Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ Π² ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠΌ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠΈ
Π Π΅Π³ΡΠ΅ΡΡΠΈΡ Π² ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠΌ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠΈ: ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΡΠΉ Π°Π»Π³ΠΎΡΠΈΡΠΌ
Π Π΅Π³ΡΠ΅ΡΡΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π² ML. Π Π°ΡΡΠΌΠΎΡΡΠΈΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΠΌ, ΠΊΠ°ΠΊ ΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ, ΠΈΡΡ ΠΎΠ΄Ρ ΠΈΠ· ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ² ΠΈ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΠΎΠ².
Π‘ΡΠ°Π»ΠΊΠΈΠ²Π°ΡΡΡ Ρ ΠΊΠ°ΠΊΠΎΠΉ-Π»ΠΈΠ±ΠΎ ΠΏΡΠΎΠ±Π»Π΅ΠΌΠΎΠΉ Π² ML, ΠΏΠΎΠΌΠ½ΠΈΡΠ΅, ΡΡΠΎ Π΅ΡΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ², ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΡ Π΅Ρ ΡΠ΅ΡΠΈΡΡ. ΠΠ΄Π½Π°ΠΊΠΎ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠ½ΠΈΠ²Π΅ΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ°, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΠ» Π±Ρ ΠΏΠΎΠ΄ Π²ΡΠ΅ ΡΠ»ΡΡΠ°ΠΈ ΠΈ ΡΠ΅ΡΠ°Π» Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎ Π²ΡΠ΅ ΠΏΡΠΎΠ±Π»Π΅ΠΌΡ.
ΠΡΠ±ΠΎΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° ΡΡΡΠΎΠ³ΠΎ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠ°Π·ΠΌΠ΅ΡΠ° ΠΈ ΡΡΡΡΠΊΡΡΡΡ Π²Π°ΡΠΈΡ Π΄Π°Π½Π½ΡΡ . Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π²ΡΠ±ΠΎΡ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π½Π΅ΡΡΠ΅Π½ Π΄ΠΎ ΡΠ΅Ρ ΠΏΠΎΡ, ΠΏΠΎΠΊΠ° ΠΌΡ Π½Π΅ ΠΏΡΠΎΠ²Π΅ΡΠΈΠΌ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠ΅ Π²Π°ΡΠΈΠ°Π½ΡΡ ΠΈ Π½Π΅ Π½Π°ΡΠΊΠ½ΡΠΌΡΡ Π½Π° ΠΎΡΠΈΠ±ΠΊΠΈ.
ΠΠΎ ΠΊΠ°ΠΆΠ΄ΡΠΉ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ ΠΊΠ°ΠΊ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π°ΠΌΠΈ, ΡΠ°ΠΊ ΠΈ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΠ°ΠΌΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²Π° Π΄Π»Ρ Π²ΡΠ±ΠΎΡΠ° Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΡΡΠ΅Π³ΠΎ ΠΏΠΎΠ΄ ΡΠΈΡΡΠ°ΡΠΈΡ.
ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΠΈ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΈΠ°Π»ΡΠ½Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ
ΠΠ°ΡΠ½ΡΠΌ Ρ ΠΏΡΠΎΡΡΠΎΠ³ΠΎ. ΠΠ΄Π½ΠΎΠΌΠ΅ΡΠ½Π°Ρ (ΠΏΡΠΎΡΡΠ°Ρ) Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ β ΡΡΠΎ ΠΌΠ΅ΡΠΎΠ΄, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΠΉ Π΄Π»Ρ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρ ΠΎΠ΄Π½ΠΎΠΉ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ Π²Ρ ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ (ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ) ΠΈ Π²ΡΡ ΠΎΠ΄Π½ΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ. ΠΠΎΠ΄Π΅Π»Ρ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ.
ΠΠΎΠ»Π΅Π΅ ΠΎΠ±ΡΠΈΠΉ ΡΠ»ΡΡΠ°ΠΉ β ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ, Π³Π΄Π΅ ΡΠΎΠ·Π΄Π°ΡΡΡΡ ΠΌΠΎΠ΄Π΅Π»Ρ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·ΠΈ ΠΌΠ΅ΠΆΠ΄Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΠΌΠΈ Π²Ρ ΠΎΠ΄Π½ΡΠΌΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ ΠΈ Π²ΡΡ ΠΎΠ΄Π½ΠΎΠΉ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ. ΠΠΎΠ΄Π΅Π»Ρ ΠΎΡΡΠ°ΡΡΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π²ΡΡ ΠΎΠ΄Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΠ±ΠΎΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΡ Π²Ρ ΠΎΠ΄Π½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ.
Π’Π°ΠΊΠΆΠ΅ ΡΡΠΎΠΈΡ ΡΠΏΠΎΠΌΡΠ½ΡΡΡ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΈΠ°Π»ΡΠ½ΡΡ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ. ΠΠΎΠ΄Π΅Π»Ρ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠ΅ΠΉ Π²Ρ ΠΎΠ΄Π½ΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ , Ρ. Π΅. ΡΡΠ΅Π΄ΠΈ Π½ΠΈΡ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΡΠΊΡΠΏΠΎΠ½Π΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΠ΅ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅: ΡΠΈΠ½ΡΡ, ΠΊΠΎΡΠΈΠ½ΡΡ ΠΈ Ρ. ΠΏ. ΠΠΎΠ΄Π΅Π»ΠΈ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠ±ΡΡΠΈΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΡΡΠΎΡ Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π³ΡΠ°Π΄ΠΈΠ΅Π½ΡΠ°.
ΠΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π°:
ΠΠ΅Π΄ΠΎΡΡΠ°ΡΠΊΠΈ:
ΠΠ΅ΠΉΡΠΎΠ½Π½ΡΠ΅ ΡΠ΅ΡΠΈ
ΠΠ΅ΠΉΡΠΎΠ½Π½Π°Ρ ΡΠ΅ΡΡ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Π°Π½Π½ΡΡ Π³ΡΡΠΏΠΏ ΡΠ·Π»ΠΎΠ², Π½Π°Π·ΡΠ²Π°Π΅ΠΌΡΡ Π½Π΅ΠΉΡΠΎΠ½Π°ΠΌΠΈ. ΠΡ ΠΎΠ΄Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΏΠ΅ΡΠ΅Π΄Π°ΡΡΡΡ Π² ΡΡΠΈ Π½Π΅ΠΉΡΠΎΠ½Ρ Π² Π²ΠΈΠ΄Π΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ ΡΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎΠΌ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ . ΠΠ½Π°ΡΠ΅Π½ΠΈΠ΅, ΡΠΌΠ½ΠΎΠΆΠ°Π΅ΠΌΠΎΠ΅ Π½Π° ΠΊΠ°ΠΆΠ΄ΡΡ ΡΡΠ½ΠΊΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π²Π΅ΡΠΎΠΌ. ΠΠ°ΡΠ΅ΠΌ ΠΊ ΡΡΠΎΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡΡ, ΡΡΠΎ Π΄Π°ΡΡ Π½Π΅ΠΉΡΠΎΠ½Π½ΠΎΠΉ ΡΠ΅ΡΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°ΡΡ ΡΠ»ΠΎΠΆΠ½ΡΠ΅ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠ΅ ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΡ. Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ Π½Π΅ΠΉΡΠΎΡΠ΅ΡΠΈ Π±ΡΠ²Π°ΡΡ ΠΌΠ½ΠΎΠ³ΠΎΡΠ»ΠΎΠΉΠ½ΡΠΌΠΈ: Π²ΡΡ ΠΎΠ΄ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠ»ΠΎΡ ΠΏΠ΅ΡΠ΅Π΄Π°Π΅ΡΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌΡ ΡΠ°ΠΊ, ΠΊΠ°ΠΊ ΠΎΠΏΠΈΡΠ°Π½ΠΎ Π²ΡΡΠ΅. ΠΠ° Π²ΡΡ ΠΎΠ΄Π΅ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡΡ Π½Π΅ ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ.
ΠΠ΅ΠΉΡΠΎΠ½Π½ΡΠ΅ ΡΠ΅ΡΠΈ ΡΡΠ΅Π½ΠΈΡΡΡΡΡΡ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΡΡΠΎΡ Π°ΡΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π³ΡΠ°Π΄ΠΈΠ΅Π½ΡΠ° ΠΈ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠ³ΠΎ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½ΠΈΡ ΠΎΡΠΈΠ±ΠΊΠΈ.
ΠΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π°:
ΠΠ΅Π΄ΠΎΡΡΠ°ΡΠΊΠΈ:
ΠΠ΅ΡΠ΅Π²ΠΎ ΠΏΡΠΈΠ½ΡΡΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΈ Π‘Π»ΡΡΠ°ΠΉΠ½ΡΠΉ Π»Π΅Ρ
ΠΠ°ΡΠ½ΡΠΌ Ρ ΠΏΡΠΎΡΡΠΎΠ³ΠΎ ΡΠ»ΡΡΠ°Ρ. ΠΠ΅ΡΠ΅Π²ΠΎ ΠΏΡΠΈΠ½ΡΡΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ β ΡΡΠΎ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΏΡΠ°Π²ΠΈΠ», Π½Π°Ρ ΠΎΠ΄ΡΡΠΈΡ ΡΡ Π² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΠΉ, ΠΈΠ΅ΡΠ°ΡΡ ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΡΡΠΊΡΡΡΠ΅, Π³Π΄Π΅ ΠΊΠ°ΠΆΠ΄ΠΎΠΌΡ ΠΎΠ±ΡΠ΅ΠΊΡΡ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΠ΅Ρ ΡΠ·Π΅Π», Π΄Π°ΡΡΠΈΠΉ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅. ΠΡΠΈ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΠΈ Π΄Π΅ΡΠ΅Π²Π° Π²Π°ΠΆΠ½ΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°ΡΡ Π°ΡΡΠΈΠ±ΡΡΡ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΡΠΎΠ·Π΄Π°ΡΡ βΡΠΈΡΡΡΠ΅β ΡΠ·Π»Ρ. Π’ΠΎ Π΅ΡΡΡ Π²ΡΠ±ΡΠ°Π½Π½ΡΠΉ Π°ΡΡΠΈΠ±ΡΡ Π΄ΠΎΠ»ΠΆΠ΅Π½ ΡΠ°Π·Π±ΠΈΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠ»ΡΡΠ°Π΅ΠΌΡΠ΅ Π² ΠΈΡΠΎΠ³Π΅ ΠΏΠΎΠ΄ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΡΠΎΡΡΠΎΡΠ»ΠΈ ΠΈΠ· ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ², ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°ΡΠΈΡ ΠΊ ΠΎΠ΄Π½ΠΎΠΌΡ ΠΊΠ»Π°ΡΡΡ, ΠΈΠ»ΠΈ Π±ΡΠ»ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡΠ½ΠΎ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Ρ ΠΊ ΡΡΠΎΠΌΡ, Ρ.Π΅. ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² ΠΈΠ· Π΄ΡΡΠ³ΠΈΡ ΠΊΠ»Π°ΡΡΠΎΠ² Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΡΡΠΈΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ² Π±ΡΠ»ΠΎ ΠΊΠ°ΠΊ ΠΌΠΎΠΆΠ½ΠΎ ΠΌΠ΅Π½ΡΡΠ΅.
βΠ‘Π»ΡΡΠ°ΠΉΠ½ΡΠ΅ Π»Π΅Ρβ β ΡΠΎΠ²ΠΎΠΊΡΠΏΠ½ΠΎΡΡΡ Π΄Π΅ΡΠ΅Π²ΡΠ΅Π² ΠΏΡΠΈΠ½ΡΡΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ. ΠΡ ΠΎΠ΄Π½ΠΎΠΉ Π²Π΅ΠΊΡΠΎΡ ΠΏΡΠΎΡ ΠΎΠ΄ΠΈΡ ΡΠ΅ΡΠ΅Π· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π΄Π΅ΡΠ΅Π²ΡΠ΅Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΉ. ΠΠ»Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ Π²ΡΡ ΠΎΠ΄Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΠ΅Ρ Π΄Π΅ΡΠ΅Π²ΡΠ΅Π² ΡΡΡΠ΅Π΄Π½ΡΠ΅ΡΡΡ; Π΄Π»Ρ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ ΡΡ Π΅ΠΌΠ° Π³ΠΎΠ»ΠΎΡΠΎΠ²Π°Π½ΠΈΡ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡΠ°.
5 Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ Π² ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠΌ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠΈ, ΠΎ ΠΊΠΎΡΠΎΡΡΡ Π²Π°ΠΌ ΡΠ»Π΅Π΄ΡΠ΅Ρ Π·Π½Π°ΡΡ
ΠΡΡΠΎΡΠ½ΠΈΠΊ: Vecteezy
ΠΠ°, Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ Π½Π΅ Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½Π°Ρ
ΠΡΡΡΡΠ΅Π½ΡΠΊΠΎ Π½Π°Π·ΠΎΠ²ΠΈΡΠ΅ ΠΏΡΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ.
ΠΡΡΠ΄ Π»ΠΈ Π²Ρ Π½Π°Π·ΠΎΠ²Π΅ΡΠ΅ ΠΌΠ½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ. Π ΠΊΠΎΠ½ΡΠ΅ ΠΊΠΎΠ½ΡΠΎΠ², Π΅Π΄ΠΈΠ½ΡΡΠ²Π΅Π½Π½ΡΠΌ ΡΠΈΡΠΎΠΊΠΎ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π½ΡΠΌ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠΌ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ, Π³Π»Π°Π²Π½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΈΠ·-Π·Π° Π΅Π΅ ΠΏΡΠΎΡΡΠΎΡΡ. ΠΠ΄Π½Π°ΠΊΠΎ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ ΡΠ°ΡΡΠΎ Π½Π΅ΠΏΡΠΈΠΌΠ΅Π½ΠΈΠΌΠ° ΠΊ ΡΠ΅Π°Π»ΡΠ½ΡΠΌ Π΄Π°Π½Π½ΡΠΌ ΠΈΠ·-Π·Π° ΡΠ»ΠΈΡΠΊΠΎΠΌ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΡΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠ΅ΠΉ ΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎΠΉ ΡΠ²ΠΎΠ±ΠΎΠ΄Ρ ΠΌΠ°Π½Π΅Π²ΡΠ°. ΠΠ΅ ΡΠ°ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ Π±Π°Π·ΠΎΠ²ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΈ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ Π½ΠΎΠ²ΡΠΌΠΈ ΠΏΠΎΠ΄Ρ ΠΎΠ΄Π°ΠΌΠΈ Π² ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡΡ .
ΠΠΎΠΌΠ°Π½Π΄Π° Mail.ru Cloud Solutions ΠΏΠ΅ΡΠ΅Π²Π΅Π»Π° ΡΡΠ°ΡΡΡ, Π°Π²ΡΠΎΡ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΎΠΏΠΈΡΡΠ²Π°Π΅Ρ 5 Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ. ΠΡ ΡΡΠΎΠΈΡ ΠΈΠΌΠ΅ΡΡ Π² ΡΠ²ΠΎΠ΅ΠΌ Π½Π°Π±ΠΎΡΠ΅ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠΎΠ² Π½Π°ΡΡΠ΄Ρ Ρ ΠΏΠΎΠΏΡΠ»ΡΡΠ½ΡΠΌΠΈ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ°ΠΌΠΈ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ, ΡΠ°ΠΊΠΈΠΌΠΈ ΠΊΠ°ΠΊ SVM, Π΄Π΅ΡΠ΅Π²ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΈ Π½Π΅ΠΉΡΠΎΠ½Π½ΡΠ΅ ΡΠ΅ΡΠΈ.
1. ΠΠ΅ΠΉΡΠΎΡΠ΅ΡΠ΅Π²Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ
Π’Π΅ΠΎΡΠΈΡ
ΠΠ΅ΠΉΡΠΎΠ½Π½ΡΠ΅ ΡΠ΅ΡΠΈ Π½Π΅Π²Π΅ΡΠΎΡΡΠ½ΠΎ ΠΌΠΎΡΠ½ΡΠ΅, Π½ΠΎ ΠΈΡ ΠΎΠ±ΡΡΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Π΄Π»Ρ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ. Π‘ΠΈΠ³Π½Π°Π»Ρ ΠΏΡΠΎΡ ΠΎΠ΄ΡΡ ΡΠ΅ΡΠ΅Π· ΡΠ»ΠΎΠΈ Π½Π΅ΠΉΡΠΎΠ½ΠΎΠ² ΠΈ ΠΎΠ±ΠΎΠ±ΡΠ°ΡΡΡΡ Π² ΠΎΠ΄ΠΈΠ½ ΠΈΠ· Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ ΠΊΠ»Π°ΡΡΠΎΠ². ΠΠ΄Π½Π°ΠΊΠΎ ΠΈΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡΠ΅Π½Ρ Π±ΡΡΡΡΠΎ Π°Π΄Π°ΠΏΡΠΈΡΠΎΠ²Π°ΡΡ Π² ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½ΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ, Π΅ΡΠ»ΠΈ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡ ΠΏΠΎΡΠ»Π΅Π΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ.
ΠΠ°ΠΆΠ΄ΡΠΉ Π½Π΅ΠΉΡΠΎΠ½ ΠΏΠ΅ΡΠ΅Π΄Π°Π΅Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΈΠ· ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΉ ΡΠ²ΡΠ·ΠΈ ΡΠ΅ΡΠ΅Π· ΡΡΠ½ΠΊΡΠΈΡ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ, ΡΠ»ΡΠΆΠ°ΡΡΡ ΡΠ΅Π»ΠΈ ΠΎΠ±ΠΎΠ±ΡΠ΅Π½ΠΈΡ ΠΈ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡΠΈ. ΠΠ±ΡΡΠ½ΠΎ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΎΠ½Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ β ΡΡΠΎ ΡΡΠΎ-ΡΠΎ Π²ΡΠΎΠ΄Π΅ ΡΠΈΠ³ΠΌΠΎΠΈΠ΄Ρ ΠΈΠ»ΠΈ ΡΡΠ½ΠΊΡΠΈΠΈ ReLU (Π²ΡΠΏΡΡΠΌΠ»Π΅Π½Π½ΡΠΉ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΉ Π±Π»ΠΎΠΊ).
ΠΡΡΠΎΡΠ½ΠΈΠΊ. Π‘Π²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅
ΠΠΎ, Π·Π°ΠΌΠ΅Π½ΠΈΠ² ΠΏΠΎΡΠ»Π΅Π΄Π½ΡΡ ΡΡΠ½ΠΊΡΠΈΡ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ (Π²ΡΡ ΠΎΠ΄Π½ΠΎΠΉ Π½Π΅ΠΉΡΠΎΠ½) Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ, Π²ΡΡ ΠΎΠ΄Π½ΠΎΠΉ ΡΠΈΠ³Π½Π°Π» ΠΌΠΎΠΆΠ½ΠΎ ΠΎΡΠΎΠ±ΡΠ°Π·ΠΈΡΡ Π½Π° ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ, Π²ΡΡ ΠΎΠ΄ΡΡΠΈΡ Π·Π° ΠΏΡΠ΅Π΄Π΅Π»Ρ ΡΠΈΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ ΠΊΠ»Π°ΡΡΠΎΠ². Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π½Π° Π²ΡΡ ΠΎΠ΄Π΅ Π±ΡΠ΄Π΅Ρ Π½Π΅ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΠΎΡΠ½Π΅ΡΠ΅Π½ΠΈΡ Π²Ρ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΡΠΈΠ³Π½Π°Π»Π° ΠΊ ΠΊΠ°ΠΊΠΎΠΌΡ-Π»ΠΈΠ±ΠΎ ΠΎΠ΄Π½ΠΎΠΌΡ ΠΊΠ»Π°ΡΡΡ, Π° Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅, Π½Π° ΠΊΠΎΡΠΎΡΠΎΠΌ ΡΠΈΠΊΡΠΈΡΡΠ΅Ρ ΡΠ²ΠΎΠΈ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΡ Π½Π΅ΠΉΡΠΎΠ½Π½Π°Ρ ΡΠ΅ΡΡ. Π ΡΡΠΎΠΌ ΡΠΌΡΡΠ»Π΅ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΊΠ°Π·Π°ΡΡ, ΡΡΠΎ Π½Π΅ΠΉΡΠΎΠ½Π½Π°Ρ ΡΠ΅ΡΡ ΠΊΠ°ΠΊ Π±Ρ Π΄ΠΎΠΏΠΎΠ»Π½ΡΠ΅Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ.
ΠΠ΅ΠΉΡΠΎΡΠ΅ΡΠ΅Π²Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²ΠΎ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡΠΈ (Π² Π΄ΠΎΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΠΊ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΠΈ), ΠΊΠΎΡΠΎΡΡΡ ΠΌΠΎΠΆΠ½ΠΎ Π²Π²Π΅ΡΡΠΈ Ρ ΡΠΈΠ³ΠΌΠΎΠΈΠ΄Π½ΠΎΠΉ ΠΈ Π΄ΡΡΠ³ΠΈΠΌΠΈ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌΠΈ ΡΡΠ½ΠΊΡΠΈΡΠΌΠΈ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ ΡΠ°Π½Π΅Π΅ Π² Π½Π΅ΠΉΡΠΎΠ½Π½ΠΎΠΉ ΡΠ΅ΡΠΈ. ΠΠ΄Π½Π°ΠΊΠΎ ΡΡΠ΅Π·ΠΌΠ΅ΡΠ½ΠΎΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ReLU Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΡΠ½ΠΊΡΠΈΠΈ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ ΠΎΠ·Π½Π°ΡΠ°ΡΡ, ΡΡΠΎ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΈΠΌΠ΅Π΅Ρ ΡΠ΅Π½Π΄Π΅Π½ΡΠΈΡ ΠΈΠ·Π±Π΅Π³Π°ΡