Что такое разность арифметической прогрессии

Арифметическая прогрессия.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно «не очень. »
И для тех, кто «очень даже. » )

Понятие арифметической прогрессии.

Я напишу незаконченный ряд чисел:

Сможете продлить этот ряд? Какие числа пойдут дальше, за пятёркой? Каждый. э-э-э. короче, каждый сообразит, что дальше пойдут числа 6, 7, 8, 9 и т.д.

Усложним задачу. Даю незаконченный ряд чисел:

Сможете уловить закономерность, продлить ряд, и назвать седьмое число ряда?

А теперь переведём ключевые моменты из ощущений в математику.)

Первый ключевой момент.

Арифметическая прогрессия имеет дело с рядами чисел. Это и смущает поначалу. Мы привыкли уравнения решать, графики строить и всё такое. А тут продлить ряд, найти число ряда.

Второй ключевой момент.

В арифметической прогрессии любое число отличается от предыдущего на одну и ту же величину.

Третий ключевой момент.

Этот момент не бросается в глаза, да. Но очень, очень важен. Вот он: каждое число прогрессии стоит на своём месте. Есть первое число, есть седьмое, есть сорок пятое, и т.д. Если их перепутать как попало, закономерность исчезнет. Исчезнет и арифметическая прогрессия. Останется просто ряд чисел.

Разумеется, в новой теме появляются новые термины и обозначения. Их надо знать. Иначе и задание-то не поймёшь. Например, придётся решать, что-нибудь, типа:

Термины и обозначения.

Эта величина называется разность арифметической прогрессии. Разберёмся с этим понятием поподробнее.

Разность арифметической прогрессии.

Один важный момент. Прошу обратить внимание на слово «больше». Математически это означает, что каждое число прогрессии получается прибавлением разности арифметической прогрессии к предыдущему числу.

Разность арифметической прогрессии может быть положительной, тогда каждое число ряда получится реально больше предыдущего. Такая прогрессия называется возрастающей. Например:

Здесь каждое число получается прибавлением положительного числа, +5 к предыдущему.

Разность может быть и отрицательной, тогда каждое число ряда получится меньше предыдущего. Такая прогрессия называется (вы не поверите!) убывающей.

Разность арифметической прогрессии обозначается, как правило, буквой d.

Определим, например, d для возрастающей арифметической прогрессии:

Берём любое число ряда, какое хотим, например, 11. Отнимаем от него предыдущее число, т.е. 8:

Это правильный ответ. Для этой арифметической прогрессии разность равна трём.

Определим d для убывающей арифметической прогрессии:

Разность арифметической прогрессии может быть любым числом: целым, дробным, иррациональным, всяким.

Другие термины и обозначения.

Каждое число ряда называется членом арифметической прогрессии.

Как записать прогрессию в общем виде? Не вопрос! Каждое число ряда записывается в виде буквы. Для обозначения арифметической прогрессии используется, как правило, буква a. Номер члена указывается индексом внизу справа. Члены пишем через запятую (или точку с запятой), вот так:

Прогрессии бывают конечные и бесконечные.

Записать конечную прогрессию через ряд можно вот так, все члены и точка в конце:

Или так, если членов много:

В краткой записи придётся дополнительно указывать количество членов. Например (для двадцати членов), вот так:

Бесконечную прогрессию можно узнать по многоточию в конце ряда, как в примерах этого урока.

Теперь уже можно порешать задания. Задания несложные, чисто для понимания смысла арифметической прогрессии.

Примеры заданий по арифметической прогрессии.

Разберём подробненько задание, что приведено выше:

Легко можно посчитать, например, a3. Мы знаем (по смыслу арифметической прогрессии), что a3 больше a2 на величину d. Стало быть:

Ну и дальше, по накатанной колее:

Так, члены с третьего по шестой вычислили. Получился такой ряд:

Остаётся найти первый член a1 по известному второму. Это шаг в другую сторону, влево.) Значит, разность арифметической прогрессии d надо не прибавить к a2, а отнять:

Вот и все дела. Ответ задания:

Попутно замечу, что это задание мы решали рекуррентным способом. Это страшное слово означает, всего лишь, поиск члена прогрессии по предыдущему (соседнему) числу. Другие способы работы с прогрессией мы рассмотрим далее.

Из этого несложного задания можно сделать один важный вывод.

Если нам известен хотя бы один член и разность арифметической прогрессии, мы можем найти любой член этой прогрессии.

Запомнили? Этот несложный вывод позволяет решать большинство задач школьного курса по этой теме. Все задачи крутятся вокруг трёх главных параметров: член арифметической прогрессии, разность прогрессии, номер члена прогрессии. Всё.

Для примера рассмотрим некоторые популярные задания по этой теме.

2. Запишите конечную арифметическую прогрессию в виде ряда, если n=5, d = 0,4, и a1 = 3,6.

Здесь всё просто. Всё уже дано. Нужно вспомнить, как считаются члены арифметической прогрессии, посчитать, да и записать. Желательно не пропустить слова в условии задания: «конечную» и «n=5«. Чтобы не считать до полного посинения.) В этой прогрессии всего 5 (пять) членов:

Остаётся записать ответ:

3. Определите, будет ли число 7 членом арифметической прогрессии (an), если a1 = 4,1; d = 1,2.

Хм. Кто ж его знает? Как определить-то?

Как-как. Да записать прогрессию в виде ряда и посмотреть, будет там семёрка, или нет! Считаем:

Так, стоит считать дальше, или нет, как думаете?) Разумеется, нет! Запишем в виде ряда:

Сейчас чётко видно, что семёрку мы просто проскочили между 6,5 и 7,7! Не попала семёрка в наш ряд чисел, и, значит, семёрка не будет членом заданной прогрессии.

А вот задачка на основе реального варианта ГИА:

4. Выписано несколько последовательных членов арифметической прогрессии:

Найдите член прогрессии, обозначенный буквой х.

Здесь записан ряд без конца и начала. Нет ни номеров членов, ни разности d. Ничего страшного. Для решения задания достаточно понимать смысл арифметической прогрессии. Смотрим и соображаем, что можно узнать из этого ряда? Какие параметры из трёх главных?

Номера членов? Нет тут ни единого номера.

Остались сущие пустяки. Какое число будет предыдущим для икса? Пятнадцать. Значит, икс можно легко найти простым сложением. К 15 прибавить разность арифметической прогрессии:

Вот и всё. Ответ: х=12

6. Известно, что число 5,5 является членом арифметической прогрессии (an), где a1 = 1,6; d = 1,3. Определите номер n этого члена.

7. Известно, что в арифметической прогрессии a2 = 4; a5 = 15,1. Найдите a3.

8. Выписано несколько последовательных членов арифметической прогрессии:

Найдите член прогрессии, обозначенный буквой х.

9. Поезд начал движение от станции, равномерно увеличивая скорость на 30 метров в минуту. Какова будет скорость поезда через пять минут? Ответ дайте в км/час.

Ответы (в беспорядке): 7,7; 7,5; 9,5; 9; 0,3; 4.

Всё получилось? Замечательно! Можно осваивать арифметическую прогрессию на более высоком уровне, в следующих уроках.

Не всё получилось? Не беда. В Особом разделе 555 все эти задачки разобраны по косточкам.) И, конечно, описан простой практический приём, который сразу высвечивает решение подобных заданий чётко, ясно, как на ладони!

В этом уроке мы рассмотрели элементарный смысл арифметической прогрессии и её основные параметры. Этого достаточно для решения практически всех задач на эту тему. Прибавляй d к числам, пиши ряд, всё и решится.

Решение «на пальцах» хорошо подходит для очень коротких кусочков ряда, как в примерах этого урока. Если ряд подлиннее, вычисления усложняются. Например, если в задачке 9 в вопросе заменить «пять минут» на «тридцать пять минут», задачка станет существенно злее.)

А ещё бывают задания простые по сути, но несусветные по вычислениям, например:

Дана арифметическая прогрессия (an). Найти a121, если a1=3, а d=1/6.

И что, будем много-много раз прибавлять по 1/6?! Это же убиться можно!?

Можно.) Если не знать простую формулу, по которой решать подобные задания можно за минуту. Эта формула будет в следующем уроке. И задачка эта там решена. За минуту.)

Если Вам нравится этот сайт.

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

А вот здесь можно познакомиться с функциями и производными.

Источник

Арифметическая прогрессия

Арифметическая прогрессия – это ряд чисел, в котором каждое число, начиная со второго, равно предыдущему, сложенному с одним и тем же числом.

Числа, составляющие прогрессию, называются её членами. Число, которое следует прибавить к предшествующему члену, чтобы получить последующий, называется разностью арифметической прогрессии. Разность прогрессии может быть положительной, отрицательной или нулём.

Для определения разности данной арифметической прогрессии следует из последующего члена вычесть предшествующий (например, из второго члена вычесть первый).

Если разность прогрессии положительная, прогрессия называется возрастающей, если отрицательная — убывающей. Если разность равна нулю, то арифметическая прогрессия будет и невозрастающей и неубывающей, то есть получится просто ряд одинаковых членов.

13, 16, 19, 22, 25. — возрастающая прогрессия с разностью 3.

9, 9, 9, 9, 9. — прогрессия с разностью 0.

Характеристическое свойство

Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предшествующего и последующего членов.

где a — это член прогрессии, n — его порядковый номер (при n ⩾ 2).

Взяв любые три члена, следующие друг за другом (например: a+d, a+2d, a+3d), легко убедиться, что средний член, всегда будет равен среднему арифметическому соседних членов:

Источник

Арифметическая прогрессия

Арифметической прогрессией называют числовую последовательность, каждый следующий член которой получается из предыдущего прибавлением к нему постоянного числа. Это число называют разностью арифметической прогрессии и обозначают буквой \(d\).

Например, последовательность \(2\); \(5\); \(8\); \(11\); \(14\)… является арифметической прогрессией, потому что каждый следующий элемент отличается от предыдущего на три (может быть получен из предыдущего прибавлением тройки):

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

В этой прогрессии разность \(d\) положительна (равна \(3\)), и поэтому каждый следующий член больше предыдущего. Такие прогрессии называются возрастающими.

Однако \(d\) может быть и отрицательным числом. Например, в арифметической прогрессии \(16\); \(10\); \(4\); \(-2\); \(-8\)… разность прогрессии \(d\) равна минус шести.

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

И в этом случае каждый следующий элемент будет меньше, чем предыдущий. Эти прогрессии называются убывающими.

Обозначение арифметической прогрессии

Прогрессию обозначают маленькой латинской буквой.

Числа, образующие прогрессию, называют ее членами (или элементами).

Их обозначают той же буквой что и арифметическую прогрессию, но с числовым индексом, равным номеру элемента по порядку.

Например, арифметическая прогрессия \(a_n = \left\< 2; 5; 8; 11; 14…\right\>\) состоит из элементов \(a_1=2\); \(a_2=5\); \(a_3=8\) и так далее.

Иными словами, для прогрессии \(a_n = \left\<2; 5; 8; 11; 14…\right\>\)

порядковый номер элемента\(1\)\(2\)\(3\)\(4\)\(5\)
обозначение элемента\(a_1\)\(a_2\)\(a_3\)\(a_4\)\(a_5\)
значение элемента\(2\)\(5\)\(8\)\(11\)\(14\)

Решение задач на арифметическую прогрессию

В принципе, изложенной выше информации уже достаточно, чтобы решать практически любую задачу на арифметическую прогрессию (в том числе из тех, что предлагают на ОГЭ).

Пример (ОГЭ). Арифметическая прогрессия задана условиями \(b_1=7; d=4\). Найдите \(b_5\).
Решение:

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

В этой задаче нам дано начало цепочки (первый элемент) и шаг (разность). Зная их, мы легко можем восстановить прогрессию до любого нужного нам члена (в нашем случае – пятого).

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

Вот и все. Нужное нам значение найдено.

Пример (ОГЭ). Даны первые три члена арифметической прогрессии: \(62; 49; 36…\) Найдите значение первого отрицательного члена этой прогрессии..
Решение:

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

Нам даны первые элементы последовательности и известно, что она – арифметическая прогрессия. То есть, каждый элемент отличается от соседнего на одно и то же число. Узнаем на какое, вычтя из следующего элемента предыдущий: \(d=49-62=-13\).

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

Теперь мы можем восстановить нашу прогрессию до нужного нам (первого отрицательного) элемента.

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

Готово. Можно писать ответ.

Пример (ОГЭ). Даны несколько идущих подряд элементов арифметической прогрессии: \(…5; x; 10; 12,5. \) Найдите значение элемента, обозначенного буквой \(x\).
Решение:

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

Чтоб найти \(x\), нам нужно знать на сколько следующий элемент отличается от предыдущего, иначе говоря – разность прогрессии. Найдем ее из двух известных соседних элементов: \(d=12,5-10=2,5\).

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

А сейчас без проблем находим искомое: \(x=5+2,5=7,5\).

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

Готово. Можно писать ответ.

Пример (ОГЭ). Арифметическая прогрессия задана следующими условиями: \(a_1=-11\); \(a_=a_n+5\) Найдите сумму первых шести членов этой прогрессии.
Решение:

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

Нам нужно найти сумму первых шести членов прогрессии. Но мы не знаем их значений, нам дан только первый элемент. Поэтому сначала вычисляем значения по очереди, используя данное нам рекуррентное соотношение :

Искомая сумма найдена.

Пример (ОГЭ).В арифметической прогрессии \(a_<12>=23\); \(a_<16>=51\). Найдите разность этой прогрессии.
Решение:

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

Мы знаем \(12\)-ый и \(16\)-ый элементы – и больше ничего. Однако этого достаточно для того, чтобы найти разность. Нужно просто посмотреть на схему слева и понять, что мы можем получить \(16\)-ый элемент из \(12\)-го, «сделав 4 шага», то есть четыре раза прибавив разность прогрессии. Иными словами: \(a_<12>+d+d+d+d=a_<16>\).

Подставляем известные величины.

Вычисляем правую часть…

Важные формулы арифметической прогрессии

Как видите, многие задачи по арифметической прогрессии можно решать, просто поняв главное – то, что арифметическая прогрессия есть цепочка чисел, и каждый следующий элемент в этой цепочке получается прибавлением к предыдущему одного и того же числа (разности прогрессии).

Однако порой встречаются ситуации, когда решать «в лоб» весьма неудобно. Например, представьте, что в самом первом примере нам нужно найти не пятый элемент \(b_5\), а триста восемьдесят шестой \(b_<386>\). Это что же, нам \(385\) раз прибавлять четверку? Или представьте, что в предпоследнем примере надо найти сумму первых семидесяти трех элементов. Считать замучаешься…

Поэтому в таких случаях «в лоб» не решают, а используют специальные формулы, выведенные для арифметической прогрессии. И главные из них это формула энного члена прогрессии и формула суммы \(n\) первых членов.

Формула \(n\)-го члена: \(a_n=a_1+(n-1)d\), где \(a_1\) – первый член прогрессии;
\(n\) – номер искомого элемента;
\(d\) – разность прогрессии;
\(a_n\) – член прогрессии с номером \(n\).

Эта формула позволяет нам быстро найти хоть трехсотый, хоть миллионный элемент, зная только первый и разность прогрессии.

Пример. Арифметическая прогрессия задана условиями: \(b_1=-159\); \(d=8,2\). Найдите \(b_<246>\).
Решение:

Больше двухсот раз прибавлять \(8,2\) к \(-159\) – перспектива не самая радужная. Лучше воспользуемся формулой, подставив вместо \(n\) номер искомого элемента.

Можно писать ответ.

Формула суммы n первых членов: \(S_n=\frac <2>\cdot n\), где

\(S_n\) – искомая сумма \(n\) первых элементов;
\(a_1\) – первый суммируемый член;
\(a_n\) – последний суммируемый член;
\(n\) – количество элементов в сумме.

Пример (ОГЭ).Арифметическая прогрессия задана условиями \(a_n=3,4n-0,6\). Найдите сумму первых \(25\) членов этой прогрессии.
Решение:

Чтобы вычислить сумму первых двадцати пяти элементов, нам нужно знать значение первого и двадцать пятого члена.
Наша прогрессия задана формулой энного члена в зависимости от его номера (подробнее смотри здесь ). Давайте вычислим первый элемент, подставив вместо \(n\) единицу.

Теперь найдем двадцать пятый член, подставив вместо \(n\) двадцать пять.

Ну, а сейчас без проблем вычисляем искомую сумму.

Для суммы \(n\) первых членов можно получить еще одну формулу: нужно просто в \(S_<25>=\) \(\frac><2>\) \(\cdot 25\) вместо \(a_n\) подставить формулу для него \(a_n=a_1+(n-1)d\). Получим:

Формула суммы n первых членов: \(S_n=\) \(\frac<2a_1+(n-1)d><2>\) \(\cdot n\), где

\(S_n\) – искомая сумма \(n\) первых элементов;
\(a_1\) – первый суммируемый член;
\(d\) – разность прогрессии;
\(n\) – количество элементов в сумме.

Для решения задачи воспользуемся последней формулой. Первый элемент известен, нужно найти только разность прогрессии \(d\). Вычисляем ее как разность двух соседних элементов.

Теперь можно посчитать сумму \(33\)-ех элементов.

Готово. Быстро и просто, почти как Доширак. Но гораздо менее вредно.

Более сложные задачи на арифметическую прогрессию

Теперь у вас есть вся необходимая информация для решения практически любой задачи на арифметическую прогрессию. Завершим тему рассмотрением задач, в которых надо не просто применять формулы, но и немного думать (в математике это бывает полезно ☺)

Пример (ОГЭ).Найдите сумму всех отрицательных членов прогрессии: \(-19,3\); \(-19\); \(-18,7\)…
Решение:

Задача очень похожа на предыдущую. Начинаем решать также: сначала найдем \(d\).

Теперь бы подставить \(d\) в формулу для суммы… и вот тут всплывает маленький нюанс – мы не знаем \(n\). Иначе говоря, не знаем сколько членов нужно будет сложить. Как это выяснить? Давайте думать. Мы прекратим складывать элементы тогда, когда дойдем до первого положительного элемента. То есть, нужно узнать номер этого элемента. Как? Запишем формулу вычисления любого элемента арифметической прогрессии: \(a_n=a_1+(n-1)d\) для нашего случая.

Нам нужно, чтоб \(a_n\) стал больше нуля. Выясним, при каком \(n\) это произойдет.

Делим обе части неравенства на \(0,3\).

Переносим минус единицу, не забывая менять знаки

…и выясняется, что первый положительный элемент будет иметь номер \(66\). Соответственно, последний отрицательный имеет \(n=65\). На всякий случай, проверим это.

Таким образом, нам нужно сложить первые \(65\) элементов.

Пример (ОГЭ).Арифметическая прогрессия задана условиями: \(a_1=-33\); \(a_=a_n+4\). Найдите сумму от \(26\)-го до \(42\) элемента включительно.
Решение:

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

Для нашей прогрессии \(a_1=-33\), а разность \(d=4\) (ведь именно четверку мы добавляем к предыдущему элементу, чтоб найти следующий). Зная это, найдем сумму первых \(42\)-ух элементов.

Теперь сумму первых \(25\)-ти элементов.

Ну и наконец, вычисляем ответ.

Источник

Арифметическая прогрессия: определение, формулы, свойства

Арифметическая прогрессия – это числовая последовательность, в которой, начиная со второго числа, каждое последующее равняется предыдущему плюс постоянное слагаемое.

Общий вид арифметической прогрессии

d – шаг или разность прогрессии; это и есть постоянное слагаемое.

Члены прогрессии:

Цифры 1,2,3… – это их порядковые номера, т.е. место, которое они занимают в последовательности.

Свойства и формулы арифметической прогрессии

1. Нахождение общего n-ого члена ( an )

2. Разность прогрессии

Также для нахождения шага используется такая формула:

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

3. Характеристическое свойство

Последовательность чисел a1, a2, a3 является арифметической прогрессией, если для любого ее члена выполняется следующее условие:

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

4. Сумма первых членов прогрессии

Чтобы найти сумму первых членов арифметической прогрессии, необходимо воспользоваться формулой:

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

5. Сумма членов прогрессии с n-ого по m-ный

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

6. Сходимость прогрессии

Что такое разность арифметической прогрессии. Смотреть фото Что такое разность арифметической прогрессии. Смотреть картинку Что такое разность арифметической прогрессии. Картинка про Что такое разность арифметической прогрессии. Фото Что такое разность арифметической прогрессии

Источник

Арифметическая прогрессия и сумма ее членов

теория по математике 📈 последовательности

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же числом.

Другими словами, последовательность (аn) – арифметическая прогрессия, если для любого натурального числа n выполняется условие аn+1n+d, где d – некоторое число. Из данного равенства следует, что можно найти это число d, если вычесть из последующего члена предыдущий, то есть d = аn+1–аn. Число d называют разностью арифметической прогрессии.

Арифметической прогрессией, например, является ряд чисел 3; 8; 13; 18…. так как разница между числами равна 5, мы видим, что каждое последующее на 5 больше предыдущего.

Если известен первый член арифметической прогрессии a1 и разность d, то можно вычислить любой член арифметической прогрессии:

Этот ряд можно продолжать до бесконечности, поэтому надо запомнить, что n-ый член арифметической прогрессии можем получить быстрее, если к первому члену прогрессии добавить (n−1) разностей, то есть:

Формула n-ого члена арифметической прогрессии

где n – порядковый номер члена арифметической прогрессии, a1 – первый член прогрессии, d – разность арифметической прогрессии

Формулу используют, чтобы вычислить заданный член арифметической прогрессии (например, пятнадцатый, двухсотый и т.д.), если известны первый член последовательности и ее разность. Рассмотрим на примерах применение данной формулы.

Пример №1. Найти а20 арифметической прогрессии (аn), если а1=14, d=5. Составляем формулу для а20 и подставляем в нее данные: а20= a1 + d(20−1)=14+5(20−1)=109. Таким образом, мы вычислили, что на 20-ом месте в данной арифметической прогрессии стоит число 109.

Найти а7 арифметической прогрессии (аn), если а1=−8, d=−3. Аналогично работаем, составляя формулу и подставляя в нее данные значения (обращаем внимание на знаки чисел, чтобы не допустить ошибок): а7= a1 + d(7−1)= −8−3(7−1)= −26.

Дана арифметическая прогрессия 10; 12; 14;…… Найти а12. Здесь для нахождения а12 надо сначала найти разность d: d=12−10=2, то есть из последующего вычтем предыдущее. Можно было 14−12, порядок здесь не имеет значения, главное берем два соседних члена прогрессии. Теперь можем составлять формулу и находить а12: а12= a1 + d(12−1)=10+2(12−1)=32.

Любая арифметическая прогрессия может быть задана формулой вида an=kn+b, где k и b некоторые числа. Верно и обратное утверждение: если последовательность чисел задана формулой вида an=kn+b, где k и b некоторые числа, то она является арифметической.

Так, например, формула an=5n+1 задает арифметическую прогрессию, в которой разность d равна 1; по данной формуле можно найти любой член последовательности, например, найдем 20-ый член, подставляя в формулу число 20: a20=5 × 20+1=101.

Свойство арифметической прогрессии

Каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предыдущего и последующего членов. Формула:

Другими словами, используя данное свойство, мы можем найти член арифметической прогрессии, стоящий между двумя известными членами, без использования разности d. Рассмотрим это на примерах.

Пример №2. Найти а10 арифметической прогрессии (аn), если а9=24; а11=38. Здесь используем свойство, так как видим, что у а10 известны соседние члены. Значит, а10=(а911):2=(24+38):2=31. Таким образом, десятый член равен 31.

Дана арифметическая прогрессия …..23; х; 35. Найти х. Применяем свойство для нахождения х: х=(23+35):2=29. Для наглядности запишем, что ряд чисел выглядит так: …23; 29; 35.

Формулы суммы n первых членов арифметической прогрессии

В данной формуле мы видим, что для нахождения суммы нужны первый и последний член прогрессии. Но встречаются случаи, когда аn не известно, но известна разность. Тогда для нахождения суммы применяют вторую формулу.

Формула суммы членов арифметической прогрессии с первым членом и разностью

Рассмотрим на примерах применение данных формул.

Пример №3. Найти сумму первых пятидесяти членов арифметической прогрессии (аn), если а1=11, а50=39.

Для решения лучше использовать первую формулу, так как здесь есть первый и последний члены: а1=11, а50=39. Поэтому составляем формулу, подставляем в нее данные значения и вычисляем:

Найти сумму первых десяти членов арифметической последовательности 3; 18; …. В данном случае задание можно выполнить двумя способами, как по первой формуле, так и по второй, а затем выяснить, какой способ короче, а значит, рациональнее.

Способ №1 (по первой формуле): надо найти разность d, затем десятый член прогрессии, а затем сумму:

Способ №2 (по второй формуле): надо знать разность d, d=18-3=15. Теперь подставим значения во вторую формулу и сосчитаем результат:

Результаты в обоих случаях получились у нас одинаковые. А если сравнить два способа, то видно, что второй способ быстрее, тем более что в большинстве случаев разность арифметической прогрессии можно вычислить устно.

Таким образом, выбор формулы для нахождения суммы n первых членов арифметической прогрессии зависит от заданного условия.

-6-8=-14 через 1 минуту

-14-8=-22 через 2 минуты

-22-8=-30 через 3 минуты

-30-8=-38 через 4 минуты

-38-8=-46 через 5 минут

-46-8=-54 через 6 минут

Вторым способом является решение по формуле n-ого члена арифметической прогрессии, которая есть также и в справочном материале, т.е. an=a1+d(n – 1). В данном случае a1=-6; d=-8, n=7 (так как ЧЕРЕЗ 6 минут). Подставим значения в формулу: a7=-61-8(7 – 1). Вычислим: a6=-6-8 ∙ 5=-6-48=-54.

pазбирался: Даниил Романович | обсудить разбор | оценить

Содержание данной задачи говорит нам о том, что здесь есть арифметическая прогрессия, так как число жителей города возрастало на одну и ту же величину.

2008 г – 38100 человек

2016 г. – 43620 человек

Итак, можно вычислить прирост населения с 2008 по 2016 ежегодно:

(43620 – 38100):(2016 – 2008)= 5520:8=690 человек.

Теперь можно найти, сколько человек проживало в конце 2012 года.

38100+690(2016 – 2012)= 40860 человек

pазбирался: Даниил Романович | обсудить разбор | оценить

pазбирался: Даниил Романович | обсудить разбор | оценить

В содержании задачи есть фраза, что акции дорожали ежедневно на одну и ту же сумму, следовательно, имеем арифметическую прогрессию. Итак, определяем, что известно: в 7-й день акция стоила 777 рублей, это а7=777; в 12-й день – 852 рубля, это а12=852. Известно, что акции дорожали 25 дней, а найти надо стоимость акции в последний, т.е. в 25-ый день, значит, будем искать а25.

1 способ:

В данной арифметической прогрессии нет первого члена, не идет речь про сумму, поэтому воспользуемся формулой аn=ak+d(n – k), где n>k. Числа n и k – это порядковые номера. Составим формулу для наших данных и подставим в неё значения: а127+d(12-7); 852=777+d(12 – 7). Упростим выражение и найдем разность d, 852–777= d(12 – 7); 75= d∙5; отсюда d=75:5=15. Итак, мы нашли, что акции ежедневно дорожали на 15 рублей.

Теперь, зная число d, мы можем найти а25 через, например, а12, используя всё ту же формулу. Получаем: а2512+d(25-12); а25=852+15(25-12)=852+15∙13= 852+195=1047. Значит, 1047 рублей стоила акция в последний день.

2 способ:

pазбирался: Даниил Романович | обсудить разбор | оценить

В условии задачи встречаются слова, что норма увеличивалась на одно и то же число. И это значит, что мы имеем арифметическую прогрессию, в которой а1=6, так как в первый день перевезли 6 тонн. Далее, известно, что вся работа была выполнена за 11 дней, значит число n=11. Так как масса всего щебня равна 176, то это число является суммой нашей прогрессии, т.е. S11=176. Требуется найти, сколько тонн было перевезено в последний день, а он – 11, значит, найти надо а11.

pазбирался: Даниил Романович | обсудить разбор | оценить

Из содержания данной задачи видно, что время процедуры увеличивалось с каждым днем на одно и то же количество времени – на 15 минут, следовательно, это арифметическая прогрессия. Так как в первый день курс был 15 минут, то а1=15; так как время ежедневно увеличивалось на 15 минут, то значит разность d=15; зная, что продолжительность процедуры должна достигнуть 1 ч 15 мин, т.е. достигнуть 75 минут (1 час=60 мин, плюс 15 минут), то это число 75 и будет являться n членом арифметической прогрессии. Требуется найти, в какой по счету день продолжительность процедуры достигнет этих 75 минут, т.е. найдем число n.

Теперь берем формулу n члена арифметической прогрессии аn=a1+d(n – 1) и подставляем в неё наши данные: 75=15+15(n – 1); упростим данное выражение: 75-15=15(n – 1); 60=15(n – 1); разделим на 15 обе части: 4=n – 1; найдем отсюда, что n=5. Таким образом, на пятый день продолжительность процедуры достигнет 75 минут.

pазбирался: Даниил Романович | обсудить разбор | оценить

Анализируя содержание задачи, мы видим, что улитка проползала ежедневно на одно и то же расстояние меньше, чем в предыдущий день. А это значит, что имеем арифметическую прогрессию. По условию определяем данные: так как в первый и последний дни она проползла 7,5 м, то имеем, что а1n=7,5. Так как расстояние между деревьями равно 60 м, то имеем сумму n первых членов прогрессии, т.е. Sn=60. Так как найти надо количество дней, которое она потратила на весь путь, то искомым числом будет число n.

Зная формулу суммы n первых членов арифметической прогрессии

pазбирался: Даниил Романович | обсудить разбор | оценить

При анализе содержания задачи мы видим, что каждую минуту количество осадка увеличивается на одно и то же число, на 0,2 г. А это значит, что имеем арифметическую прогрессию, в которой первый член равен 0,2, так как по условию в первую минуту образовалось 0,2 г осадка. Разность арифметической прогрессии равна также 0,2, так как каждую минуту на это количество увеличивается количество осадков. Найти нужно седьмой член последовательности.

Итак, имеем а1=0,2; d=0,2. Ищем а7. По определению n-ого члена арифметической прогрессии имеем формулу аn=a1+d(n – 1). Подставим в нее наши данные: а7=a1+d(7 – 1)=0,2+0,2·6=1,4

pазбирался: Даниил Романович | обсудить разбор | оценить

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *