Что такое развернутая запись числа
Позиционные системы счисления
Позиционной называют систему счисления, в которой положение (позиция) цифры определяет вес числа. Основные виды позиционных систем:
Немного истории
Первыми в истории человечества позиционную систему счисления применяли индейцы майя примерно 500 лет до нашей эры. Она использовалась для составления календарей и имела в основании число 20.
Современная позиционная система счисления уходит корнями в Индию, в V век нашей эры. И несмотря на то, что в ней используются арабские цифры, именно индусы стали ее основоположниками. А за счет удобных форм записи и выполнения арифметических действий, создание позиционной системы дало мощный толчок развитию математики.
Основание и алфавит
Например, с помощью трех цифр 0, 1 и 2 можно составить троичную систему счисления. Все правила построения чисел будут при этом соответствовать другим позиционным системам: двоичной, десятичной и так далее. А ее основание будет равно трем:
Разряд числа
Разряд — это место, позиция цифры в записи числа. Например, в 125: цифра 5 относится к разряду единиц, 2 — к разряду десятков, 5 — к разряду сотен. Данное число можно также представить в виде суммы 100 + 20 + 5 и выделить основание системы в каждом слагаемом в той или иной степени:
12510 = 1 ∙ 100 + 2 ∙ 10 + 5 ∙ 1 = 1 ∙ 10 2 + 2 ∙ 10 1 + 5 ∙ 10 0
Если обратить внимание на показатели степени, то наблюдается закономерность — соответствие порядковому номеру цифры слева направо, начиная с нуля:
Цифра | 1 | 2 | 5 |
---|---|---|---|
Порядковый номер слева направо | 2 | 1 | 0 |
Показатель степени основания | 2 | 1 | 0 |
Развернутая форма записи числа
Данный способ записи числа действует и для любой другой позиционной системы счисления и называется развернутой формой:
где A — число, q — основание системы счисления, а n — количество разрядов числа. При этом свернутой формой будет запись вида:
Например, развернутая форма числа 753 в восьмеричной системе счисления будет иметь следующий вид:
7538 = 7 ∙ 8 2 + 5 ∙ 8 1 + 3 ∙ 8 0
Представление дробей
Если же необходимо представить в развернутой форме дробь, то формула будет следующей:
где A — число, q — основание системы счисления, n — количество целых разрядов, а m — количество дробных разрядов числа. Свернутой формой, соответственно, является запись вида:
Например, для 1001,101 в двоичной системе счисления развернутая форма будет выглядеть так:
Плюсы и минусы позиционных систем
Главным удобством позиционной системы счисления является то, что запись больших чисел имеет краткую и удобную форму. Это также стало причиной их использования в программировании: большие числа занимают в данной форме меньшее количество памяти ЭВМ.
Что такое развернутая запись числа
Любой вид информации можно представить в виде чисел. Кодирование информации с помощью чисел осуществляется по определённым правилам. Для понимания этих правил, разберём логику образования любого числа.
| Система счисления – это правила записи чисел с помощью знаков – цифр и операций над ними.
Любое число, в данной системе счисления, образуется путём повторения одинаковых элементов (палочка, камешек, ракушка и т.д.).
Данная система счисления позволяет записывать только натуральные числа и запись «большого» числа получается очень громоздкой.
В дальнейшем, у человечества возникла необходимость производить серьёзные подсчёты. Для этого были придуманы непозиционные системы счисления.
| Непозиционная система счисления – это система счисления, в которой цифра не изменяет своего значения, от изменения позиции в числе.
Египетская система счисления
Кириллическая система счисления
Римская система счисления
| Позиционная система счисления – это система счисления, в которой цифра изменяет своё значения, при изменении позиции в числе.
Вспомним, что любое число в десятичной (арабской) системе счисления можно разложить на разряды. Например, в числе 753 цифра 7 обозначает сотни (700), цифра 5 – десятки (50), цифра 3 – единицы. Таким образом, число можно представить, как:
753 = 7 * 100 + 5 * 10 + 3 * 1
| Алфавит системы счисления – совокупность всех её цифр.
| Основание системы счисления – указывает на количество цифр в данной системе счисления.
Алфавит десятичной системы счисления состоит из цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Следовательно, основанием данной системы счисления является 10.
Тогда, любое число будем записывать по правилу, с указанием основания данной системы счисления:
Число читается, как «семьсот пятьдесят три по основанию десять» или «семьсот пятьдесят три в десятичной системе счисления».
| Разряд – это позиция цифры в числе (нумерация в целых числах производится с права налево, начиная с нуля).
Укажем разряд каждой цифры в числе 753:
Развёрнутая форма представления чисел
В результате разбиения числа на разряды, любое такое число можно представить в развёрнутой форме.
Формула развёрнутой формы представления чисел:
q – основание системы счисления;
a – цифра данного числа;
n – число разрядов в числе.
Представим число 75310 в развёрнутой форме.
1) Определим позиции каждой цифры в числе:
Каждую цифру в числе, умножим в соответствии занимаемой позицией:
Для упрощения данной записи, представим данное число, как основание 10 в степени n:
Запишем полученный результат.
Обратите внимание, что степень основания числа совпадает с позицией каждой цифры в числе!
Перевод числа в десятичную систему счисления
С помощью развёрнутой формы представления чисел можно перевести число из любой системы счисления в десятичную.
✒ Определение: каждую цифру числа нужно умножить на его основание, возведённое в степень, равную позиции цифры в числе.
Двоичная система счисления
Алфавит системы счисления: 0, 1.
Перевод десятичного числа в двоичную систему счисления методом подбора степеней числа 2
Для перевода двоичных чисел в десятичную систему счисления, используют метод подбора степеней двойки.
Пусть дано десятичное число 2110.
1) Подберём ближайшую наименьшую степень числа 2 к данному числу: 2 4 = 16;
3) Повторить, пока не достигнем нуля.
В результате, мы получим следующие степени:
Найденные нами степени – это позиции цифры 1 в двоичном числе, а отсутствующие степени – это нули:
Перевод целого десятичного числа в другую систему счисления методом деления на новое основание
✒ Определение: Для перевода целого десятичного числа в другую систему счисления, необходимо делить данное число на новое основание (той системы счисления, в которую необходимо осуществить перевод). Ответ складывается из остатков от деления.
Переведите число 1310 в двоичную систему счисления.
Арифметические операции в двоичной системе счисления
Все вычисления в компьютере выполняются в двоичной системе счисления.
Рассмотрим базовые арифметические операции.
Кодирование числовой информации в памяти компьютера
Для представления целого числа без знака в памяти компьютера, необходимо:
1. перевести число в двоичную систему счисления;
2. поместить число в ячейку памяти компьютера;
3. заполнить пустые ячейки незначащими нулями.
Представьте число 5610 в компьютерной форме.
1. переведём число в двоичную систему счисления:
2. число состоит из 6 разрядов и помещается в одну ячейку:
3. дополним незначащими нулями:
Диапазон значений целых чисел без знака
Хранение чисел со знаком отличается от беззнаковой формы.
Знак «+» принято обозначать за «0», а знак «–» за «1». Знак записывается в старший бит ячейки. Для хранения таких чисел выделяют 1, 2 или 4 байта.
Для представления целого числа со знаком «+» в памяти компьютера, необходимо:
1. перевести число в двоичную систему счисления;
2. поместить число в ячейку памяти;
3. выделить старший бит ячейки под знак и поставить на это место нуль.
4. заполнить оставшиеся биты незначащими нулями.
Представьте число +29210 в компьютерной форме.
1. переведём число в двоичную систему счисления:
2. число состоит из 9 разрядов и для хранения требует двух ячеек:
3. число положительное, значит в старший бит необходимо поместить нуль:
4. заполним оставшиеся биты незначащими нулями:
Для представления целого числа со знаком «–» в памяти компьютера применяют метод прямого и обратного кода:
1. перевести модуль данного числа в двоичную систему;
2. Прямой код: поместить число в ячейку памяти и дополнить его незначащими нулями;
3. Обратный код: выполнить инверсию (заменить нули на единицы и наоборот);
4. Дополнительный код: увеличить получившееся число на единицу.
Представьте число –8710 в компьютерной форме.
1. переведём модуль числа в двоичную систему счисления:
2. число состоит из 7 разрядов и помещается в одну ячейку. Поместим число в ячейку и дополним незначащими нулями:
4. прибавляем к числу единицу:
Обратите внимание на старший бит. Здесь 1 – это знак числа.
Переводы
1. Выполните перевод чисел из двоичной системы счисления в десятичную систему методом развёрнутой формы представления числа:
а) 11002 | д) 11000112 | з) 10011101110002 |
б) 110002 | е) 1001011012 | к) 10010000101112 |
в) 1010102 | ж) 1011101102 | л) 1011101011112 |
г) 11000112 | з) 1111112 | м) 11111112 |
2. Выполните перевод из десятичной системы счисления в двоичную методом подбора степеней числа 2:
а) 42 | д) 232 | з) 400 |
б) 97 | е) 286 | к) 405 |
в) 111 | ж) 309 | л) 528 |
3. Выполните перевод из десятичной системы счисления в двоичную методом деления на новое основание:
а) 20 | д) 100 | з) 568 |
б) 31 | е) 102 | к) 443 |
в) 49 | ж) 127 | л) 500 |
г) 96 | з) 269 | м) 600 |
Арифметические операции в двоичной СС
4. Выполните сложение чисел:
а) 10012 + 11002 | д) 1000012 + 110002 |
б) 10102 + 10102 | е) 1011102 + 10101002 |
в) 1110012 + 1101102 | ж) 10111112 + 10111112 |
г) 1010102 + 1100112 | з) 11110112 + 11110012 |
5. Выполните вычитание чисел:
6. Выполните умножение чисел:
а) 11002 × 1012 | д) 1011002 × 10112 |
б) 10102 × 1112 | е) 1011112 × 11012 |
в) 110112 × 10112 | ж) 1011012 × 11112 |
г) 111102 × 10112 | з) 1010112 × 11102 |
7. Найти значение выражения:
Кодирование чисел
8. Представьте целое десятичное число со знаком в памяти компьютера. Сколько ячеек памяти нужно выделить для хранения данного числа?
а) +25 | д) +204 | з) +512 |
б) +64 | е) +212 | к) +4096 |
в) +96 | ж) +256 | л) +32256 |
г) +128 | з) +302 | м) +65536 |
9. Представьте целое десятичное число со знаком в памяти компьютера. Сколько ячеек памяти нужно выделить для хранения данного числа?
10. Дано внутреннее представление целого числа со знаком. Какому десятичному числу оно соответствует?