΠ΅Π·Π΄ΠΎΠΌ Π·Π° Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡƒΡŽ сСкунду, мСньшС 6ΠΌ.

КакиС ΠΈΠ· ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Π½Ρ‹Ρ… зависимостСй ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅? Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ скорости двиТущСгося Ρ‚Π΅Π»Π° Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Каково ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΡƒΡ‚ΠΈ?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

*ΠΠ²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ ΠΏΡ€ΠΎΡˆΠ΅Π» Π·Π° ΠΏΠ΅Ρ€Π²ΡƒΡŽ сСкунду 1ΠΌ, Π·Π° Π²Ρ‚ΠΎΡ€ΡƒΡŽ сСкунду 2ΠΌ, Π·Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ сСкунду 3ΠΌ, Π·Π° Ρ‡Π΅Ρ‚Π²Π΅Ρ€Ρ‚ΡƒΡŽ сСкунду 4ΠΌ ΠΈ Ρ‚.Π΄. МоТно Π»ΠΈ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ равноускорСнным?

Π’ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΏΡƒΡ‚ΠΈ, ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ Π² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, относятся ΠΊΠ°ΠΊ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ряд Π½Π΅Ρ‡Π΅Ρ‚Π½Ρ‹Ρ… чисСл. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, описанноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π½Π΅ равноускорСнноС.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

РавноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅: Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ ΠΈ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π‘ΠΎΠ΄Π΅Ρ€ΠΆΠ°Π½ΠΈΠ΅:

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅

РавноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π² Ρ„ΠΈΠ·ΠΈΠΊΠ΅ считаСтся Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π½Π΅ мСняСтся ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ. Говоря простым языком, равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ прСдставляСт собой Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ (Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ ΠΈΠ΄ΡƒΡ‰Π΅Π΅ с Ρ€Π°Π·Π½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ), ускорСниС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ являСтся постоянным Π½Π° протяТСнии ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΠΌ сСбС Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ, ΠΏΠ΅Ρ€Π²Ρ‹Π΅ 2 сСкунды Π΅Π³ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ€Π°Π²Π½Π° 10 ΠΌ/с, ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ 2 сСкунды ΠΎΠ½ ΡƒΠΆΠ΅ двиТСтся со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ 20 ΠΌ/с, Π° Π΅Ρ‰Π΅ Ρ‡Π΅Ρ€Π΅Π· 2 сСкунды ΡƒΠΆΠ΅ со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ 30 ΠΌ/с. Π’ΠΎ Π΅ΡΡ‚ΡŒ ΠΊΠ°ΠΆΠ΄Ρ‹Π΅ 2 сСкунды ΠΎΠ½ ускоряСтся Π½Π° 10 ΠΌ/с, Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΈ Π΅ΡΡ‚ΡŒ равноускорСнным.

ΠžΡ‚ΡΡŽΠ΄Π° ΠΌΠΎΠΆΠ½ΠΎ вывСсти ΠΏΡ€Π΅Π΄Π΅Π»ΡŒΠ½ΠΎ простоС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ равноускорСнного двиТСния: это Ρ‚Π°ΠΊΠΎΠ΅ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ любого физичСского Ρ‚Π΅Π»Π°, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ Π΅Π³ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π·Π° Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ измСняСтся ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹

Наглядным ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠΌ равноускорСнного двиТСния Π² повсСднСвной ΠΆΠΈΠ·Π½ΠΈ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ вСлосипСд, Π΅Π΄ΡƒΡ‰ΠΈΠΉ с Π³ΠΎΡ€ΠΊΠΈ Π²Π½ΠΈΠ· (Π½ΠΎ Π½Π΅ вСлосипСд, управляСмый вСлосипСдистом), ΠΈΠ»ΠΈ Π±Ρ€ΠΎΡˆΠ΅Π½Π½Ρ‹ΠΉ камСнь ΠΏΠΎΠ΄ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΌ ΡƒΠ³Π»ΠΎΠΌ ΠΊ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Ρƒ.

К слову ΠΏΡ€ΠΈΠΌΠ΅Ρ€ с ΠΊΠ°ΠΌΠ½Π΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Π±ΠΎΠ»Π΅Π΅ Π΄Π΅Ρ‚Π°Π»ΡŒΠ½ΠΎ. Π’ любой Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠΏΠΎΠ»Π΅Ρ‚Π° Π½Π° камСнь дСйствуСт ускорСниС свободного падСния g. УскорСниС g Π½Π΅ мСняСтся, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ остаСтся константой ΠΈ всСгда Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΎ Π² ΠΎΠ΄Π½Ρƒ сторону (ΠΏΠΎ сути, это Π³Π»Π°Π²Π½ΠΎΠ΅ условиС равноускорСнного двиТСния).

ΠŸΠΎΠ»Π΅Ρ‚ Π±Ρ€ΠΎΡˆΠ΅Π½Π½ΠΎΠ³ΠΎ камня ΡƒΠ΄ΠΎΠ±Π½ΠΎ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π² Π²ΠΈΠ΄Π΅ сумы Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ ΠΈ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ оси систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Если вдоль оси Π₯ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ камня Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ ΠΈ прямолинСйным, Ρ‚ΠΎ вдоль оси Y равноускорСнным ΠΈ прямолинСйным.

Π€ΠΎΡ€ΠΌΡƒΠ»Π°

Π€ΠΎΡ€ΠΌΡƒΠ»Π° скорости ΠΏΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Ρ‚Π°ΠΊΠΎΠΉ Π²ΠΈΠ΄:

Π“Π΄Π΅ V0 – это Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π°, Π° – ускорСниС (ΠΊΠ°ΠΊ ΠΌΡ‹ ΠΏΠΎΠΌΠ½ΠΈΠΌ, эта Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° являСтся константой), t – ΠΎΠ±Ρ‰Π΅Π΅ врСмя ΠΏΠΎΠ»Π΅Ρ‚Π° камня.

ΠŸΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ V(t) Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠΌΠ΅Ρ‚ΡŒ Π²ΠΈΠ΄ прямой Π»ΠΈΠ½ΠΈΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

УскорСниС ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΎ ΠΏΠΎ ΡƒΠ³Π»Ρƒ Π½Π°ΠΊΠ»ΠΎΠ½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ° скорости. На этом рисункС ΠΎΠ½ΠΎ Ρ€Π°Π²Π½ΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ сторон Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° АВБ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Π΅ΠΌ большС ΡƒΠ³ΠΎΠ» Ξ², Ρ‚Π΅ΠΌ большС Π½Π°ΠΊΠ»ΠΎΠ½ ΠΈ ΠΊΠ°ΠΊ слСдствиС, ΠΊΡ€ΡƒΡ‚ΠΈΠ·Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ° ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ оси Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΠΈ Ρ‚Π΅ΠΌ большС Π±ΡƒΠ΄Π΅Ρ‚ ускорСниС Ρ‚Π΅Π»Π°.

РСкомСндуСмая Π»ΠΈΡ‚Π΅Ρ€Π°Ρ‚ΡƒΡ€Π° ΠΏΠΎ Ρ‚Π΅ΠΌΠ΅

Π’ΠΈΠ΄Π΅ΠΎ

Автор: ПавСл Π§Π°ΠΉΠΊΠ°, Π³Π»Π°Π²Π½Ρ‹ΠΉ Ρ€Π΅Π΄Π°ΠΊΡ‚ΠΎΡ€ ΠΆΡƒΡ€Π½Π°Π»Π° Познавайка

ΠŸΡ€ΠΈ написании ΡΡ‚Π°Ρ‚ΡŒΠΈ старался ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π΅Π΅ максимально интСрСсной, ΠΏΠΎΠ»Π΅Π·Π½ΠΎΠΉ ΠΈ качСствСнной. Π‘ΡƒΠ΄Ρƒ Π±Π»Π°Π³ΠΎΠ΄Π°Ρ€Π΅Π½ Π·Π° Π»ΡŽΠ±ΡƒΡŽ ΠΎΠ±Ρ€Π°Ρ‚Π½ΡƒΡŽ связь ΠΈ ΠΊΠΎΠ½ΡΡ‚Ρ€ΡƒΠΊΡ‚ΠΈΠ²Π½ΡƒΡŽ ΠΊΡ€ΠΈΡ‚ΠΈΠΊΡƒ Π² Π²ΠΈΠ΄Π΅ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠ΅Π² ΠΊ ΡΡ‚Π°Ρ‚ΡŒΠ΅. Π’Π°ΠΊΠΆΠ΅ Π’Π°ΡˆΠ΅ ΠΏΠΎΠΆΠ΅Π»Π°Π½ΠΈΠ΅/вопрос/ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚Π΅ Π½Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Π½Π° мою ΠΏΠΎΡ‡Ρ‚Ρƒ pavelchaika1983@gmail.com ΠΈΠ»ΠΈ Π² ЀСйсбук, с ΡƒΠ²Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π°Π²Ρ‚ΠΎΡ€.

ΠŸΠΎΡ…ΠΎΠΆΠΈΠ΅ посты:

Один ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

УравнСния равноускорСнного двиТСния

ΠŸΡ€ΠΈ постоянном ускорСнии ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ физичСского Ρ‚Π΅Π»Π° Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ возрастаСт, начиная с нуля.

РасстояниС, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ΅ равноускорСнным Ρ‚Π΅Π»ΠΎΠΌ, начиная с Π½ΡƒΠ»Π΅Π²ΠΎΠΉ скорости, ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π“Π°Π»ΠΈΠ»Π΅ΠΎ Π“Π°Π»ΠΈΠ»Π΅ΠΉ относится ΠΊ числу людСй, ΠΏΡ€ΠΎΡΠ»Π°Π²ΠΈΠ²ΡˆΠΈΡ…ΡΡ совсСм Π½Π΅ Ρ‚Π΅ΠΌ, Π·Π° Ρ‡Ρ‚ΠΎ ΠΈΠΌ слСдовало Π±Ρ‹ ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ заслуТСнной славой. ВсС помнят, ΠΊΠ°ΠΊ этого ΠΈΡ‚Π°Π»ΡŒΡΠ½ΡΠΊΠΎΠ³ΠΎ СстСствоиспытатСля Π² ΠΊΠΎΠ½Ρ†Π΅ ΠΆΠΈΠ·Π½ΠΈ ΠΏΠΎΠ΄Π²Π΅Ρ€Π³Π»ΠΈ суду ΠΈΠ½ΠΊΠ²ΠΈΠ·ΠΈΡ†ΠΈΠΈ ΠΏΠΎ ΠΏΠΎΠ΄ΠΎΠ·Ρ€Π΅Π½ΠΈΡŽ Π² СрСси ΠΈ заставили ΠΎΡ‚Ρ€Π΅Ρ‡ΡŒΡΡ ΠΎΡ‚ убСТдСния, Ρ‡Ρ‚ΠΎ ЗСмля вращаСтся Π²ΠΎΠΊΡ€ΡƒΠ³ Π‘ΠΎΠ»Π½Ρ†Π°. На самом ΠΆΠ΅ Π΄Π΅Π»Π΅, этот судСбный процСсс Π½Π° Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ Π½Π°ΡƒΠΊΠΈ практичСски Π½Π΅ повлиял β€” Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ Ρ€Π°Π½Π΅Π΅ ΠΏΡ€ΠΎΠ΄Π΅Π»Π°Π½Π½Ρ‹Ρ… Π“Π°Π»ΠΈΠ»Π΅Π΅ΠΌ ΠΎΠΏΡ‹Ρ‚ΠΎΠ² ΠΈ сдСланных ΠΈΠΌ Π½Π° основании этих ΠΎΠΏΡ‹Ρ‚ΠΎΠ² Π²Ρ‹Π²ΠΎΠ΄ΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ фактичСски ΠΏΡ€Π΅Π΄ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠ»ΠΈ дальнСйшСС Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅ ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ ΠΊΠ°ΠΊ Ρ€Π°Π·Π΄Π΅Π»Π° физичСской Π½Π°ΡƒΠΊΠΈ.

Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ физичСских Ρ‚Π΅Π» ΠΈΠ·ΡƒΡ‡Π°Π»ΠΎΡΡŒ с нСзапамятных Π²Ρ€Π΅ΠΌΠ΅Π½, ΠΈ основы ΠΊΠΈΠ½Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠΈ Π±Ρ‹Π»ΠΈ Π·Π°Π»ΠΎΠΆΠ΅Π½Ρ‹ Π·Π°Π΄ΠΎΠ»Π³ΠΎ Π΄ΠΎ роТдСния ГалилСя. Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ описания двиТСния сСгодня ΠΈΠ·ΡƒΡ‡Π°ΡŽΡ‚ ΡƒΠΆΠ΅ Π² Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ школС. НапримСр, всС Π·Π½Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ Ссли Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ двиТСтся со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ 20 ΠΊΠΌ/Ρ‡, Ρ‚ΠΎ Π·Π° 1 час ΠΎΠ½ ΠΏΡ€ΠΎΠ΅Π΄Π΅Ρ‚ 20 ΠΊΠΌ, Π·Π° 2 часа β€” 40 ΠΊΠΌ, Π·Π° 3 часа β€” 60 ΠΊΠΌ ΠΈ Ρ‚. Π΄. И Π΄ΠΎ Ρ‚Π΅Ρ… ΠΏΠΎΡ€, ΠΏΠΎΠΊΠ° машина двиТСтся с постоянной ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ (стрСлка спидомСтра Π½Π΅ отклоняСтся ΠΎΡ‚ Π·Π°Π΄Π°Π½Π½ΠΎΠ³ΠΎ дСлСния Π½Π° Π΅Π³ΠΎ шкалС), Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ΅ расстояниС Ρ‚Ρ€ΡƒΠ΄Π° Π½Π΅ составляСт β€” достаточно ΡƒΠΌΠ½ΠΎΠΆΠΈΡ‚ΡŒ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΌΠ°ΡˆΠΈΠ½Ρ‹ Π½Π° врСмя, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΎΠ½Π° находится Π² ΠΏΡƒΡ‚ΠΈ. Π­Ρ‚ΠΎΡ‚ Ρ„Π°ΠΊΡ‚ извСстСн Π½Π°ΡΡ‚ΠΎΠ»ΡŒΠΊΠΎ Π΄Π°Π²Π½ΠΎ, Ρ‡Ρ‚ΠΎ имя Π΅Π³ΠΎ пСрвооткрыватСля Π½Π°Π³Π»ΡƒΡ…ΠΎ Π·Π°Ρ‚Π΅Ρ€ΡΠ»ΠΎΡΡŒ Π² Ρ‚ΡƒΠΌΠ°Π½Π΅ Π°Π½Ρ‚ΠΈΡ‡Π½Ρ‹Ρ… Π²Ρ€Π΅ΠΌΠ΅Π½.

БлоТности Π²ΠΎΠ·Π½ΠΈΠΊΠ°ΡŽΡ‚, ΠΊΠ°ΠΊ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ Π½Π°Ρ‡ΠΈΠ½Π°Π΅Ρ‚ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ с ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ. Π’Ρ€ΠΎΠ³Π°Π΅Ρ‚Π΅ΡΡŒ Π²Ρ‹, ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ, ΠΎΡ‚ свСтофора β€” ΠΈ стрСлка спидомСтра ΠΏΠΎΠ»Π·Π΅Ρ‚ ΠΎΡ‚ нуля Π²Π²Π΅Ρ€Ρ…, ΠΏΠΎΠΊΠ° Π²Ρ‹ Π½Π΅ отпуститС пСдаль Π³Π°Π·Π° ΠΈ Π½Π΅ Π½Π°ΠΆΠΌΠ΅Ρ‚Π΅ пСдаль Ρ‚ΠΎΡ€ΠΌΠΎΠ·Π°. На самом Π΄Π΅Π»Π΅ стрСлка спидомСтра Π½Π° мСстС практичСски Π½Π΅ стоит β€” ΠΎΠ½Π° всё врСмя двиТСтся Π²Π²Π΅Ρ€Ρ… ΠΈΠ»ΠΈ Π²Π½ΠΈΠ·. Π’ Π½Π°Ρ‡Π°Π»Π΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎ взятой сСкунды Ρ€Π΅Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΌΠ°ΡˆΠΈΠ½Ρ‹ ΠΎΠ΄Π½Π°, Π° Π² ΠΊΠΎΠ½Ρ†Π΅ сСкунды β€” ΡƒΠΆΠ΅ другая, ΠΈ ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Сю Π·Π° сСкунду ΠΏΡƒΡ‚ΡŒ Ρ‚ΠΎΡ‡Π½ΠΎ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Π½Π΅ Ρ‚Π°ΠΊ-Ρ‚ΠΎ просто. Π­Ρ‚Π° ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° β€” описаниС двиТСния с ускорСниСм β€” Π²ΠΎΠ»Π½ΠΎΠ²Π°Π»Π° СстСствоиспытатСлСй Π·Π°Π΄ΠΎΠ»Π³ΠΎ Π΄ΠΎ ГалилСя.

Π‘Π°ΠΌ ΠΆΠ΅ Π“Π°Π»ΠΈΠ»Π΅ΠΎ Π“Π°Π»ΠΈΠ»Π΅ΠΉ подошСл ΠΊ Π½Π΅ΠΉ новаторски ΠΈ, фактичСски, Π·Π°Π΄Π°Π» Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ всСго дальнСйшСго развития соврСмСнной ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ»ΠΎΠ³ΠΈΠΈ СстСствознания. ВмСсто Ρ‚ΠΎΠ³ΠΎ Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡΠΈΠ΄Π΅Ρ‚ΡŒ ΠΈ ΡƒΠΌΠΎΠ·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ вопрос ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΡƒΡΠΊΠΎΡ€ΡΡŽΡ‰ΠΈΡ…ΡΡ Ρ‚Π΅Π», ΠΎΠ½ ΠΏΡ€ΠΈΠ΄ΡƒΠΌΠ°Π» Π³Π΅Π½ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎ своСй простотС ΠΎΠΏΡ‹Ρ‚Ρ‹, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΡΠ»Π΅Π΄ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π² Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ происходит с ΡƒΡΠΊΠΎΡ€ΡΡŽΡ‰ΠΈΠΌΠΈΡΡ Ρ‚Π΅Π»Π°ΠΌΠΈ. Нам ΠΌΠΎΠΆΠ΅Ρ‚ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒΡΡ, Ρ‡Ρ‚ΠΎ Π½ΠΈΡ‡Π΅Π³ΠΎ особСнно новаторского Π² Ρ‚Π°ΠΊΠΎΠΌ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π΅ Π½Π΅Ρ‚, ΠΎΠ΄Π½Π°ΠΊΠΎ Π΄ΠΎ ГалилСя основным ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ «натурфилософии» β€” ΠΎ Ρ‡Π΅ΠΌ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ само Π½Π°Π·Π²Π°Π½ΠΈΠ΅ Ρ‚ΠΎΠ³Π΄Π°ΡˆΠ½Π΅ΠΉ СстСствСнной Π½Π°ΡƒΠΊΠΈ β€” Π±Ρ‹Π»ΠΎ ΡƒΠΌΠΎΠ·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ осмыслСниС происходящСго, Π° Π½Π΅ Π΅Π³ΠΎ ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ°. Π‘Π°ΠΌΠ° идСя провСдСния физичСских экспСримСнтов Π±Ρ‹Π»Π° Π² Ρ‚ΠΎ врСмя ΠΏΠΎ-настоящСму Ρ€Π°Π΄ΠΈΠΊΠ°Π»ΡŒΠ½ΠΎΠΉ. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ½ΡΡ‚ΡŒ идСю ΠΎΠΏΡ‹Ρ‚ΠΎΠ² ГалилСя, ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΡŒΡ‚Π΅ сСбС Ρ‚Π΅Π»ΠΎ, ΠΏΠ°Π΄Π°ΡŽΡ‰Π΅Π΅ ΠΏΠΎΠ΄ воздСйствиСм силы Π·Π΅ΠΌΠ½ΠΎΠ³ΠΎ притяТСния. ВыпуститС ΠΊΠ°ΠΊΠΎΠΉ-Π½ΠΈΠ±ΡƒΠ΄ΡŒ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ ΠΈΠ· Ρ€ΡƒΠΊ β€” ΠΈ ΠΎΠ½ ΡƒΠΏΠ°Π΄Π΅Ρ‚ Π½Π° ΠΏΠΎΠ»; ΠΏΡ€ΠΈ этом Π² ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΠΌΠ³Π½ΠΎΠ²Π΅Π½ΠΈΠ΅ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π΅Π³ΠΎ двиТСния Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ, Π½ΠΎ ΠΎΠ½ Ρ‚ΡƒΡ‚ ΠΆΠ΅ Π½Π°Ρ‡Π½Π΅Ρ‚ ΡƒΡΠΊΠΎΡ€ΡΡ‚ΡŒΡΡ β€” ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Ρ‚ΡŒ ΡƒΡΠΊΠΎΡ€ΡΡ‚ΡŒΡΡ, ΠΏΠΎΠΊΠ° Π½Π΅ ΡƒΠΏΠ°Π΄Π΅Ρ‚ Π½Π° зСмлю. Если ΠΌΡ‹ смоТСм ΠΎΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π° Π½Π° зСмлю, ΠΌΡ‹ Π·Π°Ρ‚Π΅ΠΌ смоТСм Ρ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ это описаниС ΠΈ Π½Π° ΠΎΠ±Ρ‰ΠΈΠΉ случай равноускорСнного двиТСния.

БСгодня ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚ΡŒ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ падСния ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Π° Π½Π΅ слоТно β€” ΠΌΠΎΠΆΠ½ΠΎ с большой Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒΡŽ Π·Π°Ρ„ΠΈΠΊΡΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ врСмя ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° падСния Π΄ΠΎ любой ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΡ‡Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ. Однако Π²ΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½Π° ГалилСя Ρ‚ΠΎΡ‡Π½Ρ‹Ρ… сСкундомСров Π½Π΅ Π±Ρ‹Π»ΠΎ, Π΄Π° ΠΈ Π»ΡŽΠ±Ρ‹Π΅ мСханичСскиС часы ΠΏΠΎ соврСмСнным стандартам Π±Ρ‹Π»ΠΈ вСсьма ΠΏΡ€ΠΈΠΌΠΈΡ‚ΠΈΠ²Π½Ρ‹ ΠΈ Π½Π΅Ρ‚ΠΎΡ‡Π½Ρ‹. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ ΡƒΡ‡Π΅Π½Ρ‹ΠΉ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ Π΄Π΅Π»ΠΎΠΌ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π» ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΉ Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠΉ ΠΎΠ±ΠΎΠΉΡ‚ΠΈ эту ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡƒ. Π’ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, ΠΎΠ½ Β«Ρ€Π°Π·Π±Π°Π²ΠΈΠ»Β» силу тяТСсти, Π·Π°ΠΌΠ΅Π΄Π»ΠΈΠ² врСмя падСния Π΄ΠΎ Ρ€Π°Π·ΡƒΠΌΠ½Ρ‹Ρ…, с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ…ΡΡ инструмСнтов измСрСния, ΠΏΡ€Π΅Π΄Π΅Π»ΠΎΠ², Π° ΠΈΠΌΠ΅Π½Π½ΠΎ β€” заставил Ρ‚Π΅Π»Π° ΡΠΊΠ°Ρ‚Ρ‹Π²Π°Ρ‚ΡŒΡΡ ΠΏΠΎ Π½Π°ΠΊΠ»ΠΎΠ½Π½ΠΎΠΉ плоскости, Π° Π½Π΅ просто ΠΏΠ°Π΄Π°Ρ‚ΡŒ отвСсно. Π—Π°Ρ‚Π΅ΠΌ ΠΎΠ½ ΠΏΡ€ΠΈΠ΄ΡƒΠΌΠ°Π», ΠΊΠ°ΠΊ ΠΎΠ±ΠΎΠΉΡ‚ΠΈ Π½Π΅Ρ‚ΠΎΡ‡Π½ΠΎΡΡ‚ΡŒ соврСмСнных Π΅ΠΌΡƒ мСханичСских часов, натянув Π½Π° ΠΏΡƒΡ‚ΠΈ ΡΠΊΠ°Ρ‚Ρ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎΡΡ ΠΏΠΎ Π½Π°ΠΊΠ»ΠΎΠ½Π½ΠΎΠΉ повСрхности ΡˆΠ°Ρ€Π° ряд струн, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΎΠ½ Π·Π°Π΄Π΅Π²Π°Π» ΠΈΡ… ΠΏΠΎ Π΄ΠΎΡ€ΠΎΠ³Π΅ ΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π±Ρ‹Π»ΠΎ Ρ…Ρ€ΠΎΠ½ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π΅Π³ΠΎ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΏΠΎ ΠΈΠ·Π²Π»Π΅ΠΊΠ°Π΅ΠΌΡ‹ΠΌ Π·Π²ΡƒΠΊΠ°ΠΌ. Π Π°Π· Π·Π° Ρ€Π°Π·ΠΎΠΌ спуская ΡˆΠ°Ρ€ ΠΏΠΎ Π½Π°ΠΊΠ»ΠΎΠ½Π½ΠΎΠΉ ΠΏΠΎΠ΄ рядом струн, Π“Π°Π»ΠΈΠ»Π΅ΠΉ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π°Π» струны, ΠΏΠΎΠΊΠ° Π½Π΅ добился, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡˆΠ°Ρ€ Π½Π° всСм своСм ΠΏΡƒΡ‚ΠΈ, задСвая натянутыС струны, ΠΈΠ·Π²Π»Π΅ΠΊΠ°Π» Π·Π²ΡƒΠΊΠΈ Ρ‡Π΅Ρ€Π΅Π· Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π’ ΠΊΠΎΠ½Ρ†Π΅ ΠΊΠΎΠ½Ρ†ΠΎΠ² Π“Π°Π»ΠΈΠ»Π΅ΡŽ ΡƒΠ΄Π°Π»ΠΎΡΡŒ Π½Π°ΠΊΠΎΠΏΠΈΡ‚ΡŒ достаточный объСм ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ ΠΎ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ. Π’Π΅Π»ΠΎ, ΡΡ‚Π°Ρ€Ρ‚ΡƒΡŽΡ‰Π΅Π΅ ΠΈΠ· состояния покоя, Π΄Π°Π»Π΅Π΅ двиТСтся Ρ‚Π°ΠΊ, ΠΊΠ°ΠΊ это описано Π² самом Π½Π°Ρ‡Π°Π»Π΅ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠΈ. Π’ ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄Π΅ Π½Π° язык матСматичСских символов равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ описываСтся ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌΠΈ уравнСниями:

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π³Π΄Π΅ a β€” ускорСниС, v β€” ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ, d β€” расстояниС, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½ΠΎΠ΅ Ρ‚Π΅Π»ΠΎΠΌ Π·Π° врСмя t. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΡ‡ΡƒΠ²ΡΡ‚Π²ΠΎΠ²Π°Ρ‚ΡŒ смысл этих ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ, достаточно ΠΏΡ€ΠΈΡΡ‚Π°Π»ΡŒΠ½ΠΎ ΠΏΡ€ΠΎΠ½Π°Π±Π»ΡŽΠ΄Π°Ρ‚ΡŒ Π·Π° ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅ΠΌ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠ². Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ падСния Π·Ρ€ΠΈΠΌΠΎ возрастаСт со Π²Ρ€Π΅ΠΌΠ΅Π½Π΅ΠΌ, ΠΏΡ€ΠΎΡˆΠ΅Π΄ΡˆΠΈΠΌ с Π½Π°Ρ‡Π°Π»Π° падСния. Π­Ρ‚ΠΎ слСдуСт ΠΈΠ· ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ уравнСния. ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ Π² процСссС падСния Π½Π° ΠΏΡ€ΠΎΡ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΏΠ΅Ρ€Π²ΠΎΠΉ части ΠΏΡƒΡ‚ΠΈ Ρƒ Ρ‚Π΅Π»Π° ΡƒΡ…ΠΎΠ΄ΠΈΡ‚ большС Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Ρ‡Π΅ΠΌ Π½Π° ΠΎΡΡ‚Π°Π²ΡˆΡƒΡŽΡΡ Ρ‡Π°ΡΡ‚ΡŒ ΠΏΡƒΡ‚ΠΈ. ИмСнно это ΠΈ описываСт вторая Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΈΠ· Π½Π΅Ρ‘ слСдуСт, Ρ‡Ρ‚ΠΎ Ρ‡Π΅ΠΌ дольшС Ρ‚Π΅Π»ΠΎ ускоряСтся, Ρ‚Π΅ΠΌ больший ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ ΠΏΡƒΡ‚ΠΈ ΠΎΠ½ΠΎ ΠΏΡ€Π΅ΠΎΠ΄ΠΎΠ»Π΅Π²Π°Π΅Ρ‚ Π·Π° ΠΎΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎ ΠΆΠ΅ врСмя.

Π“Π°Π»ΠΈΠ»Π΅ΠΉ сдСлал ΠΈ Π΅Ρ‰Π΅ ΠΎΠ΄Π½ΠΎ Π²Π°ΠΆΠ½ΠΎΠ΅ наблюдСниС ΠΎ Ρ‚Π΅Π»Π΅, находящСмся Π² состоянии свободного падСния ΠΏΠΎΠ΄ воздСйствиСм силы Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ притяТСния, хотя ΠΈ Π½Π΅ смог ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΡ‚ΡŒ Π΅Π³ΠΎ нСпосрСдствСнными измСрСниями. Экстраполировав Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΈΠΌ ΠΏΡ€ΠΈ наблюдСнии ΡΠΊΠ°Ρ‚Ρ‹Π²Π°ΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΠΎ Π½Π°ΠΊΠ»ΠΎΠ½Π½ΠΎΠΉ плоскости ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠ², ΠΎΠ½ сумСл ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ускорСниС свободного падСния Ρ‚Π΅Π»Π° Π½Π° ΠΏΠΎΠ²Π΅Ρ€Ρ…Π½ΠΎΡΡ‚ΡŒ Π—Π΅ΠΌΠ»ΠΈ. УскорСниС свободного падСния принято ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°Ρ‚ΡŒ g, ΠΈ ΠΎΠ½ΠΎ равняСтся (ΠΏΡ€ΠΈΠ±Π»ΠΈΠ·ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ):

g = 9,8 ΠΌ/с 2 (ΠΌΠ΅Ρ‚Ρ€Π° Π² сСкунду Π·Π° сСкунду)

Π’ΠΎ Π΅ΡΡ‚ΡŒ, Ссли ΡƒΡ€ΠΎΠ½ΠΈΡ‚ΡŒ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ ΠΈΠ· состояния покоя, Π·Π° ΠΊΠ°ΠΆΠ΄ΡƒΡŽ сСкунду падСния Π΅Π³ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π±ΡƒΠ΄Π΅Ρ‚ Π²ΠΎΠ·Ρ€Π°ΡΡ‚Π°Ρ‚ΡŒ Π½Π° 9,8 ΠΌΠ΅Ρ‚Ρ€Π° Π² сСкунду. На исходС ΠΏΠ΅Ρ€Π²ΠΎΠΉ сСкунды падСния Ρ‚Π΅Π»ΠΎ Π±ΡƒΠ΄Π΅Ρ‚ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ 9,8 ΠΌ/с, Π½Π° исходС Π²Ρ‚ΠΎΡ€ΠΎΠΉ β€” со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ 2 Γ— 9,8 = 18,6 ΠΌ/с ΠΈ Ρ‚Π°ΠΊ Π΄Π°Π»Π΅Π΅. Π’Π΅Π»ΠΈΡ‡ΠΈΠ½Π° g опрСдСляСт коэффициСнт ускорСния падСния Ρ‚Π΅Π»Π°, находящСгося Π² нСпосрСдствСнной близости ΠΎΡ‚ Π·Π΅ΠΌΠ½ΠΎΠΉ повСрхности, Π² связи с Ρ‡Π΅ΠΌ g принято Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒ ускорСниСм свободного падСния, ΠΈΠ»ΠΈ Π³Ρ€Π°Π²ΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹ΠΌ ускорСниСм.

Π—Π΄Π΅ΡΡŒ слСдуСт ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π΄Π²Π° Π²Π°ΠΆΠ½Ρ‹Ρ… замСчания ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π“Π°Π»ΠΈΠ»Π΅Π΅ΠΌ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ². Π’ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, ΡƒΡ‡Π΅Π½Ρ‹ΠΉ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ» чисто ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ g, Π½ΠΈ Π½Π° ΠΊΠ°ΠΊΠΈΡ… тСорСтичСских ΠΏΡ€ΠΎΠ³Π½ΠΎΠ·Π°Ρ… Π½Π΅ ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡŽΡ‰Π΅Π΅ΡΡ. Π—Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΏΠΎΠ·ΠΆΠ΅ Исаак ΠΡŒΡŽΡ‚ΠΎΠ½ Π² своих Π·Π½Π°ΠΌΠ΅Π½ΠΈΡ‚Ρ‹Ρ… Ρ€Π°Π±ΠΎΡ‚Π°Ρ… ΠΏΠΎΠΊΠ°Π·Π°Π», Ρ‡Ρ‚ΠΎ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ g ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ тСорСтичСски, исходя ΠΈΠ· сочСтания сформулированных ΠΈΠΌ Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ ΠΡŒΡŽΡ‚ΠΎΠ½Π° ΠΈ Π·Π°ΠΊΠΎΠ½Π° всСмирного тяготСния ΠΡŒΡŽΡ‚ΠΎΠ½Π°. ИмСнно пСрвопроходчСский Ρ‚Ρ€ΡƒΠ΄ ГалилСя ΠΈ ΠΏΡ€ΠΎΠ»ΠΎΠΆΠΈΠ» Π΄ΠΎΡ€ΠΎΠ³Ρƒ ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ Ρ‚Ρ€ΠΈΡƒΠΌΡ„Π°Π»ΡŒΠ½Ρ‹ΠΌ открытиям ΠΡŒΡŽΡ‚ΠΎΠ½Π° ΠΈ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΡŽ классичСской ΠΌΠ΅Ρ…Π°Π½ΠΈΠΊΠΈ Π² Π΅Ρ‘ общСизвСстном Π²ΠΈΠ΄Π΅.

Π’Ρ‚ΠΎΡ€ΠΎΠΉ ваТнСйший ΠΌΠΎΠΌΠ΅Π½Ρ‚ состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ускорСниС свободного падСния Π½Π΅ зависит ΠΎΡ‚ массы ΠΏΠ°Π΄Π°ΡŽΡ‰Π΅Π³ΠΎ Ρ‚Π΅Π»Π°. По сути, сила притяТСния ΠΏΡ€ΠΎΠΏΠΎΡ€Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Π° массС Ρ‚Π΅Π»Π°, Π½ΠΎ это ΠΏΠΎΠ»Π½ΠΎΡΡ‚ΡŒΡŽ компСнсируСтся большСй ΠΈΠ½Π΅Ρ€Ρ†ΠΈΠ΅ΠΉ, присущСй Π±ΠΎΠ»Π΅Π΅ массивному Ρ‚Π΅Π»Ρƒ (Π΅Π³ΠΎ нСТСланию Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ, Ссли Ρ…ΠΎΡ‚ΠΈΡ‚Π΅), Π° посСму (Ссли Π½Π΅ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Ρ‚ΡŒ сопротивлСниС Π²ΠΎΠ·Π΄ΡƒΡ…Π°) всС Ρ‚Π΅Π»Π° ΠΏΠ°Π΄Π°ΡŽΡ‚ с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌ ускорСниСм. Π­Ρ‚ΠΎ практичСскоС Π·Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ вступало Π² ΠΏΠΎΠ»Π½ΠΎΠ΅ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ΅ с ΡƒΠΌΠΎΠ·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ прСдсказаниями Π΄Ρ€Π΅Π²Π½ΠΈΡ… ΠΈ срСднСвСковых натурфилософов, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π±Ρ‹Π»ΠΈ ΡƒΠ²Π΅Ρ€Π΅Π½Ρ‹, Ρ‡Ρ‚ΠΎ всякой Π²Π΅Ρ‰ΠΈ свойствСнно ΡΡ‚Ρ€Π΅ΠΌΠΈΡ‚ΡŒΡΡ ΠΊ Ρ†Π΅Π½Ρ‚Ρ€Ρƒ мироздания (ΠΊΠΎΠΈΠΌ ΠΈΠΌ, СстСствСнно, прСдставлялся Ρ†Π΅Π½Ρ‚Ρ€ Π—Π΅ΠΌΠ»ΠΈ) ΠΈ Ρ‡Ρ‚ΠΎ Ρ‡Π΅ΠΌ массивнСС ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚, Ρ‚Π΅ΠΌ с большСй ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ ΠΎΠ½ ΠΊ этому Ρ†Π΅Π½Ρ‚Ρ€Ρƒ устрСмляСтся.

Π‘Π²ΠΎΠ΅ Π²ΠΈΠ΄Π΅Π½ΠΈΠ΅ Π“Π°Π»ΠΈΠ»Π΅ΠΉ, ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ ΠΆΠ΅, ΠΏΠΎΠ΄ΠΊΡ€Π΅ΠΏΠΈΠ» ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π΄Π°Π½Π½Ρ‹ΠΌΠΈ, Π½ΠΎ Π²ΠΎΡ‚ ΠΎΠΏΡ‹Ρ‚Π°, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Π΅ΠΌΡƒ Ρ‚Ρ€Π°Π΄ΠΈΡ†ΠΈΠΎΠ½Π½ΠΎ ΠΏΡ€ΠΈΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‚, ΠΎΠ½, скорСС всСго, вовсС Π½Π΅ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ». Богласно ΠΎΠΊΠΎΠ»ΠΎΠ½Π°ΡƒΡ‡Π½ΠΎΠΌΡƒ Ρ„ΠΎΠ»ΡŒΠΊΠ»ΠΎΡ€Ρƒ, ΠΎΠ½ сбрасывал ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Ρ‹ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ массы с Β«ΠΏΠ°Π΄Π°ΡŽΡ‰Π΅ΠΉΒ» Пизанской башни, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ Π΄ΠΎΡΡ‚ΠΈΠ³Π°ΡŽΡ‚ повСрхности Π·Π΅ΠΌΠ»ΠΈ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ. Π’ этом случаС, ΠΎΠ΄Π½Π°ΠΊΠΎ, ГалилСя ΠΆΠ΄Π°Π»ΠΎ Π±Ρ‹ Ρ€Π°Π·ΠΎΡ‡Π°Ρ€ΠΎΠ²Π°Π½ΠΈΠ΅, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π±ΠΎΠ»Π΅Π΅ тяТСлыС ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Ρ‹ Π½Π΅ΠΈΠ·Π±Π΅ΠΆΠ½ΠΎ ΠΏΠ°Π΄Π°Π»ΠΈ Π±Ρ‹ Π½Π° зСмлю Ρ€Π°Π½ΡŒΡˆΠ΅ Π»Π΅Π³ΠΊΠΈΡ… ΠΈΠ·-Π·Π° Ρ€Π°Π·Π½ΠΈΡ†Ρ‹ Π² ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠΌ сопротивлСнии Π²ΠΎΠ·Π΄ΡƒΡ…Π°. Если Π±Ρ‹ сбрасываСмыС с башни ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Ρ‹ Π±Ρ‹Π»ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°, сила сопротивлСния Π²ΠΎΠ·Π΄ΡƒΡ…Π°, тормозящая ΠΈΡ… ΠΏΠ°Π΄Π΅Π½ΠΈΠ΅, Π±Ρ‹Π»Π° Π±Ρ‹ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠΉ для всСх ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠ². ΠŸΡ€ΠΈ этом ΠΈΠ· Π·Π°ΠΊΠΎΠ½ΠΎΠ² ΠΡŒΡŽΡ‚ΠΎΠ½Π° слСдуСт, Ρ‡Ρ‚ΠΎ Π±ΠΎΠ»Π΅Π΅ Π»Π΅Π³ΠΊΠΈΠ΅ ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚Ρ‹ Π·Π°Ρ‚ΠΎΡ€ΠΌΠ°ΠΆΠΈΠ²Π°Π»ΠΈΡΡŒ Π±Ρ‹ Π²ΠΎΠ·Π΄ΡƒΡ…ΠΎΠΌ интСнсивнСС тяТСлых ΠΈ ΠΏΠ°Π΄Π°Π»ΠΈ Π½Π° зСмлю ΠΏΠΎΠ·Π΄Π½Π΅Π΅ тяТСлых ΠΏΡ€Π΅Π΄ΠΌΠ΅Ρ‚ΠΎΠ². А это, СстСствСнно, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ»ΠΎ Π±Ρ‹ ΠΏΡ€Π΅Π΄ΡΠΊΠ°Π·Π°Π½ΠΈΡŽ ГалилСя.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π‘ΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ. УскорСниС. РавноускорСнноС прямолинСйноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

1. РСальноС мСханичСскоС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ β€” это Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ с ΠΈΠ·ΠΌΠ΅Π½ΡΡŽΡ‰Π΅ΠΉΡΡ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ. Π”Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ стСчСниСм Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ измСняСтся, Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ.

ΠŸΡ€ΠΈ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ Ρ‚ΠΎΠ»Π° ΡƒΠΆΠ΅ нСльзя ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π½ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ​ \( x=x_0+v_xt \) ​, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ скорости двиТСния Π½Π΅ являСтся постоянным. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ для характСристики быстроты измСнСния полоТСния Ρ‚Π΅Π»Π° с Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ΠΌ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΏΡ€ΠΈ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠΌ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ вводят Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ, Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡƒΡŽ срСднСй ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ.

Π‘Ρ€Π΅Π΄Π½Π΅ΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ ​ \( \vec_ <ср>\) ​ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ двиТСния Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Ρ„ΠΈΠ·ΠΈΡ‡Π΅ΡΠΊΡƒΡŽ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ, Ρ€Π°Π²Π½ΡƒΡŽ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠΈ \( \vec \) Ρ‚Π΅Π»Π° ΠΊΠΎ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t \) ​, Π·Π° ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΎΠ½ΠΎ ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ: ​ \( \vec_<ср>=\frac\) ​.

2. Π’Π°ΠΆΠ½ΠΎ, Ρ‡Ρ‚ΠΎ, зная ΡΡ€Π΅Π΄Π½ΡŽΡŽ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ двиТСния Π½Π° ΠΊΠ°ΠΊΠΎΠΌ-Π»ΠΈΠ±ΠΎ участкС Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, нСльзя ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ‚Π΅Π»Π° Π½Π° этой Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. НапримСр, Ссли срСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния автомобиля Π·Π° 2 часа 50 ΠΊΠΌ/Ρ‡, Ρ‚ΠΎ ΠΌΡ‹ Π½Π΅ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, Π³Π΄Π΅ ΠΎΠ½ находился Ρ‡Π΅Ρ€Π΅Π· 0,5 часа ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° двиТСния, Ρ‡Π΅Ρ€Π΅Π· 1 час, 1,5 часа ΠΈ Ρ‚.ΠΏ., ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΎΠ½ ΠΌΠΎΠ³ ΠΏΠ΅Ρ€Π²Ρ‹Π΅ полчаса Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ 80 ΠΊΠΌ/Ρ‡, Π·Π°Ρ‚Π΅ΠΌ ΠΊΠ°ΠΊΠΎΠ΅-Ρ‚ΠΎ врСмя ΡΡ‚ΠΎΡΡ‚ΡŒ, Π° ΠΊΠ°ΠΊΠΎΠ΅-Ρ‚ΠΎ врСмя Π΅Ρ…Π°Ρ‚ΡŒ Π² ΠΏΡ€ΠΎΠ±ΠΊΠ΅ со ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ 20 ΠΊΠΌ/Ρ‡.

3. Π”Π²ΠΈΠ³Π°ΡΡΡŒ ΠΏΠΎ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ, Ρ‚Π΅Π»ΠΎ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ всС Π΅Ρ‘ Ρ‚ΠΎΡ‡ΠΊΠΈ. Π’ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ ΠΎΠ½ΠΎ находится Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Π΅ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΈ ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠ°ΠΊΡƒΡŽ-Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ.

МгновСнной ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² Π΄Π°Π½Π½Ρ‹ΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ Ρ‚Ρ€Π°Π΅ΠΊΡ‚ΠΎΡ€ΠΈΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

ΠŸΡ€ΠΈ дальнСйшСм ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠΈ пСрСмСщСния ΠΈ соотвСтствСнно Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ двиТСния Ρ‚Π΅Π»Π° ΠΎΠ½ΠΈ станут Ρ‚Π°ΠΊΠΈΠΌΠΈ малСнькими, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈΠ±ΠΎΡ€, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ спидомСтр, пСрСстанСт Ρ„ΠΈΠΊΡΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ скорости, ΠΈ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π·Π° этот ΠΌΠ°Π»Ρ‹ΠΉ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½Ρ‹ΠΌ. БрСдняя ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π½Π° этом участкС ΠΈ Π΅ΡΡ‚ΡŒ мгновСнная ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² Ρ‚.О.

4. Одним ΠΈΠ· Π²ΠΈΠ΄ΠΎΠ² Π½Π΅Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ двиТСния являСтся равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. РавноускорСнным Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π·Π° Π»ΡŽΠ±Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ измСняСтся Π½Π° ΠΎΠ΄Π½ΠΎ ΠΈ Ρ‚ΠΎ ΠΆΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅.

Π‘Π»ΠΎΠ²Π° Β«Π»ΡŽΠ±Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈΒ» ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚, Ρ‡Ρ‚ΠΎ ΠΊΠ°ΠΊΠΈΠ΅ Π±Ρ‹ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (2 с, 1 с, Π΄ΠΎΠ»ΠΈ сСкунды ΠΈ Ρ‚.ΠΏ.) ΠΌΡ‹ Π½ΠΈ взяли, ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ всСгда Π±ΡƒΠ΄Π΅Ρ‚ ΠΈΠ·ΠΌΠ΅Π½ΡΡ‚ΡŒΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎ. ΠŸΡ€ΠΈ этом Π΅Ρ‘ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ ΠΌΠΎΠΆΠ΅Ρ‚ ΠΊΠ°ΠΊ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Ρ‚ΡŒΡΡ, Ρ‚Π°ΠΊ ΠΈ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒΡΡ.

5. Π₯арактСристикой равноускорСнного двиТСния, ΠΏΠΎΠΌΠΈΠΌΠΎ скорости ΠΈ пСрСмСщСния, являСтся ускорСниС.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

УскорСниС Ρ‚Π΅Π»Π° ΠΏΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ β€” вСкторная физичСская Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°, равная ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ измСнСния скорости Ρ‚Π΅Π»Π° ΠΊ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΡƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Π·Π° ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ это ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ.

НаправлСниС ускорСния совпадаСт с Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ скорости двиТСния, Ссли ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости увСличиваСтся, ускорСниС Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ скорости двиТСния, Ссли ΠΌΠΎΠ΄ΡƒΠ»ΡŒ скорости ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Π΅Ρ‚ΡΡ.

7. Как Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ скорости равноускорСнного двиТСния, ΠΎΠ½Π° Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎ зависит ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Π“Ρ€Π°Ρ„ΠΈΠΊΠΎΠΌ зависимости модуля скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ являСтся прямая, ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π°Ρ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΡƒΠ³ΠΎΠ» с осью абсцисс (осью Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ). На рисункС 19 ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости модуля скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π“Ρ€Π°Ρ„ΠΈΠΊ 1 соотвСтствуСт двиТСнию Π±Π΅Π· Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ скорости с ускорСниСм, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΌ Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ; Π³Ρ€Π°Ρ„ΠΈΠΊ 2 β€” двиТСнию с Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ \( v_ <02>\) ΠΈ с ускорСниСм, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΌ Ρ‚Π°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ; Π³Ρ€Π°Ρ„ΠΈΠΊ 3 β€” двиТСнию с Π½Π°Ρ‡Π°Π»ΡŒΠ½ΠΎΠΉ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒΡŽ \( v_ <03>\) ΠΈ с ускорСниСм, Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½Π½Ρ‹ΠΌ Π² сторону, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΡƒΡŽ Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΡŽ скорости.

8. На рисункС ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости равноускорСнного двиТСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (рис. 20).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

9. На рисункС 21 ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ускорСния равноускорСнного двиТСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π“Ρ€Π°Ρ„ΠΈΠΊ 1 соотвСтствуСт двиТСнию, проСкция ускорСния ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Π°, Π³Ρ€Π°Ρ„ΠΈΠΊ 2 β€” двиТСнию, проСкция ускорСния ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°.

10. Π€ΠΎΡ€ΠΌΡƒΠ»Ρƒ пСрСмСщСния Ρ‚Π΅Π»Π° ΠΏΡ€ΠΈ равноускорСнном Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости этого двиТСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (рис. 22).

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π’Ρ‹Π΄Π΅Π»ΠΈΠΌ Π½Π° Π³Ρ€Π°Ρ„ΠΈΠΊΠ΅ ΠΌΠ°Π»Ρ‹ΠΉ участок ​ \( ab \) ​ ΠΈ опустим пСрпСндикуляры ΠΈΠ· точСк​ \( a \) ​ ΠΈ ​ \( b \) ​ Π½Π° ось абсцисс. Если ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΎΠΊ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( \Delta\) ​, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΉ участку ​ \( cd \) ​ Π½Π° оси абсцисс ΠΌΠ°Π», Ρ‚ΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ этого ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ° Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ Π½Π΅ измСняСтся ΠΈ Ρ‚Π΅Π»ΠΎ двиТСтся Ρ€Π°Π²Π½ΠΎΠΌΠ΅Ρ€Π½ΠΎ. Π’ этом случаС Ρ„ΠΈΠ³ΡƒΡ€Π° ​ \( cabd \) ​ ΠΌΠ°Π»ΠΎ отличаСтся ΠΎΡ‚ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΈ Π΅Ρ‘ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ числСнно Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ пСрСмСщСния Ρ‚Π΅Π»Π° Π·Π° врСмя, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΡƒ ​ \( cd \) ​.

На Ρ‚Π°ΠΊΠΈΠ΅ полоски ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°Π·Π±ΠΈΡ‚ΡŒ всю Ρ„ΠΈΠ³ΡƒΡ€Ρƒ ΠžΠΠ’Π‘, ΠΈ Π΅Ρ‘ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ€Π°Π²Π½Π° суммС ΠΏΠ»ΠΎΡ‰Π°Π΄Π΅ΠΉ всСх полосок. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, проСкция пСрСмСщСния Ρ‚Π΅Π»Π° Π·Π° врСмя ​ \( t \) ​ числСнно Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠžΠΠ’Π‘. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° ΠΏΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½ΠΈΡŽ полусуммы Π΅Ρ‘ оснований Π½Π° высоту: ​ \( S_x= \frac<1><2>(OA+BC)OC \) ​.

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° позволяСт ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ (ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρƒ) Ρ‚Π΅Π»Π° Π² любой ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, Ссли извСстны Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ, Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π° ΠΈ ускорСниС.

Если Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ, Ρ‚ΠΎ: ​ \( v^2_x=2a_xs_x \) ​.

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° позволяСт Ρ€Π°ΡΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ Ρ‚ΠΎΡ€ΠΌΠΎΠ·Π½ΠΎΠΉ ΠΏΡƒΡ‚ΡŒ транспортных срСдств, Ρ‚.Π΅. ΠΏΡƒΡ‚ΡŒ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ ΠΏΡ€ΠΎΠ΅Π·ΠΆΠ°Π΅Ρ‚, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€, Π°Π²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ Π΄ΠΎ ΠΏΠΎΠ»Π½ΠΎΠΉ остановки. ΠŸΡ€ΠΈ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ускорСнии двиТСния, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ зависит ΠΎΡ‚ массы автомобиля ΠΈ силы тяги двигатСля, Ρ‚ΠΎΡ€ΠΌΠΎΠ·Π½ΠΎΠΉ ΠΏΡƒΡ‚ΡŒ Ρ‚Π΅ΠΌ большС, Ρ‡Π΅ΠΌ большС Π½Π°Ρ‡Π°Π»ΡŒΠ½Π°Ρ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ автомобиля.

ΠŸΠ Π˜ΠœΠ•Π Π« Π—ΠΠ”ΠΠΠ˜Π™

Π§Π°ΡΡ‚ΡŒ 1

1. HΠ° рисункС ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости ΠΏΡƒΡ‚ΠΈ ΠΈ скорости Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. Какой Π³Ρ€Π°Ρ„ΠΈΠΊ соотвСтствуСт равноускорСнному двиТСнию?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

2. ΠΠ²Ρ‚ΠΎΠΌΠΎΠ±ΠΈΠ»ΡŒ, Π½Π°Ρ‡Π°Π² Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒΡΡ ΠΈΠ· состояния покоя Π½ΠΎ прямолинСйной Π΄ΠΎΡ€ΠΎΠ³Π΅, Π·Π° 10 с ΠΏΡ€ΠΈΠΎΠ±Ρ€Π΅Π» ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ 20 ΠΌ/с. Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½ΠΎ ускорСниС автомобиля?

