Что такое рефлекторная дуга ее составные части
Рефлекторная дуга
Устройство рефлекторных дуг
Состоит из рецептора (может быть расположен в коже, внутренних органах, сосудах) чувствительного нейрона и идущего от этого нейрона чувствительного волокна, которое проникает в спинной мозг через задние рога.
Состоит из вставочного нейрона и его отростков. Вставочный нейрон осуществляет связь между чувствительным и двигательным звеном рефлекторной дуги. Вставочные нейроны могут осуществлять связь с другими отделами ЦНС.
Тела вставочных нейронов находятся в задних рогах спинного мозга.
Представлено двигательным нейроном (эфферентным, исполнительным, мотонейроном), от которого нервные волокна идут к рабочему органу (эффектору, органу-исполнителю).
Двигательные нейроны лежат в передних рогах спинного мозга, откуда и выходят их отростки.
Рассмотрим схему рефлекторной дуги, на базе которой осуществляется рефлекс отдергивания руки от горячего предмета. Попробуйте сами описать путь, который проходит нервный импульс и вспомнить 3 звена рефлекторной дуги. Назовите локализацию каждого из нейронов.
Это может показаться очевидным, но необходимо подчеркнуть, что афферентные нервные волокна входят в спинной мозг через задние корешки. Эфферентные нервные волокна выходят из спинного мозга через передние корешки.
Виды рефлекторных дуг
Ниже вы увидите схемы соматической и вегетативной рефлекторных дуг. Под картинкой будет написано существенное отличие между ними, которое вы должны запомнить, но прежде постарайтесь сами сделать вывод, изучив картинку.
Нервная регуляция
Заболевания
При переохлаждении может возникнуть парез лицевого нерва. Причиной этому служит воспаление тканей, в результате чего в узком костном канале нерв сдавливается воспаленными тканями. Нервные импульсы частично, либо полностью перестают поступать к мышцам лица, что делает невозможным для пациента движение ими.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Что такое рефлекторная дуга ее составные части
Рефлексы проявляются в возникновении или прекращении какой-либо деятельности организма: в сокращении или расслаблении мышц, в секреции или прекращении секреции желез, в сужении или расширении сосудов и т. п.
Благодаря рефлекторной деятельности организм способен быстро реагировать на различные изменения внешней среды или своего внутреннего состояния и приспособляться к этим изменениям. У позвоночных животных значение рефлекторной функции центральной нервной системы настолько велико, что даже частичное выпадение ее (при оперативном удалении отдельных участков нервной системы или при заболеваниях ее) часто ведет к глубокой инвалидности и невозможности осуществлять необходимые жизненные функции без постоянного тщательного ухода.
Значение рефлекторной деятельности центральной нервной системы в полной мере было раскрыто классическими трудами И. М. Сеченова и И. П. Павлова. И. М. Сеченов еще в 1862 г. в своем составившем эпоху труде «Рефлексы головного мозга» утверждал: «Все акты сознательной и бессознательной жизни по способу происхождения суть рефлексы».
Все рефлекторные акты целостного организма разделяют на безусловные и условные рефлексы.
Безусловные рефлексы передаются по наследству, они присущи каждому биологическому виду; их дуги формируются к моменту рождения и в норме сохраняются в течение всей жизни. Однако они могут изменяться под влиянием болезни.
Условные рефлексы возникают при индивидуальном развитии и накоплении новых навыков. Выработка новых временных связей зависит от изменяющихся условий среды. Условные рефлексы формируются на основе безусловных и с участием высших отделов головного мозга.
Безусловные и условные рефлексы можно классифицировать на различные группы по ряду признаков.
NB! Эта классификация приемлема к более или менее простым рефлексам, направленным на объединение функций внутри организма. При сложных же рефлексах, в которых участвуют нейроны, находящиеся в высших отделах центральной нервной системы, как правило, в осуществление рефлекторной реакции вовлекаются различные исполнительные органы, в результетате чего происходит изменение соотношения организма с внешней средой, изменение поведения организма.
Примеры некоторых относительно простых рефлексов, наиболее часто исследуемых в условиях лабораторного эксперимента на животном или в клинике при заболеваниях нервной системы человека.
Как уже отмечалось выше, подобная классификация рефлексов условна: если какой-либо рефлекс может быть получен при сохранности того или иного отдела центральной нервной системы и разрушении вышележащих отделов, то это не означает, что данный рефлекс осуществляется в нормальном организме только при участии этого отдела: в каждом рефлексе участвуют в той или иной мере все отделы центральной нервной системы.
Любой рефлекс в организме осуществляется при помощи рефлекторной дуги.
В периферической нервной системе различают рефлекторные дуги (нейронные цепи)
Рефлекторная дуга состоит из пяти отделов:
Простейшую рефлекторную дугу можно схематически представить как образованную всего двумя нейронами: рецепторным и эффекторным, между которыми имеется один синапс. Такую рефлекторную дугу называют двунейронной и моносинаптической. Моносинаптические рефлекторные дуги встречаются весьма редко.
Вегетативные ганглии, в зависимости от локализации, могут быть разделены на три группы:
Такое различие соматической и вегетативной рефлекторной дуги обусловлено анатомическим строением нервных волокон, составляющих нейронную цепь, и скоростью проведения по ним нервного импульса.
Для осуществления любого рефлекса необходима целостность всех звеньев рефлекторной дуги. Нарушение хотя бы одного из них ведет к исчезновению рефлекса.
Схема реализации рефлекса
В ответ на раздражение рецептора нервная ткань приходит в состояние возбуждения, которое представляет собой нервный процесс, вызывающий или усиливающий деятельность органа. В основе возбуждения лежит изменение концентрации анионов и катионов по обе стороны мембраны отростков нервной клетки, что приводит к изменению электрического потенциала на мембране клетки.
Возбуждение проводится по нервным волокнам со скоростью от 0,5 до 100 м/с, изолированно и не переходит с одного волокна на другое, чему препятствуют оболочки, покрывающие нервные волокна.
Процесс торможения противоположен возбуждению: он прекращает деятельность, ослабляет или препятствует ее возникновению. Возбуждение в одних центрах нервной системы сопровождается торможением в других: нервные импульсы, поступающие в центральную нервную систему, могут задерживать те или иные рефлексы.
Взаимосвязь, определяющая процессы возбуждения и торможения, т.е. саморегуляции функций организма, осуществляется при помощи прямых и обратных связей между центральной нервной системой и исполнительным органом. Обратная связь («обратная афферентация» по П.К.Анохину), т.е. связь между исполнительным органом и центральной нервной системой, подразумевает передачу сигналов с рабочего органа в центральную нервную систему о результатах его работы в каждый данный момент.
Так, при взятии рукой предмета глаза непрерывно измеряют расстояние между рукой и целью и свою информацию посылают в виде афферентных сигналов в мозг. В мозгу происходит замыкание на эфферентные нейроны, которые передают двигательные импульсы в мышцы руки, производящие необходимые для взятия ею предмета действия. Мышцы одновременно воздействуют на находящиеся в них рецепторы, беспрерывно посылающие мозгу чувствительные сигналы, информирующие о положении руки в каждый данный момент. Такая двусторонняя сигнализация по цепям рефлексов продолжается до тех пор, пока расстояние между кистью руки и предметом не будет равно нулю, т.е. пока рука не возьмет предмет. Следовательно, все время совершается самопроверка работы органа, возможная благодаря механизму «обратной афферентации», который имеет характер замкнутого круга.
Существование такой замкнутой кольцевой, или круговой, цепи рефлексов центральной нервной системы и обеспечивает все сложнейшие коррекции протекающих в организме процессов при любых изменениях внутренних и внешних условий (В.Д. Моисеев, 1960). Без механизмов обратной связи живые организмы не смогли бы разумно приспособиться к окружающей среде.
Что такое рефлекторная дуга ее составные части
Рефлекторная дуга. Рецептор, кондуктор и эфферентный нейрон
Простая рефлекторная дуга состоит по крайней мере из двух нейронов, из которых один связан с какой-нибудь чувствительной поверхностью (например, кожей), а другой с помощью своего нейрита оканчивается в мышце (или железе). При раздражении чувствительной поверхности возбуждение идет по связанному с ней нейрону в центростремительном направлении (центрипетально) к рефлекторному центру, где находится соединение (синапс) обоих нейронов. Здесь возбуждение переходит на другой нейрон и идет уже центробежно (центрифугально) к мышце или железе. В результате происходит сокращение мышцы или изменение секреции железы. Часто в состав простой рефлекторной дуги входит третий вставочный нейрон, который служит передаточной станцией с чувствительного пути на двигательный.
Кроме простой (трехчленной) рефлекторной дуги, имеются сложно устроенные многонейронные рефлекторные дуги, проходящие через разные уровни головного мозга, включая его кору. У высших животных и человека на фоне простых и сложных рефлексов также при посредстве нейронов образуются временные рефлекторные связи высшего порядка, известные под названием условных рефлексов (И. П. Павлов).
Таким образом, всю нервную систему можно себе представить состоящей в функциональном отношении из трех родов элементов.
1. Рецептор (восприниматель), трансформирующий энергию внешнего раздражения в нервный процесс; он связан с афферентным (центростремительным, или рецепторным) нейроном, распространяющим начавшееся возбуждение (нервный импульс) к центру; с этого явления начинается анализ (И. П. Павлов).
2. Кондуктор (проводник), вставочный, или ассоциативный, нейрон, осуществляющий замыкание, т. е. переключение возбуждения с центростремительного нейрона на центробежный. Это явление есть синтез, который представляет, «очевидно, явление нервного замыкания» (И. П. Павлов). Поэтому И. П. Павлов называет этот нейрон контактором, замыкателем.
3. Эфферентный (центробежный) нейрон, осуществляющий ответную реакцию (двигательную или секреторную) благодаря проведению нервного возбуждения от центра к периферии, к эффектору. Эффектор — это нервное окончание эфферентного нейрона, передающее нервный импульс к рабочему органу (мышца, железа). Поэтому этот нейрон называют также эффекторным. Рецепторы возбуждаются со стороны трех чувствительных поверхностей, или рецепторных полей, организма:
1) с наружной, кожной, поверхности тела (экстероцептивное поле) при посредстве связанных с ней генетически органов чувств, получающих раздражение из внешней среды;
2) с внутренней поверхности тела (интероцептивное поле), принимающей раздражения главным образом со стороны химических веществ, поступающих в полости внутренностей, и
3) из толщи стенок собственно тела (проприоцептивное поле), в которых заложены кости, мышцы и другие органы, производящие раздражения, воспринимаемые специальными рецепторами.
Рецепторы от названных полей связаны с афферентными нейронами, которые достигают центра и там переключаются при посредстве подчас весьма сложной системы кондукторов на различные эфферентные проводники; последние, соединяясь с рабочими органами, дают тот или иной эффект.
Резюме по рефлекторной дуге
Тело первого нейрона (афферентного) находится в спинномозговом узле (или чувствительном узле черепного нерва). Дендриты этих клеток направляются в составе соответствующего спинномозгового или черепного нерва на периферию, где заканчиваются рецепторным аппаратом, который воспринимает раздражение. В рецепторе энергия внешнего или внутреннего раздражения перерабатывается в нервный импульс, который передается по нервному волокну к телу нервной клетки, а затем по аксону, который в составе заднего (чувствительного) корешка спинномозгового или корешка черепного нерва следует в спинной или головной мозг к соответствующему чувствительному ядру.
В сером веществе заднего рога спинного мозга или чувствительных ядрах головного мозга окончания образуют синапсы с телами второго вставочного нейрона. Аксон этого нейрона в пределах спинного или головного мозга заканчивается на клетках третьего (двигательного) нейрона. Отростки клеток третьего нейрона выходят из мозга в составе спинномозгового или соответствующего черепного нерва и направляются к органу.
Моносинаптическая дуга состоит из нескольких нейронов: афферентного, одного или нескольких вставочных и эфферентного. Рефлекторная дуга состоит чаще всего из многих нейронов. Между афферентным (чувствительным) и эфферентным (двигательным или секреторным) нейронами расположено несколько вставочных нейронов. В такой рефлекторной дуге возбуждение от чувствительного нейрона передается по центральному отростку к последовательно расположенным друг за другом вставочным нейронам. Большинство рефлексов осуществляют «многоэтажные» рефлекторные дуги, в которых участвуют нервные центры различных отделов центральной нервной системы.
Редактор: Искандер Милевски. Дата последнего обновления публикации: 20.8.2020
Вопрос 6. Рефлекторная дуга, ее составные части. Классификация рефлексов. Понятие «рефлекторного кольца».
Структурной основой рефлекса является рефлекторная дуга, представляющая собой совокупность морфологически взаимосвязанных образований, обеспечивающих восприятие, передачу и переработку сигналов, необходимых для реализации рефлекса. Рефлекторная дуга по своему строению и назначению элементов представляет собой вышеописанный контур регуляции. Она включает следующие элементы или звенья:
1) Сенсорные рецепторы (датчики), воспринимающие стимулы внешней или внутренней среды
2) Афферентные или чувствительные нервные проводники (каналы сигналов входа)
3) Нейроны — афферентные, промежуточные или вставочные и эфферентные, т.е. получающие и выдающие информацию нервные клетки, в совокупности называемые нервным центром (аппарат управления)
4) Эфферентные или двигательные нервные проводники (каналы выхода)
5) Эффекторы или исполнительные органы (объекты управления).
Принимая во внимание значение для оптимальности регуляции информации о реакциях эффектора, обязательным звеном рефлекторного акта является обратная связь. Если включить это звено
В структурную основу рефлекса, то правильнее ее следует называть не рефлекторной дугой, а рефлекторным кольцом.
Вопрос 7. Развитие рефлекторной теории в трудах И.М. Сеченова, И.П. Павлова, П.К. Анохина.
Положения рефлекторной теории, разработанные И. М. Сеченовым. И. П. Павловым и развитые Н. Е. Введенским. А. А. Ухтомским. В. М. Бехтеревым, П. К. Анохиным и другими физиологами, являются научно-теоретической основой советской физиологии и психологии. Эти положения находят свое творческое развитие в исследованиях советских физиологов и психологов. Рефлекторная теория, признающая рефлекторную сущность деятельности нервной системы, основывается на трех главных принципах: 1) принципе материалистического детерминизма; 2) принципе структурности; 3) принципе анализа и синтеза. Принцип материалистического детерминизма означает, что каждый нервный процесс в головном мозге обусловливается (вызывается) действием определенных раздражителей. Принцип структурности заключается в том, что различия функций разных отделов нервной системы зависят от особенностей их строения, а изменение строения отделов нервной системы в процессе развития обусловливается изменением функций. Так, у животных, которые не имеют головного мозга, высшая нервная деятельность отличается значительно большей примитивностью по сравнению с высшей нервной деятельностью животных, у которых есть головной мозг. У человека в ходе исторического развития головной мозг достиг особенно сложного строения и совершенства, что связано с его трудовой деятельностью и общественными условиями жизни, требующими постоянного речевого общения. Принцип анализа и синтеза выражается в следующем. При поступлении в центральную нервную систему центростремительных импульсов в одних нейронах возникает возбуждение, в других — торможение, т. е. происходит физиологический анализ. Результатом является различение конкретных предметов и явлений действительности и процессов, происходящих внутри организма. Одновременно при образовании условного рефлекса устанавливается временная нервная связь (замыкание) между двумя очагами возбуждения, что физиологически выражает собой синтез. Условный рефлекс есть единство анализа и синтеза.
Вопрос 8. Учение П. К. Анохина о функциональных системах. Центральная архитектоника ФС. Полезный приспособительный результат как главный системообразующий фактор. Роль обратной афферентации.
Изучая физиологическую структуру поведенческого акта, П.К. Анохин пришел к выводу о необходимости различать частные механизмы интеграции, когда эти частные механизмы вступают между собой в сложное координированное взаимодействие. Они объединяются, интегрируются в систему более высокого порядка, в целостную архитектуру приспособительного, поведенческого акта. Этот принцип интегрирования частных механизмов был им назван принципом «функциональной системы».
Определяя функциональную систему как динамическую, саморегулирующуюся организацию, избирательно объединяющую структуры и процессы на основе нервных и гуморальных механизмов регуляции для достижения полезных системе и организму в целом приспособительных результатов, П.К. Анохин распространил содержание этого понятия на структуру любого целенаправленного поведения (Анохин П.К., 1968). С этих позиций может быть рассмотрена и структура отдельного двигательного акта.
Функциональная система имеет разветвленный морфофизиологический аппарат, обеспечивающий за счет присущих ей закономерностей как эффект гомеостаза, так и саморегуляции. Выделяют два типа функциональных систем. 1. Функциональные системы первого типа обеспечивают постоянство определенных констант внутренней среды за счет системы саморегуляции, звенья которой не выходят за пределы самого организма. Примером может служить функциональная система поддержания постоянства кровяного давления, температуры тела и т.п. Такая система с помощью разнообразных механизмов автоматически компенсирует возникающие сдвиги во внутренней среде. 2. Функциональные системы второго типа используют внешнее звено саморегуляции. Они обеспечивают приспособительный эффект благодаря выходу за пределы организма через связь с внешним миром, через изменения поведения. Именно функциональные системы второго типа лежат в основе различных поведенческих актов, различных типов поведения.
АФФЕРЕНТНЫЙ (от лат. afferens — приносящий), несущий к органу или в него (напр., афферентная артерия); передающий импульсы от рабочих органов (желез, мышц) к нервному центру (афферентные, или центростремительные, нервные волокна). ЭФФЕРЕНТНЫЙ (от лат. efferens — выносящий), выносящий, выводящий, передающий импульсы от нервных центров к рабочим органам, напр. эфферентные, или центробежные, нервные волокна. АКЦЕПТОР (от лат. acceptor — принимающий).
Мотивационное возбуждение появляется в центральной нервной системе в следствии той или другой витальной, социальной или идеальной потребности. Специфика мотивационного возбуждения определяется особенностями, типом вызвавшей его потребности. Оно – необходимый компонент любого поведения. Важность мотивационного возбуждения для афферентного синтеза вытекает уже из того, что условный сигнал теряет способность вызывать ранее выработанное пищедобывательное поведение (например, побежку собаки к кормушке для получения пищи), если животное уже хорошо накормлено и, следовательно, у него отсутствует мотивационное пищевое возбуждение.
Роль мотивационного возбуждения в формировании афферентного синтеза определяется тем, что любая поступающая информация соотносится с доминирующим в данный момент мотивационным возбуждением, которое действует как фильтр, отбирающий наиболее нужное для данной мотивационной установки. Доминирующая мотивация как первичный системообразующий фактор определяет все последующие этапы мозговой деятельности по формированию поведенческих программ. Специфика мотиваций определяет характер и «химический статус» внутрицентральной интеграции и набор вовлекаемых мозговых аппаратов. В качестве полезного результата определенного поведенческого акта выступает удовлетворение потребности, т.е. снижение уровня мотивации.
Нейрофизиологической основой мотивационного возбуждения является избирательная активация различных нервных структур, создаваемая прежде всего лимбической и ретикулярной системами мозга. На уровне коры мотивационное возбуждение представлено специфическим паттерном возбуждения.
Хотя мотивационное возбуждение является очень важным компонентом афферентного синтеза, оно не единственной его компонент. Внешние стимулы с их разным функциональным смыслом по отношению к данному, конкретному организму также вносят свой вклад в афферентный синтез. Выделяют два класса стимулов с функциями пусковой и обстановочной афферентации.
Условные и безусловные раздражители, ключевые стимулы (вид ястреба – хищника для птиц, вызывающего поведение бегства, и др.) служат толчком к развертыванию определенного поведения или отдельного поведенческого акта. Этим стимулам присуща пусковая функция. Картина возбуждения, создаваемая биологически значимыми стимулами в сенсорных системах, и есть пусковая афферентация. Однако способность пусковых стимулов инициировать поведение не является абсолютной. Она зависит от той обстановки и условий, в которых они действуют.
Влияние обстановочной афферентации на условный рефлекс наиболее отчетливо выступило при изучении явления динамического стереотипа. В этих опытах животное тренировали для выполнения в определенном порядке серии различных условных рефлексов. После длительной тренировки оказалось, что любой случайный условный раздражитель может воспроизвести все специфические эффекты, характерные для каждого раздражителя в системе двигательного стереотипа. Для этого лишь необходимо, чтобы он следовал в заученной временной последовательности. Таким образом, решающее значение при вызове условных рефлексов в системе динамического стереотипа приобретает порядок их выполнения. Следовательно,обстановочная афферентация включает не только возбуждение от стационарной обстановки, но и ту последовательность афферентных возбуждений, которая ассоциируется с этой обстановкой. Обстановочная афферентация создает скрытое возбуждение, которое может быть выявлено, как только подействует пусковой раздражитель. Физиологический смысл пусковой афферентации состоит в том, что, выявляя скрытое возбуждение, создаваемое обстановочной афферентацией, она приурочивает его к определенным моментам времени, наиболее целесообразным с точки зрения самого поведения.
Афферентный синтез включает также использование аппарата памяти. Очевидно, что функциональная роль пусковых и обстановочных раздражений в известной мере уже обусловлена прошлым опытом животного. Это и видовая память, и индивидуальная, приобретенная в результате обучения. На стадии афферентного синтеза из памяти извлекаются и используются именно те фрагменты прошлого опыта, которые полезны, нужны для будущего поведения.
Таким образом, на основе взаимодействия мотивационного, обстановочного возбуждения и механизмов памяти формируется так называемая интеграция или готовность к определенному поведению. Но, чтобы она трансформировалась в целенаправленное поведение, необходимо воздействие со стороны пусковых раздражителей. Пусковая афферентация – последний компонент афферентного синтеза.
Процессы афферентного синтеза, охватывающие мотивационное возбуждение, пусковую и обстановочную афферентацию, аппарат памяти, реализуются с помощью специального модуляционного механизма, обеспечивающего необходимый для этого тонус коры больших полушарий и других структур мозга. Этот механизм регулирует и распределяет активирующие и инактивирующие влияния, исходящие из лимбической и ретикулярной систем мозга. Поведенческим выражением роста уровня активации в центральной нервной системе, создаваемым этим механизмом, является появление ориентировочно-исследовательских реакций и поисковой активности животного.
2 Завершение стадии афферентного синтеза сопровождается переходом в стадию принятия решения, которая и определяет тип и направленность поведения. Стадия принятия решения реализуется через специальную и очень важную стадию поведенческого акта – формирование аппарата акцептора результатов действия. Это аппарат, программирующий результаты будущих событий. В нем актуализирована врожденная и индивидуальная память животного и человека в отношении свойств внешних объектов, способных удовлетворить возникшую потребность, а также способов действия, направленных на достижение или избегание целевого объекта. Нередко в этом аппарате запрограммирован весь путь поиска во внешней среде соответствующих раздражителей.
Предполагается, что акцептор результатов действия представлен сетью вставочных нейронов, охваченных кольцевым взаимодействием. Возбуждение, попав в эту сеть, длительное время продолжает в ней циркулировать. Благодаря этому механизму и достигается продолжительное удержание цели как основного регулятора поведения.
До того как целенаправленное поведение начнет осуществляться, развивается еще одна стадия поведенческого акта – стадия программы действия или эфферентного синтеза. На этой стадии осуществляется интеграция соматических и вегетативных возбуждений в целостный поведенческий акт. Эта стадия характеризуется тем, что действие уже сформировано, но внешне оно еще не реализуется.
3. Следующая стадия – это само выполнение программы поведения. Эфферентное возбуждение достигает исполнительных механизмов, и действие осуществляется.
Благодаря аппарату акцептора результатов действия, в котором программируется цель и способы поведения, организм имеет возможность сравнивать их с поступающей афферентной информацией о результатах и параметрах совершаемого действия, т.е. с обратной афферентацией. Именно результаты сравнения определяют последующее построение поведения, либо оно корректируется, либо оно прекращается как в случае достижения конечного результата.
Следовательно, если сигнализация о совершенном действии полностью соответствует заготовленной информации, содержащейся в акцепторе действия, то поисковое поведение завершается. Соответствующая потребность удовлетворяется. И животное успокаивается. В случае, когда результаты действия не совпадают с акцептором действия и возникает их рассогласование, появляется ориентировочно-исследовательская деятельность. В результате этого заново перестраивается афферентный синтез, принимается новое решение, создается новый акцептор результатов действия и строится новая программа действий. Это происходит до тех пор, пока результаты поведения не станут соответствовать свойствам нового акцептора действия. И тогда поведенческий акт завершается последней санкционирующей стадией – удовлетворением потребности.
Исследователи выделяют две группы эмоциональных явлений.
1. Первая группа – это ведущие эмоции. Их возникновение связано с появлением или усилением потребностей. Так, возникновение той или другой биологической потребности, прежде всего отражается в появлении отрицательных эмоциональных переживаний, выражающих биологическую значимость тех изменений, которые развиваются во внутренней среде организма. Качество и специфика ведущего эмоционального переживания тесно увязаны с типом и особенностями породившей его потребности.
Вторая группа эмоциональных переживаний – ситуативные эмоции. Они возникают в процессе действий, совершаемых в отношении цели, и являются следствием сравнения реальных результатов с ожидаемыми. В структуре поведенческого акта, по П.К. Анохину, эти переживания возникают в результате сопоставления обратной афферентации с акцептором результатов действия. В случаях рассогласования возникают эмоциональные переживания с отрицательным знаком. При совпадении параметров результатов действия с ожидаемыми эмоциональные переживания носят положительный характер.
Наиболее прямое отношение к формированию цели поведения имеют ведущие эмоции. Это касается как отрицательных, так и положительных эмоциональных переживаний. Ведущие эмоции с отрицательным знаком сигнализируют субъекту о биологической значимости тех отклонений, которые совершаются в его внутренней среде. Они и определяют зону поиска целевых объектов, так как эмоциональные переживания, порожденные потребностью, направлены на те предметы, которые способны ее удовлетворить. Например, в ситуации длительного голодания переживание голода проецируется на пищу. В результате этого меняется отношение животного к пищевым объектам. Оно эмоционально, с жадностью набрасывается на еду, тогда как сытое животное может проявить полное равнодушие к пище.
Таким образом, в структуре поведенческого акта формирование акцептора результатов действия опосредовано содержанием эмоциональных переживаний. Ведущие эмоции выделяют цель поведения и тем самым инициируют поведение, определяя его вектор. Ситуативные эмоции, возникающие в результате оценок отдельных этапов или поведения в целом, побуждают субъект действовать либо в прежнем направлении, либо менять поведение, его тактику, способы достижения цели.
Согласно теории функциональной системы, хотя поведение и строится на рефлекторном принципе, но оно не может быть определено как последовательность или цепь рефлексов. Поведение отличается от совокупности рефлексов наличием особой структуры, включающей в качестве обязательного элемента программирование, которое выполняет функцию опережающего отражения действительности. Постоянное сравнение результатов поведения с этими программирующими механизмами, обновление содержания самого программирования и обусловливают целенаправленность поведения.
Таким образом, в рассмотренной структуре поведенческого акта отчетливо представлены главные характеристики поведения: его целенаправленность и активная роль субъекта в процессе построения поведения