Что такое реальная и идеальная жидкость
Типы жидкостей, рассматриваемых в гидравлике
В гидравлике применяют понятия реальной и идеальной жидкостей.
Реальной считается такая жидкость, которая обладает всеми физическими свойствами жидкости и является легкоподвижной и однородной.
Идеальной называют такую жидкость, которая не обладает свойствами температурного расширения, сжимаемости и вязкости, т.е. имеет идеальную подвижность. В природе таких жидкостей не существует и понятие идеальной жидкости введено для упрощения решения ряда гидравлических задач.
Реальная жидкость отличается от идеальной прежде всего тем, что при ее движении возникают касательные напряжения (внутреннее трение). В покоящейся нормальной жидкости касательные напряжения всегда отсутствуют, поэтому в гидростатике нет необходимости различать реальную и идеальную жидкости.
Использование модели идеальной жидкости позволяет проводить исследования движущихся жидкостей с применением современного математического аппарата. Чтобы перейти от идеальных жидкостей к реальным, следует или учесть напряжения и деформации, которые возникают в реальных жидкостях, или ввести дополнительно коэффициенты, полученные для реальных жидкостей экспериментальным путем.
В гидравлике принято еще одно допущение. Жидкость рассматривается как непрерывная, сплошная среда, заполняющая пространство без пустот и промежутков. Исходя из этого, считают, что и физические характеристики, определяющие состояние и движение жидкости, распределяются и изменяются в занятом ею объеме непрерывно.
Чем отличается идеальная жидкость от реальной
Чтобы легче усваивать законы движения жидкости, ученые ввели понятие «идеальная и реальная жидкость».
Идеальная – невязкая жидкость. В ней нет сил трения, касательных напряжений, поэтому под воздействием внешних сил такая жидкость не изменяется в объеме. В реальной жизни такой жидкости не существует.
Реальной жидкостью называется жидкость, характеризующаяся вязкостью. В ней присутствуют силы трения и напряжения. Поэтому она сжимается, сопротивляется, обладает подвижностью.
Вязкость и реальная жидкость
Любой реальной жидкости присуща определенная степень вязкости. Благодаря этому при относительном сдвиге смежных частиц жидкости возникает внутреннее трение. Существуют легко подвижные жидкости – воздух, вода. Какие жидкости называют реальными высоковязкими? Те, в которых сопротивление сдвигу значительно. Это тяжелые масла, глицерин.
Вязкость характеризует подвижности частиц жидкости, ее текучесть. На этом построен закон внутреннего трения Ньютона. По нему при течении жидкости между ее слоями образуются касательные напряжения, которые пропорциональны градиенту скорости.
Реальные жидкости делятся на:
Ньютоновские реальные жидкости это жидкости, при движении одного слоя которых относительно другого величина касательных напряжений (внутреннего трения) пропорциональна скорости сдвига. При относительном покое эти напряжения равны нулю.
Неньютоновские. Обладают большой подвижностью и отличаются от ньютоновских жидкостей наличием касательных напряжений (внутреннего трения) в состоянии покоя, величина которых зависит от вида жидкости.
Основные физические свойства реальных жидкостей
Также к свойствам относятся газосодержание, испарение, кипение, теплоемкость и др.
Информация о реальной жидкости – это в гидравлике теоретическая основа. Законы равновесия и движения жидкости, эксперименты, связанные с ними, позволяют решать инженерные задачи. Полученные расчеты и выводы применяются при конструировании систем кондиционирования, вентиляции, газопроводов.
Течение жидкости и уравнение Бернулли для новичков
Как закон Всемирного Тяготения Ньютона действовал задолго до самого Ньютона, так и уравнение Бернулли существовало задолго до того, как родился сам Бернулли. Ему удалось лишь облечь это уравнение в наглядную форму, в чем его неоспоримая и огромная заслуга. Зачем мне уравнение Бернулли, спросите Вы, ведь я прекрасно жил и без него. Да, но оно может пригодиться Вам хотя бы на экзамене по гидравлике! Как говорится, «все не так уж плохо, если ты знаешь и можешь сформулировать уравнение Бернулли».
Кто такой Бернулли?
Даниил Бернулли – сын известного ученого Якоба Бернулли, швейцарский математик и физик. Жил с 1700 по 1782 годы, а с 1725 по 1733 трудился в Петербургской Академии наук. Помимо физики и математики Бернулли также изучал медицину наряду с Д’Аламбером и Эйлером считается отцом основателем математической физики. Успехи этого человека позволяют с уверенностью сказать, что это был настоящий «супермозг».
Д. Бернулли (1700-1782)
Идеальная жидкость и течение идеальной жидкости
Помимо известной нам материальной точки и идеального газа существует также идеальная жидкость. Какой-нибудь студент, конечно, может подумать, что эта жидкость – его любимое пиво или кофе, без которого невозможно жить. Но нет, идеальная жидкость – это жидкость, которая абсолютно несжимаема, лишена вязкости и теплопроводности. Тем не менее, такая идеализация дает вполне хорошее описание движения реальных жидкостей в гидродинамике.
Течением жидкости называется движение ее слоев относительно друг друга или относительно всей жидкости.
Помимо того есть разные режимы течения жидкости. Нас интересует тот случай, когда скорость потока в какой-то конкретной точке не меняется со временем. Такой поток называют стационарным. При этом скорость течения в различных точках стационарного потока может различаться.
Поток жидкости– совокупность частиц движущейся жидкости.
Вывод уравнения Бернулли
Но как описать движение жидкости? Для этого нам нужно знать вектор скорости частиц, точнее зависимость его от времени. Совокупность скоростей в разных точках потока дает поле вектора скорости.
Рассмотрим стационарное течение жидкости по трубке. В одном месте сечение этой трубки равно S1, а в другой – S2. При стационарном потоке через оба сечения за одинаковый промежуток времени пройдет одинаковое количество жидкости.
Данное уравнение – уравнение неразрывности струи.
К выводу уравнения Бернулли
Узнав его, Бернулли решил установить связь между давлением и скоростью жидкости в разных сечениях. Полное давление – это сумма статистического (обусловлено потенциальной энергией жидкости) и динамического давлений (обусловлено кинетической энергией). Оказывается, сумма статического и динамического давлений в любом сечении трубы постоянна. Само же уравнение Бернулли имеет вид:
Смысл уравнения Бернулли
Физический смысл уравнения Бернулли. Уравнение Бернулли является следствием закона сохранения энергии. Первый член уравнения Бернулли – это кинетическая энергия, второе слагаемое уравнения Бернулли – потенциальная энергия в поле силы тяжести, третье – работа силы давления при подъеме жидкости на высоту h.
Вот и все, друзья, не так уж и страшно. Совсем немного времени, а Вы уже знаете уравнение Бернулли. Даже если Вы не знаете больше ничего, с этими знаниями идти на экзамен или зачет гораздо лучше, чем просто так. А если Вам необходима помощь в том, как решать задачи на уравнение Бернулли – не стесняйтесь и оформляйте заявку. После того как наши авторы распишут решение уравнения Бернулли максимально подробно, у Вас не останется пробелов в знаниях.
Основные физические свойства жидкостей. Идеальная и реальная жидкости
Предмет гидравлики, основные понятия и методы
Гидравлика — это наука, которая изучает законы покоя и движения жидких тел и рассматривает их приложения к решению конкретных технических задач.
Гидравлика — одна из самых древних наук в мире, состоящая из двух разделов: гидростатики и гидродинамики. Гидростатика изучает законы равновесия (покоя) жидкости, гидродинамика — законы движения жидкостей.
Наиболее важными физическими свойствами жидкостей являются плотность, сжимаемость и вязкость. Плотностью жидкости называется количество вещества, содержащегося в единице объема.
Сжимаемость — способность жидкости уменьшать объем под действием внешних нагрузок. Вязкость — способность жидкости оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Из других характеристик жидкости для пожарных важны свойства температурного расширения, парообразования и поверхностного натяжения. Температурное расширение — способность жидкости изменять объем под влиянием температуры.
Парообразование — способность жидкости переходить из жидкого в газообразное состояние. Процесс парообразования на поверхности жидкости, происходящий независимо от температуры и давления, называют испарением. Процесс парообразования в толще жидкости происходит при определенных температурах и давлении, и его называют кипением.
Поверхностное натяжение — способность жидкости образовывать устойчивую пленку на поверхности раздела с газом.
Напо́р, в гидравлике и гидродинамике — давление жидкости, выражаемое высотой столба жидкости над выбранным уровнем отсчёта. Выражается в линейных единицах.
Давление. Силы, действующие на жидкость, делятся на поверхностные (силы давления, внутреннего трения) и массовые (силы тяжести, инерции). Поверхностные силы, действующие на покоящуюся жидкость, распределены по ее граничным поверхностям и могут быть только нормальными (перпендикулярными) к этим поверхностям. Сила, действующая на единицу площади поверхности жидкости перпендикулярно к этой поверхности, называется гидростатическим давлением. Давление измеряют в паскалях (Па) или в метрах водяного столба (м вод. ст.). Паскаль — давление, вызываемое силой 1 Н, равномерно распределенной по поверхности площадью 1 м2. Различают давление абсолютное, атмосферное и избыточное. Если при определении гидростатического давления принимают во внимание и атмосферное давление, действующее на свободную поверхность жидкости, то давление называют абсолютным.
Значение атмосферного давления зависит от высоты расположения места над уровнем моря. Например, атмосферное давление на уровне моря примерно равно 105 Па (10,33 м вод. ст.), на высоте 5,5—6 км — в 2 раза меньше.
Избыток абсолютного давления над атмосферным называют избыточным, или манометрическим, давлением. Давление меньше атмосферного — вакуум, или отрицательное избыточное давление.
В пожарной охране для измерения давления используют манометры и мановакуумметры. Основной деталью манометра является согнутая по дуге окружности полая трубка, имеющая в сечении овальную форму. Один конец трубки запаян. Измеряемое давление подводят внутрь трубки через ее открытый конец. Под действием давления трубка стремится выпрямиться за счет разности давлений на ее внешнюю и внутреннюю стороны. При выпрямлении стрелка манометра, связанная со свободным запаянным концом трубки через передаточный механизм, поворачивается на некоторый угол, пропорциональный величине измеряемого давления. Некоторые трубчатые манометры измеряют как избыточное давление, так и вакуум. Такие приборы называют мановакуумметрами. При разрежении пружинная трубка сжимается, что фиксируется передаточным устройством.
Расход. Движущийся поток жидкости имеет скорость v и давление Р. Поток считают установившимся, если скорость и давление в точках потока не изменяются во времени. Обычно расходом называют количество жидкости, протекающей через поперечное сечение потока F в единицу времени. В гидравлике обычно имеют дело с объемным расходом, который измеряют в литрах в секунду или в минуту (л/с, л/мин) или в кубических метрах в час (м3/ч).
Одним из прикладных разделов гидромеханики является гидравлика, которая решает определенный круг технических задач и вопросов. Прикладной характер этого раздела подчеркивает само слово «гидравлика», которое образовано из греческих слов hydor — вода и aulos — трубка. Поэтому гидравлика рассматривается как наука о законах равновесия и движения жидкостей и о способах приложения этих законов для решения практических задач.
Гидравлика изучает в первую очередь течения жидкостей в различных руслах, т.е. потоки, ограниченные стенками. В понятие «русло» мы будем включать все устройства, ограничивающие поток, в том числе трубопроводы, проточные части насосов, зазоры и другие элементы гидравлических систем. Таким образом, в гидравлике изучаются в основном внутренние течения и решаются «внутренние» задачи.
Практическая гидравлика изучает течения как безнапорные — течения в открытых руслах (реки, каналы, водосливы), так и напорные — в закрытых руслах (трубопроводы, насосы, элементы гидравлических систем). Вопросы течения жидкости в закрытых руслах с давлениями, отличными от атмосферного, приобрели особую важность в современном машиностроении.
Основные физические свойства жидкостей. Идеальная и реальная жидкости
Жидкостью называется физическое тело, обладающее свойством текучести, т. е. не имеющее способности самостоятельно сохранять свою форму. Жидкости, законы движения и равновесия которых изучаются в гидравлике, делятся на два класса: сжимаемые жидкости или газы, почти несжимаемые — капельные жидкости.
В гидравлике рассматриваются идеальные и реальные жидкости. Идеальной называется такая жидкость, между частицами которой отсутствуют силы внутреннего трения. Вследствие этого она не сопротивляется касательным силам сдвига и силам растяжения. Идеальная жидкость совершенно не сжимается — она оказывает бесконечно большое сопротивление силам сжатия. Такой жидкости в природе не существует —- это научная абстракция, необходимая для упрощения анализа общих законов механики применительно к жидким телам.
Реальная, или действительная, жидкость не обладает в совершенстве свойствами идеальной жидкости, она в некоторой степени сопротивляется касательным и растягивающим усилиям, а также отчасти сжимается. Для решения многих задач гидравлики этим отличнем в свойствах идеальной и реальной жидкостей можно пренебречь. В связи с этим законы, выведенные для идеальной жидкости, могут быть применены к жидкостям реальным с соответствующими поправками, а иногда даже без них.
СВОЙСТВА: плотность, удельный вес, упругость, вязкость, текучесть, сохранение объема, образование свободной поверхности и поверхностное натяжение, испарение и конденсация, кипение, смачивание, смешиваемость, диффузия, перегрев и переохлаждение.
Основным свойством жидкостей является текучесть. Если к участку жидкости, находящейся в равновесии, приложить внешнюю силу, то возникает поток частиц жидкости в том направлении, в котором эта сила приложена: жидкость течёт. Таким образом, под действием неуравновешенных внешних сил жидкость не сохраняет форму и относительное расположение частей, и поэтому принимает форму сосуда, в котором находится.
В отличие от пластичных твёрдых тел, жидкость не имеет предела текучести: достаточно приложить сколь угодно малую внешнюю силу, чтобы жидкость потекла.
Одним из характерных свойств жидкости является то, что она имеет определённый объём (при неизменных внешних условиях). Жидкость чрезвычайно трудно сжать механически, поскольку, в отличие от газа, между молекулами очень мало свободного пространства. Давление, производимое на жидкость, заключенную в сосуд, передаётся без изменения в каждую точку объёма этой жидкости (закон Паскаля, справедлив также и для газов). Эта особенность, наряду с очень малой сжимаемостью, используется в гидравлических машинах.
Жидкости обычно увеличивают объём (расширяются) при нагревании и уменьшают объём (сжимаются) при охлаждении. Впрочем, встречаются и исключения, например, вода сжимается при нагревании, при нормальном давлении и температуре от 0 °C до приблизительно 4 °C. А, например, тормозная жидкость в автомобилях, сжимается очень плохо.
Под плотностью жидкости понимается масса единицы объёма жидкости:
Вязкость. При движении реальных (вязких) жидкостей в них возникают внутренние напряжения, обусловленные силами внутреннего трения жидкости. Природа этих сил довольно сложна; возникающие в жидкости напряжения связаны с процессом переноса импульса (вектора массовой скорости движения жидкости). При этом возникающие в жидкости напряжения обусловлены двумя факторами: напряжениями, возникающими при деформации сдвига и напряжениями, возникающими при деформации объёмного сжатия.
Наличие сил вязкостного трения в движущейся жидкости подтверждается простым и наглядным опытом. Если в цилиндрическую ёмкость, заполненную жидкостью опустить вращающийся цилиндр, то вскоре придёт в движение (начнёт вращаться вокруг своей оси в том же направлении, что и вращающийся цилиндр) и сама ёмкость с жидкостью. Этот факт свидетельствует о том, что вращательный момент от вращающегося цилиндра был передан через вязкую жидкость самой ёмкости, заполненной жидкостью.
Вязкость — это свойство жидкости проявлять внутреннее трение при её движении, обусловленное сопротивлением взаимному сдвигу её частиц. В покоящейся жидкости вязкость не проявляется. Количественно вязкость может быть выражена в виде динамической или кинематической вязкости, которые легко переводятся одна в другую.
ОБРАЗОВАНИЕ СВОБОДНОЙ ПОВЕРХНОСТИ И ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ
Из-за сохранения объёма жидкость способна образовывать свободную поверхность. Такая поверхность является поверхностью раздела фаз данного вещества: по одну сторону находится жидкая фаза, по другую — газообразная (пар), и, возможно, другие газы, например, воздух.
Если жидкая и газообразная фазы одного и того же вещества соприкасаются, возникают силы, которые стремятся уменьшить площадь поверхности раздела — силы поверхностного натяжения. Поверхность раздела ведёт себя как упругая мембрана, которая стремится стянуться.
Поверхностное натяжение может быть объяснено притяжением между молекулами жидкости. Каждая молекула притягивает другие молекулы, стремится «окружить» себя ими, а значит, уйти с поверхности. Соответственно, поверхность стремится уменьшиться.
Поэтому мыльные пузыри и пузыри при кипении стремятся принять сферическую форму: при данном объёме минимальной поверхностью обладает шар. Если на жидкость действуют только силы поверхностного натяжения, она обязательно примет сферическую форму — например, капли воды в невесомости.
Маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения меньше силы, препятствующей увеличению площади поверхности.
ИСПАРЕНИЕ И КОНДЕНСАЦИЯ
Испарение — постепенный переход вещества из жидкости в газообразную фазу (пар).
При тепловом движении некоторые молекулы покидают жидкость через её поверхность и переходят в пар. Вместе с тем, часть молекул переходит обратно из пара в жидкость. Если из жидкости уходит больше молекул, чем приходит, то имеет место испарение.
Конденсация — обратный процесс, переход вещества из газообразного состояния в жидкое. При этом в жидкость переходит из пара больше молекул, чем в пар из жидкости.
Испарение и конденсация — неравновесные процессы, они происходят до тех пор, пока не установится локальное равновесие (если установится), причём жидкость может полностью испариться, или же прийти в равновесие со своим паром, когда из жидкости выходит столько же молекул, сколько возвращается.
Кипение — процесс парообразования внутри жидкости. При достаточно высокой температуре давление пара становится выше давления внутри жидкости, и там начинают образовываться пузырьки пара, которые (в условиях земного притяжения) всплывают наверх.
Смачивание — поверхностное явление, возникающее при контакте жидкости с твёрдой поверхностью в присутствии пара, то есть на границах раздела трёх фаз.
Смачивание характеризует «прилипание» жидкости к поверхности и растекание по ней (или, наоборот, отталкивание и нерастекание). Различают три случая: несмачивание, ограниченное смачивание и полное смачивание.
Смешиваемость — способность жидкостей растворяться друг в друге. Пример смешиваемых жидкостей: вода и этиловый спирт, пример несмешиваемых: вода и жидкое масло.
При нахождении в сосуде двух смешиваемых жидкостей молекулы в результате теплового движения начинают постепенно проходить через поверхность раздела, и таким образом жидкости постепенно смешиваются. Это явление называется диффузией(происходит также и в веществах, находящихся в других агрегатных состояниях).
ПЕРЕГРЕВ И ПЕРЕОХЛАЖДЕНИЕ
Жидкость можно нагреть выше точки кипения таким образом, что кипения не происходит. Для этого необходим равномерный нагрев, без значительных перепадов температуры в пределах объёма и без механических воздействий, таких, как вибрация. Если в перегретую жидкость бросить что-либо, она мгновенно вскипает. Перегретую воду легко получить в микроволновой печи.
Переохлаждение — охлаждение жидкости ниже точки замерзания без превращения в твёрдое агрегатное состояние. Как и для перегрева, для переохлаждения необходимо отсутствие вибрации и значительных перепадов температуры.
Дата добавления: 2015-04-18 ; просмотров: 99 ; Нарушение авторских прав
Понятие жидкости. Реальная и идеальная жидкости
Предмет гидравлики и краткая история её развития.
Введение
Содержание
1.1 Предмет гидравлики и краткая история её развития.
1.4 Общие уравнения сплошной среды
1.5 Потери напора при установившемся движении.
2. Объемные гидромашины.
2.1 Понятие объемной гидромашины. Насосы, гидродвигатели.
2.2 Величины характеризующие рабочий процесс ОГМ.
2.3 Роторные гидромашины. Классификация.
3. Основные сведения об оъемном гидроприводе.
3.1 Назначения и основные свойства
3.2 Основные параметры гидрооборудования.
3.3 Основные режимы работы и условия эксплуатации гидрооборудования.
Раздел механики, в котором изучают равновесие и движение жидкости, а также силовое взаимодействие жидкостью и обтекаемыми ею телами или ограничивающими её поверхностями, называется гидромеханикой.
Науку о законах равновесия и движения жидкостей и о способах приложения этих законов к решению практических задач называют гидравликой. В гидравлике рассматривают, главным образом, потоки жидкости, ограниченные и направленные твердыми стенками, т. е. течение в закрытых и открытых каналах.
Таким образом, можно сказать, что в гидравлике изучают в основном внутренние течения жидкостей и решают так называемую внутреннюю задачу в отличие от внешней, связанной с внешним обтеканием тел сплошной средой, которое имеет место при движении тела в жидкости или газе.
Историческое развитие механики жидкостей шло двумя различными путями:
— первый путь – теоретический, путь точного математического анализа, основанного на законах механики. Он привел к созданию теоретической гидромеханики, которая долгое время являлась самостоятельной дисциплиной, непосредственно не связанная с экспериментом. Однако на пути чистого теоретического исследования движения жидкости встречается множество трудностей, и методы теоретической гидромеханики не всегда дают ответы на вопросы, выдвигаемые практикой.
— второй путь – путь широкого применения эксперимента и накопления опытных данных для использования их в инженерной практике – привел к созданию гидравлики.
Жидкость – физическое тело, молекулы которого слабо связаны между содой. Поэтому незначительные силы способны легко изменить форму жидкости, которая способна сохранить объем, но не форму. В гидравлике жидкость рассматривают как непрерывную среду, заполняющую пространство без пустот и промежутков, т.е. отвлекаются от молекулярного строения жидкости и её частицы, даже бесконечно малые, считают состоящими из большого числа молекул.
Реальной жидкостью называют жидкость, обладающую вязкостью (свойство жидкости сопротивляться сдвигу ее слоев).
Идеальная или невязкая жидкость является упрощенной моделью реальной (вязкой) жидкости. По предположению, идеальная жидкость имеет все свойства реальной, кроме вязкости.
рис. 1.1 Профиль скоростей течения жидкости.