Что такое равновесия в гетерогенных системах
Химическое равновесие в гетерогенных системах
Химические реакции, протекающие на границе раздела фаз, называются гетерогенными химическими реакциями. При равенстве скоростей прямой и обратной реакции наступает химическое равновесие в гетерогенной системе.
Как и для любого равновесия, условием гетерогенного химического равновесия является равенство энергии Гиббса нулю, ΔG = 0. Как и в случае гомогенной химической реакции, константа гетерогенного равновесия равна отношению произведения равновесных концентраций (активностей) или парциальных давлений продуктов реакций к произведению равновесных концентраций (активностей) или парциальных давлений исходных веществ в степенях, равных стехиометрическим коэффициентам в уравнении. Для реакции пароводяной конверсии углерода константа равновесия имеет вид: Кр = (рСО2)р (рН2) 2 р/(рН2О) 2 р,
В уравнения констант гетерогенного химического равновесия не входят концентрации твердых веществ, участвующих в прямой и обратной реакциях.Это особенность гетерогенного химического равновесия. Так как прямая и обратная реакции протекают на одной и той же поверхности раздела фаз, то площадь поверхности раздела фаз также не входит в уравнение константы химического равновесия. Константа гетерогенного химического равновесия зависит от температуры. Она возрастает с увеличением температуры для эндотермической прямой реакции и уменьшается с увеличением температуры в случае экзотермической прямой реакции. Расчеты проводятся по тем же формулам, что и для гомогенных реакций. Смещение равновесия гетерогенных реакций подчиняется принципу Ле Шателье. При повышении температуры оно смещается в сторону эндотермической реакции. При повышении давления или концентрации исходных веществ равновесие смещается в сторону образования продуктов реакции, при повышении концентрации или давления продуктов реакции равновесие смещается в сторону обратной реакции. При повышении общего давления равновесие сдвигается в направлении уменьшения числа молекул газообразных веществ. Твердые исходные вещества и продукты реакции не влияют на смещение гетерогенного химического равновесия.
Равновесие в гетерогенных системах
Большинство веществ могут существовать в одном из трех агрегатных состояний: газообразном (парообразном), жидком и твердом. В определенных условиях эти фазы способны переходить друг в друга, то есть всякую жидкость путем испарения можно перевести в газ, а охлаждением – в твердое состояние. На рис. 6.9 показаны взаимные фазовые превращения вещества.
Взаимное превращение трех агрегатных состояний друг в друга.
Равновесия между различными фазами одной системы называют фазовыми, а описывают эти фазовые равновесия посредством фазовых диаграмм или диаграмм состояния. Фазовая диаграмма позволяет установить условия равновесия между числом фаз, числом компонентов и числом степеней свободы (вариантностью) системы.
Фаза (Ф) – гомогенная (однородная по химическому составу и термодинамическим свойствам) часть системы, отделенная от других частей поверхностью раздела. Так, два нерастворимых друг в друге твердых вещества, как и две несмешивающиеся жидкости, образуют две фазы.
Компоненты (К) – химически индивидуальные вещества, наименьшее число которых достаточно для образования фаз системы.
Число компонентов определяется количеством индивидуальных веществ в системе за вычетом числа возможных между ними обратимых взаимодействий. Например, система из трех индивидуальных веществ H2O, H2, O2 будет двухкомпонентной, поскольку для образования всех фаз достаточно любых двух веществ:
По числу компонентов системы делятся на одно-, двух-, трех- и многокомпонентные.
Степени свободы (С) – число параметров (температура, давление, состав системы), которые можно произвольно менять без изменения числа фаз в системе.
Правило фаз Гиббса: в изолированной равновесной системе число степеней свободы равно числу компонентов системы плюс два минус число фаз:
В качестве примера однокомпонентной системы, для которой правило фаз С = 3 – Ф, на рис. 6.10 приведена фазовая диаграмма диоксида углерода.
Химическое равновесие в гетерогенных системах.
Энергетические эффекты химических реакций.
Энергетический эффект химического процесса возникает за счет изменения в системе внутренней энергииUили энтальпии H. Внутренняя энергия – это общий запас энергии системы, который складывается из энергии движения и взаимодействия молекул.
Энергетический эффект реакции, протекающий при постоянном давлении, отличается от энергетического эффекта реакции, протекающей при постоянном объеме.
Энергетический эффект реакции – это изменение значений Uи H. При экзотермических реакциях теплота выделяется, т.е. уменьшается энтальпия системы. При эндотермических реакциях теплота поглощаются, т.е. Hи Uсистемы возрастает.
Основные термохимические законы.
Раздел химии, занимающийся изучением превращения энергии в химических реакциях, называется термохимией.
Существует два важнейших закона термохимии. Первый из них, закон Лавуазье–Лапласа, формулируется следующим образом:
Тепловой эффект прямой реакции всегда равен тепловому эффекту обратной реакции с противоположным знаком.
Это означает, что при образовании любого соединения выделяется (поглощается) столько же энергии, сколько поглощается (выделяется) при его распаде на исходные вещества.
Закон Лавуазье–Лапласа является следствием закона сохранения энергии.
Второй закон термохимии был сформулирован в 1840 г российским академиком Г. И. Гессом:
Тепловой эффект реакции зависит только от начального и конечного состояния веществ и не зависит от промежуточных стадий процесса.
Это означает, что общий тепловой эффект ряда последовательных реакций будет таким же, как и у любого другого ряда реакций, если в начале и в конце этих рядов одни и те же исходные и конечные вещества. Эти два основных закона термохимии придают термохимическим уравнениям некоторое сходство с математическими, когда в уравнениях реакций можно переносить члены из одной части в другую, почленно складывать, вычитать и сокращать формулы химических соединений. При этом необходимо учитывать коэффициенты в уравнениях реакций и не забывать о том, что складываемые, вычитаемые или сокращаемые моли вещества должны находиться в одинаковом агрегатном состоянии.
Химическое равновесие в гетерогенных системах.
Химические реакции, протекающие на границе раздела фаз, называются гетерогенными химическими реакциями.
При равенстве скоростей прямой и обратной реакции наступает химическое равновесие в гетерогенной системе. Примерами гетерогенных процессов является пароводяная конверсия углерода, или восстановление оксидов металлов водородом:
Как и в случае гомогенной химической реакции, константа гетерогенного равновесия равна отношению произведения равновесных концентраций (активностей) или парциальных давлений продуктов реакций к произведению равновесных концентраций (активностей) или парциальных давлений исходных веществ в степенях, равных стехиометрическим коэффициентам в уравнении. Для реакции пароводяной конверсии углерода константа равновесия имеет вид:
для восстановления металла
Из приведенных выражений следует, что в уравнения констант гетерогенного химического равновесия не входят концентрации твердых веществ, участвующих в прямой и обратной реакциях. Это особенность гетерогенного химического равновесия.
Так как прямая и обратная реакции протекают на одной и той же поверхности раздела фаз, то площадь поверхности раздела фаз также не входит в уравнение константы химического равновесия.
Константа гетерогенного химического равновесия зависит от температуры. Она возрастает с увеличением температуры для эндотермической прямой реакции и уменьшается с увеличением температуры в случае экзотермической прямой реакции. Расчеты проводятся по тем же формулам, что и для гомогенных реакций.
Смещение равновесия гетерогенных реакций подчиняется принципу Ле Шателье. При повышении температуры оно смещается в сторону эндотермической реакции. При повышении давления или концентрации исходных веществ равновесие смещается в сторону образования продуктов реакции, при повышении концентрации или давления продуктов реакции равновесие смещается в сторону обратной реакции. При повышении общего давления равновесие сдвигается в направлении уменьшения числа молекул газообразных веществ.
Твердые исходные вещества и продукты реакции не влияют на смещение гетерогенного химического равновесия.
Что такое равновесия в гетерогенных системах
Гетерогенные фазовые равновесия.
При кипении жидкости при постоянном давлении, при плавлении кристаллов, при выделении кристаллов из насыщенных растворов устанавливается гетерогенное равновесие . Термодинамическое условие равновесия в гетерогенных системах – сколь угодно длительное существование фаз в условиях р и Т = const : концентрация в каждой фазе при этом не изменяется:
Изменение внешних параметров приводят к нарушению равновесия и к изменению концентраций и фаз. Предсказать возможность изменения фаз позволяет закон равновесия фаз, выведенный Гиббсом термодинамическим путем в 1876г:
В равновесной многофазной системе число степеней свободы равно числу компонентов системы плюс два минус число фаз, если на систему из внешних термодинамических параметров влияют только давление и температура:
С = К – Ф + 2
где С – число степеней свободы; К – число компонентов; Ф – число фаз.
Компонентами называются химические однородные вещества, которые являются независимыми составными частями системы. При выборе компонентов выбираются те вещества, наименьшее число которых достаточно для образования всей системы, так и любой ее части.
При определении минимального числа компонентов, таким образом, необходимо знать число связей, т.е. число уравнений, которые определяют соотношения компонентов в условиях термодинамического равновесия.
например, система, состоящая из СаО, СаСО3 и СО 2 может быть описана двумя компонентами, т.к. концентрация СО2 при данной температуре однозначно определяется через константу равновесия обратимого процесса:
СаСО3 (тв.) СаО (тв.) + СО 2 (г.)
Н 2 (г.) + У2 (г.) 2 НУ (г.)
может быть задана количеством НУ (г.), т.е. число независимых компонентов для данной системы может быть определено равным 1.
Гомогенная часть гетерогенной системы определяется как фаза. Для фазы должны быть одинаковые термодинамические и физические свойства. Этим фаза отличается от агрегатного состояния. В одном и том же агрегатном состоянии могут быть вещества, составляющие несколько независимых фаз.
Вариантностью системы, или числом степеней свободы называется число тех параметров состояния системы, величину которых можно менять без применения числа фаз.
Правило фаз выводится их известного алгебраического условия: в системе уравнений число независимых переменных равно разности между общим числом переменных и числом связывающих эти переменные уравнений.
Число связывающих эти компоненты уравнений определяются на основе уравнения (5-1). В равновесии наблюдается равенство химических потенциалов всех компонентов во всех фазах.
μ
= μ
= μ
…= μ
μ = μ
= μ
= … μ
μ = μ
= μ
… μ
Очевидно, что для каждого компонента (Ф-1) – уравнение, а всего для всех компонентов во всех фазах К( Ф-1) – уравнение связи.
Отсюда, число степеней свободы:
С = Ф( К-1) + 2 – К(Ф-1) = К – Ф + 2
Установить наличие полиморфных превращений в однокомпонентной системе, природу фаз и область их существования в зависимости от температуры и давления, а также проанализировать взаимодействие в многокомпонентной системе можно двумя путями: препаративным или проводя физико-химический анализ и построив диаграммы «состав-свойство».
Препаративный метод требует подбора условий синтеза и используется в случае одновременно протекающих нескольких реакций, когда равновесие не достигается.
Однако, состав конкурентных соединений, бывает сложно определить, поскольку не всегда удается выделить чистые вещества. В этом случае получают физико-химический анализ.
Физико-химический анализ заключается в изучении взаимодействия веществ в многокомпонентных системах без выделения образующихся продуктов. В физико-химическом анализе исследуется функциональная зависимость между численными значениями физических свойств равновесной химической системы и концентрациями компонентов, определяющими состояние равновесия.
На основании результатов измерения строятся химические диаграммы в координатах «состав свойство».
Геометрические особенности этих диаграмм позволяют судить как о природе продуктов, так и числе этих продуктов, границах их устойчивости, условиях совестного существования различных фаз в системе.
Анализ гетерогенных равновесий проводится по диаграмме на основе правила фаз Гиббса и принципов непрерывности и соответствия, сформулированных А.С. Кураковым.
Принцип непрерывности. Если непрерывно изменяются давления, температуры, концентрации, то свойства отдельных фаз системы изменяются также непрерывно. Пока не изменится число и характер фаз, непрерывно изменяются свойства всей системы.
Принцип соответствия. Совокупности находящейся в равновесии фаз на диаграмме соответствует определенный образ.
Однокомпонентные системы: Р-Т проекции
В координатах Р-Т однокомпонентные системы имеют вид:
твердое жидкость твердое
Точка пересечения трех линий – тройная точка, ноивариантна. Она соответствует сосуществованию в равновесии всех трех фаз.
В зависимости от состояния фаз, диаграммы для двухкомпонентных систем можно классифицировать следующим образом.
Т
кривая ликвидуса
кривая солидуса
А состав В
I тип (рис. 5-3): диаграмма отвечает случаю полной взаимной растворимости компонентов А и В как в расплаве так и в твердой фазе.
Т Т
кривая ликвидуса
кристаллы жидкое + кривая солидуса
А В
кристаллы А + кристаллы В
А В
II тип (рис. 5-4): диаграмма с простой эвтектикой. А и В не расслаиваются в жидкой фазе, но в твердом состоянии представляют собой гетерогенную двухфазную систему.
Т Т кривые ликвидуса
β
кривые солидуса
эвтектика + этектика рис. 5-5
А состав В
III тип ( рис. 5-5): диаграмма с неограниченной растворимостью в жидкой фазе при частичной растворимости в твердой фазе.
Т Т
жидк. + жидк. + хим. соед. кр. В
кр. А хим. соед.
А + Э 1 х.с. + Э1 хим. соед. В т. + Э 2
А состав В
эвтектика 1 эвтектика 2
IV тип (рис. 5-6): диаграмма, отвечающая образованию химического соединения, плавящегося без разложения (т.е. конгруэнтно).
Т Т
жидкость
жидк. +
хим. соед. + Вкр. +
А В
V тип (рис 5-7): диаграмма со скрытым максимумом, который отвечает химическому соединению, которое разлагается при плавлении (т.е. плавится инконгруэнтно).