1) 200 м/с 2
2) 20 м/с 2
3) 2 м/с 2
4) 0,5 м/с 2

3. На рисунках прСдставлСны Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ для Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ… Ρ‚Π΅Π», двиТущихся вдоль оси ​ \( Оx \) ​. Π£ ΠΊΠ°ΠΊΠΎΠ³ΠΎ ΠΈΠ· Ρ‚Π΅Π» Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t_1 \) ​ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

4. На рисункС прСдставлСн Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ ускорСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ для Ρ‚Π΅Π»Π°, двиТущСгося прямолинСйно вдоль оси ​ \( Оx \) ​.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

РавноускорСнному двиТСнию соотвСтствуСт участок

1) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ОА
2) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ АВ
3) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ОА ΠΈ Π’Π‘
4) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ CD

5. ΠŸΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ равноускорСнного двиТСния измСряли ΠΏΡƒΡ‚ΡŒ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Ρ‚Π΅Π»ΠΎΠΌ ΠΈΠ· состояния покоя Π·Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ€Π°Π²Π½Ρ‹Π΅ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠΈ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ (Π·Π° ΠΏΠ΅Ρ€Π²ΡƒΡŽ сСкунду, Π·Π° Π²Ρ‚ΠΎΡ€ΡƒΡŽ сСкунду ΠΈ Ρ‚.Π΄.). ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π΅Π½ ΠΏΡƒΡ‚ΡŒ, ΠΏΡ€ΠΎΠΉΠ΄Π΅Π½Π½Ρ‹ΠΉ Ρ‚Π΅Π»ΠΎΠΌ Π·Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ сСкунду?

1) 4 ΠΌ
2) 4,5 ΠΌ
3) 5 ΠΌ
4) 9 ΠΌ

6. На рисункС прСдставлСны Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости скорости двиТСния ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ для Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ… Ρ‚Π΅Π». Π’Π΅Π»Π° двиТутся ΠΏΠΎ прямой.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Для ΠΊΠ°ΠΊΠΎΠ³ΠΎ(-ΠΈΡ…) ΠΈΠ· Ρ‚Π΅Π» β€” 1, 2, 3 ΠΈΠ»ΠΈ 4 β€” Π²Π΅ΠΊΡ‚ΠΎΡ€ ускорСния Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠΏΠΎΠ»ΠΎΠΆΠ½ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ скорости?

1) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ 1
2) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ 2
3) Ρ‚ΠΎΠ»ΡŒΠΊΠΎ 4
4) 3 ΠΈ 4

7. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости скорости двиТСния Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ Π΅Π³ΠΎ ускорСниС.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

8. ΠŸΡ€ΠΈ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠΈ равноускорСнного двиТСния измСряли ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Π΅ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρ‹ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ. ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅, ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π² Ρ‚Π°Π±Π»ΠΈΡ†Π΅. Π§Π΅ΠΌΡƒ Ρ€Π°Π²Π½Π° ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ 3 с?

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

1) 0 м/с
2) 2 м/с
3) 4 м/с
4) 14 м/с

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

10. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости скорости двиТСния Ρ‚Π΅Π»Π° ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Ρ‚Π΅Π»Π° Π² ΠΊΠΎΠ½Ρ†Π΅ 30-ΠΉ сСкунды. Π‘Ρ‡ΠΈΡ‚Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ двиТСния Ρ‚Π΅Π»Π° Π½Π΅ измСнился.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

1) 14 м/с
2) 20 м/с
3) 62 м/с
4) 69,5 м/с

11. Π”Π²Π° Ρ‚Π΅Π»Π° двиТутся ΠΏΠΎ оси ​ \( Оx \) ​. На рисункС прСдставлСны Π³Ρ€Π°Ρ„ΠΈΠΊΠΈ зависимости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости двиТСния Ρ‚Π΅Π» 1 ΠΈ 2 ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ.

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π΄Π°Π½Π½Ρ‹Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, Π²Ρ‹Π±Π΅Ρ€ΠΈΡ‚Π΅ ΠΈΠ· ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ пСрСчня Π΄Π²Π° Π²Π΅Ρ€Π½Ρ‹Ρ… утвСрТдСния. Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ ΠΈΡ… Π½ΠΎΠΌΠ΅Ρ€Π°.

1) Π’ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t_3-t_5 \) ​ Ρ‚Π΅Π»ΠΎ 2 двиТСтся равноускорСнно.
2) К ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t_2 \) ​ ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° двиТСния Ρ‚Π΅Π»Π° ΠΏΡ€ΠΎΡˆΠ»ΠΈ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹Π΅ ΠΏΡƒΡ‚ΠΈ.
3) Π’ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( 0-t_3 \) ​ Ρ‚Π΅Π»ΠΎ 2 находится Π² ΠΏΠΎΠΊΠΎΠ΅.
4) Π’ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t_5 \) ​ Ρ‚Π΅Π»ΠΎ 1 останавливаСтся.
5) Π’ ΠΏΡ€ΠΎΠΌΠ΅ΠΆΡƒΡ‚ΠΊΠ΅ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t_3-t_4 \) ​ ускорСниС ​ \( a_x \) ​ Ρ‚Π΅Π»Π° 1 ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ.

12. На рисункС прСдставлСн Π³Ρ€Π°Ρ„ΠΈΠΊ зависимости ΠΏΡ€ΠΎΠ΅ΠΊΡ†ΠΈΠΈ скорости ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ для Ρ‚Π΅Π»Π°, двиТущСгося вдоль оси ΠžΡ….

Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅. Π€ΠΎΡ‚ΠΎ Π§Ρ‚ΠΎ Ρ‚Π°ΠΊΠΎΠ΅ равноускорСнноС Π΄Π²ΠΈΠΆΠ΅Π½ΠΈΠ΅

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π΄Π°Π½Π½Ρ‹Π΅ Π³Ρ€Π°Ρ„ΠΈΠΊΠ°, Π²Ρ‹Π±Π΅Ρ€ΠΈΡ‚Π΅ ΠΈΠ· ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ пСрСчня Π΄Π²Π° Π²Π΅Ρ€Π½Ρ‹Ρ… утвСрТдСния. Π£ΠΊΠ°ΠΆΠΈΡ‚Π΅ ΠΈΡ… Π½ΠΎΠΌΠ΅Ρ€Π°.

1) Участок ОА соотвСтствуСт ускорСнному двиТСнию Ρ‚Π΅Π»Π°.
2) Участок АВ соотвСтствуСт ΡΠΎΡΡ‚ΠΎΡΠ½ΠΈΡŽ покоя Ρ‚Π΅Π»Π°.
3) Π’ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t_1 \) ​ Ρ‚Π΅Π»ΠΎ ΠΈΠΌΠ΅Π»ΠΎ максимальноС ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ускорСниС.
4) ΠœΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t_3 \) ​ соотвСтствуСт остановкС Ρ‚Π΅Π»Π°.
5) Π’ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ​ \( t_2 \) ​ Ρ‚Π΅Π»ΠΎ ΠΈΠΌΠ΅Π»ΠΎ максимальноС ΠΏΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŽ ускорСниС.

Π§Π°ΡΡ‚ΡŒ 2

13. Π—Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΎΡ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ для Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ‚Π΅Π»Π° описываСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ​ \( x=12t-t^2 \) ​. Π’ ΠΊΠ°ΠΊΠΎΠΉ ΠΌΠΎΠΌΠ΅Π½Ρ‚ Π²Ρ€Π΅ΠΌΠ΅Π½ΠΈ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ двиТСния Ρ€Π°Π²Π½Π° Π½ΡƒΠ»ΡŽ?

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *