Что такое равные и неравные слагаемые
Свойства сложения и вычитания
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Свойства сложения
Сложение — это арифметическое действие, в котором единицы двух чисел объединяются в одно новое число
Для записи сложения используют знак «+» (плюс), который ставят между слагаемыми.
Слагаемые — это числа, единицы которых складываются.
Сумма — это число, которое получается в результате сложения.
Рассмотрим пример 2 + 5 = 7, в котором:
При этом саму запись (2 + 5) можно тоже назвать суммой.
Сложение двух чисел можно проверить вычитанием. Для этого вычитаем из суммы одно из слагаемых. Если разность окажется равной другому слагаемому — сложение выполнено верно.
Впервые мы сталкиваемся со свойствами сложения во 2 классе. С каждым годом задания усложняются, и появляются новые правила и законы. Рассмотрим свойства сложения для 4 класса.
Свойства вычитания
Вычитание— это арифметическое действие, в котором отнимают меньшее число от большего.
Для записи вычитания используется знак «-» (минус), который ставится между уменьшаемым и вычитаемым.
Уменьшаемое — это число, из которого вычитают.
Вычитаемое — это число, которое вычитают.
Разность — это число, которое получается в результате вычитания.
Строгие разбиения | Нечётные разбиения |
7 = 7 | 7 = 7 |
7 = 6 + 1 | 7 = 5 + 1 + 1 |
7 = 5 + 2 | 7 = 3 + 3 + 1 |
7 = 4 + 3 | 7 = 3 + 1 + 1 + 1 + 1 |
7 = 4 + 2 + 1 | 7 = 1 + 1 + 1 + 1 + 1 + 1 + 1 |
Пусть s(n) — количество строгих разбиений числа n, а o(n) — количество нечётных разбиений. Докажите, что s(n) = o(n).
Подсказка 1
Чтобы доказать, что количества элементов в двух множествах одинаковы, бывает удобно установить между ними взаимно-однозначное соответствие.
Подсказка 2
Пусть есть какое-то разбиение на различные слагаемые. Из него можно получить разбиение на нечётные слагаемые, если каждое чётное число разбивать на две половинки до тех пор, пока не останутся только нечётные.
Пример: 20 + 6 + 3 → 10 + 10 + 3 + 3 + 3 → 5 + 5 + 5 + 5 + 3 + 3 + 3.
А как по «нечетному» разбиению получить исходное «строгое»? Вот это и есть суть задачи.
Решение
Утверждение задачи впервые было доказано Леонардом Эйлером около 1740 года с помощью производящих функций.
Леонард Эйлер (1707–1783). Портрет работы Я. Э. Хандманна, 1753 г. Изображение с сайта ru.wikipedia.org
Теорема Эйлера. Количество разбиений числа N на попарно различные слагаемые («строгие разбиения») равно количеству разбиений N на нечётные слагаемые («нечётные разбиения»).
В подсказке был указан способ, позволяющий получить из любого строгого разбиения нечётное. Для этого каждое чётное число, входящее в разбиение на различные слагаемые, нужно было разделить пополам, то есть представить в виде суммы двух равных половинок. А затем повторять этот процесс до тех пор, пока чётных чисел не останется.
Например, из разбиения
1 13 ← (1, 2 6 ) ← (1, 4 3 ) ← (1, 4, 4 2 ) ← (1, 4, 8).
Вы уже поняли закономерность? Она столь же проста, сколь и красива: каждый «показатель степени» записывается в виде суммы различных степеней двойки (то есть выписывается его двоичная запись), после чего каждой из имеющихся степеней соответствует своё слагаемое в исходном «строгом» разбиении. Это становится совсем понятным, если сообразить, что из одного чётного слагаемого в строгом разбиении могли получиться только 2, 4, 8, 16 и т. д. нечётных — то есть «вклад» каждого слагаемого в общее количество всегда является степенью двойки, а так как равных слагаемых нет, то все степени оказываются различными.
Джеймс Уитбред Ли Глейшер (1848–1928). Изображение с сайта ru.wikipedia.org
Это замечательное соответствие было придумано в конце XIX века английским математиком Джеймсом Уитбредом Ли Глейшером (увы, его научные результаты в основном касались областей математики, которые не изучаются ни в средней школе, ни даже в нематематических вузах, поэтому широкой публике он абсолютно неизвестен). Тем не менее он был удостоен двух очень значимых математических наград своего времени — медали де Моргана в 1908 году (это высшая награда Лондонского математического общества, присуждается раз в три года) и медали Сильвестра в 1913 году (высшая награда Лондонского королевского общества).
В задаче о нечетных разбиениях заслуга Глейшера в том, что он придумал не только новый подход к решению, но и дал замечательное обобщение задачи:
Теорема Глейшера. Количество разбиений целого числа N на части, не делящиеся на число d, равно количеству разбиений N на слагаемые, в которых никакая часть не повторяется d или более раз.
Послесловие
Но рассказ о соответствиях между нечётными и строгими разбиениями был бы заведомо неполон без упоминания другого замечательного соответствия между ними, придуманного Джеймсом Джозефом Сильвестром (тем самым, в честь которого названа упомянутая выше медаль).
Джеймс Джозеф Сильвестр (1814–1897). Изображение с сайта ru.wikipedia.org
Сильвестр был, по-видимому, первым математиком, который исследовал разбиения чисел на слагаемые с помощью клетчатых картинок. Впоследствии эти картинки получили название «диаграммы Юнга» или «диаграммы Феррерса» в честь двух других британских математиков, младших современников Дж. Сильвестра.
Пусть есть разбиение на нечётные слагаемые. Сильвестр предлагал нарисовать диаграмму, в которой этим слагаемым соответствуют горизонтальные ряды (строки), причем располагать эти ряды симметрично относительно центра (это можно сделать именно благодаря нечётности всех слагаемых, рис. 1). А для установления соответствия он рассматривал «крюки», которые на рисунке 1 изображены чередующимися цветными рядами. Первый крюк идет снизу по центральному ряду до верхней строки, а потом продолжается по этой строке вправо. Следующий крюк — по соседнему слева ряду снова до верхней строки, а затем по первой строке до конца влево. Потом — снова крюк справа, но уже до второй строки, и так далее. В итоге получается уже знакомое нам по соответствию Глейшера разбиение (18, 15, 13, 9, 8, 7, 4, 1). Не правда ли, красиво? К сожалению, столь же красивого обратного соответствия Сильвестр не дал. Вместо этого он просто привёл алгебраическое доказательство того, что такое соответствие является взаимно-однозначным.
К слову, Сильвестр не ограничился одним новым соответствием, а попутно в той же работе доказал и несколько других новых фактов про нечётные и строгие разбиения. В частности, он обнаружил соответствие между нечётными разбиениями, содержащими ровно k различных чисел, и разбиениями на различные числа, содержащими ровно k «цепочек» — подпоследовательностей из идущих подряд натуральных чисел. Это привело его к следующей теореме.
Теорема Сильвестра (1882). Количество разбиений числа N на нечётные части, среди которых ровно k различных чисел, равно количеству разбиений N на различные части, в которых встречаются ровно k цепочек.
Ясно, что исходный результат Эйлера получается в качестве следствия из теоремы Сильвестра — простым сложением по всем k.
Однако математика не стоит на месте, и красивое соответствие все-таки было найдено, причём совсем недавно, в самом конце ХХ века. Сделали это два корейских математика Ким Донсу и И Эчжа (в тот момент второй из них был еще студентом, а ныне он — профессор в Университете штата Пенсильвания). Я приведу картинку, взятую из их статьи A note on partitions into distinct parts and odd parts, и кратко прокомментирую ее, предоставляя возможность читателю самостоятельно додумать детали.
Нарисуем картинку разбиения на различные части, начав с самых маленьких частей, то есть с единицы: 1 + 4 + 7 + 8 + 9 + 13 + 15 + 18 (рис. 2). Если количество частей нечётно, то в качестве самой маленькой части добавим 0. Первую часть поместим в первую строку, вторую — в строку под ней, причем выровняв ее по левому краю первой строки. Третью часть поместим в третью строку, но выровняем ее со второй строкой по правому краю, и так далее, чередуя выравнивание по левому и по правому краям. Так как все части различны, то в результате все вертикальные края (и левые, и правые), кроме последнего, будут иметь высоту 2.
Кроме того, нарисуем жирную вертикальную черту — разделитель — на расстоянии от правого края, равном знакочередующейся сумме частей
Тогда все столбцы правее разделителя содержат нечётное число клеток (ведь каждая вертикаль состоит из одной нижней строки и чётного числа других строк) и могут рассматриваться как сумма нечётных слагаемых:
(эти числа подписаны в первом ряду под диаграммой, справа от разделителя). При этом все последовательные нечётные числа от 1 до 7 встречаются хотя бы один раз. Следовательно, к 1 можно прибавить число клеток в паре нижних строк слева от разделителя (то есть 14), к 3 — число клеток в паре следующих строк (10), к 5 — клетки из следующей пары (8), а к 7 — клетки последней пары строк (2). Эти слагаемые подписаны во второй строке под диаграммой. Наконец, в третьей строке выписаны суммы первой и второй строки — тоже нечётные, поскольку вся вторая строка состоит из чётных чисел. Ясно, что каждая клетка диаграммы учтена ровно один раз — клетки правее разделителя вошли в слагаемые первой строки. А клетки левее разделителя вошли в слагаемые второй строки. Тем самым мы получили соответствие между различными слагаемыми и нечётными слагаемыми, причём — то же самое соответствие, которое было предложено Сильвестром.
А как построить обратное соответствие? Метод Кима – И здесь во многом повторяет способ Сильвестра, но выглядит, пожалуй, даже естественнее.
Выпишем убывающую последовательность из чисел нечётного разбиения (a1 = 15, a2 = a3 = 13, a4 = 9, a5 = a6 = 7, a7 = a8 = a9 = 3, a10 = a11 = 1) и будем от первого члена отнимать 1, от второго — 3, от третьего — 5, и так далее до тех пор, пока разности будут положительны. То есть запишем равенства 15 = 1 + 14, 13 = 3 + 10, 13 = 5 + 8, 9 = 7 + 2. Это сразу даст нам нужное разбиение третьей строчки под диаграммой на первую и вторую. Затем все числа первой строчки перенесём в диаграмму справа от разделителя, а каждое чётное число второй строчки «уложим» в две строки слева от разделителя. В результате получим диаграмму, в которой нижняя строка будет самой длинной, а каждая следующая строка будет короче предыдущей. Суммируя клетки этой диаграммы по строкам, получим разбиение на различные слагаемые.
Результат Кима – И — даже при том, что они фактически просто переформулировали Сильвестра — использует понятие разделителя, которого не было в оригинале. А значит, тоже позволяет доказать более сильный факт. Но удивительно даже не это, а то, что этот факт был открыт на несколько лет раньше, чем появилась красивая картинка от корейцев!
Теорема о разбиениях на d нечётных частей (М. Буске-Мело, К. Эриксон, 1997). Количество разбиений числа N на попарно различные части, имеющие знакочередующуюся сумму d, равно количеству разбиений N на d нечётных частей.
Сумма разрядных слагаемых
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Сумма разрядных слагаемых
Любое натуральное многозначное число можно представить в виде суммы разрядных слагаемых. Сумму разрядных слагаемых можно записать следующим образом:
35 = 3 десятка + 5 единиц = 3*10 = 30 + 5 = 35.
30 — разрядное слагаемое; 5 — разрядное слагаемое.
86 = 8 десятков + 6 единиц = 8*10 = 80 + 6 = 86
80 — разрядное слагаемое; 5 — разрядное слагаемое.
356 = 3 сотни + 5 десятков + 6 единиц = 3*100 + 5*10 + 6 = 300+50+6 = 356.
300, 50, 6 — разрядные слагаемые.
Разряды и классы чисел
Чтобы без труда записывать числа в виде суммы разрядных слагаемых, нужно безошибочно определять класс и разряд числа.
В многозначном числе цифры справа налево разбиваются на группы по три цифры. Такие группы называют классами.
Названия классов многозначных чисел:
Чтобы чтение многозначного числа не превращалось в головоломку, при записи лучше разграничивать число по классам. Вот так:
Читаться такое число будет слева направо: триста сорок пять миллиардов четыреста шестьдесят шесть миллионов сто двадцать девять тысяч триста пятьдесят.
Разряд — это место, которое занимает цифра в записи многозначного числа.
Разряды считаются справа налево. Первая цифра справа в записи числа относится к первому разряду.
Разрядные единицы — это единицы, десятки, сотни, тысячи, миллионы.
Все разрядные единицы, за исключением простых единиц, — составные единицы. Каждые десять единиц одного разряда составляют одну единицу следующего разряда.
Если составная единица больше другой единицы — она называется единицей высшего разряда. Если меньше, то единицей низшего разряда. Так, например, сотня — единица высшего разряда относительно десятка, но низшего разряда относительно тысячи.
Чтобы выяснить сколько всего в числе единиц определенного разряда, нужно мысленно вычеркнуть из числа все цифры низшего разряда.
Это значит, нужно выяснить, сколько сотен заключается в тысячах и в сотнях этого числа. 5689 — на третьем месте в классе единиц стоит цифра 6, значит в числе есть 6 сотен. Следующая влево цифра — 5 (тысячи). 1 тысяча = 10 сотен. 5 тысяч = 50 сотен. Всего в числе 56 сотен.
Если в разряде стоит цифра 0, то это означает отсутствие единиц, десятков, сотен и т.д., в зависимости от того, где именно содержится цифра.
Иногда бывает необходимо не только разложить число на разрядные слагаемые, но и определить количество единиц какого-то определенного разряда.
В такой ситуации можете выполнить подробный разбор числа.
Шесть миллионов пятьдесят семь тысяч триста восемьдесят шесть
6 057 386 = 6 * 1 000 000 + 0 * 100 000 + 5 * 10 000 + 7 * 1000 + 3 * 100 + 8 * 10 + 6 = 6 000 000 + 50 000 + 7 000 + 300 + 80 + 6.
Из чего состоит это число? Из:
Для того, чтобы алгоритм разложения числа на простые слагаемые был всегда под рукой, сохраняйте себе табличку с примером. В ней вы найдете вопросы, которые помогут разложите любое число.
Определите, сколько единиц в числе 5 068 252.
1. Определяем сколько всего единиц в числе.
2. Определяем количество десятков.
Записываем число без первого разряда (единицы).
3. Определяем количество сотен.
Записываем число без первого
и второго разрядов (десятки и сотни).
4. Определяем количество единиц тысяч.
Записываем число без первого, второго,
третьего разрядов (единицы, десятки, сотни).
5. Определяем количество десятков тысяч.
Записываем число без первого, второго, третьего,
четвертого разрядов (единицы, десятки, сотни, единицы тысяч).
6. Определяем количество сотен тысяч.
Записываем число без десятков тысяч, единиц тысяч,
сотен и единиц.
7. Определяем количество единиц миллионов.
Записываем число без сотен тысяч, десятков тысяч,
единиц тысяч, сотен, десятков, единиц.
Расписав таким образом число, мы выяснили, что в числе 5 068 252: 5 единиц класса миллионов (3 класс); 68 единиц класса тысяч (2 класс); 252 единицы класса единиц (1 класс).
Может показаться, что такой подробный разбор ни к чему, что и без того все понятно, но многоразрядные многозначные числа — коварны. Лучше хорошенько потренироваться, используя все вспомогательные материалы, как эта табличка, а потом уже раскладывать любое число за секунды и в уме.
Примеры
Внимательно просмотрите примеры и попробуйте самостоятельно представить числа в виде суммы разрядных слагаемых.
Представьте в виде суммы разрядных слагаемых:
Как видите, все довольно просто. Занятие весьма успокаивающее, медитативное. Приятно сесть после тяжелого дня и пораскладывать числа на разрядные слагаемые.
Если вдруг так вышло, что вы не расслабляетесь при виде цифр, то воспользуйтесь онлайн-калькулятором. В интернете таких калькуляторов немало, вот один из них.
Так вы сможете разложить на разрядные слагаемые любое, даже самое гигантское, число. Важно разобраться в разрядах и классах чисел, тогда вы точно ничего не перепутаете.
Числовые равенства, свойства числовых равенств
После получения общих сведений о равенствах в математике переходим к более узким темам. Материал этой статьи даст представление о свойствах числовых равенств.
Что такое числовое равенство
Числовое равенство – это равенство, обе части которого состоят из чисел и/или числовых выражений.
Свойства числовых равенств
Сложно переоценить значимость свойств числовых равенств в математике: они являются опорой многому, определяют принцип работы с числовыми равенствами, методы решений, правила работы с формулами и многое другое.Очевидно, что существует необходимость детального изучения свойств числовых равенств.
Свойства числовых равенств абсолютно согласованы с тем, как определяются действия с числами, а также с определением равных чисел через разность: число a равно числу b только в тех случаях, когда разность a − b есть нуль. Далее в описании каждого свойства мы проследим эту связь.
Основные свойства числовых равенств
Изучать свойства числовых равенств начнем с трех базовых свойств, которые присущи всем равенствам. Перечислим основные свойства числовых равенств:
Прочие важные свойства числовых равенств
Основные свойства числовых равенств, рассмотренные выше, являются базисом для ряда дополнительных свойств, довольно ценных в разрезе практики. Перечислим их:
Укажем еще на пару свойств, которые позволяют осуществлять сложение и умножение соответствующих частей верных числовых равенств:
Необходимо уточнить, что почленно можно сложить не только два верных числовых равенства, но и три, и более;
Завершим данную статью, собрав для наглядности все рассмотренные свойства:
- Что такое равные и неравные дроби
- Что такое равные комплексные числа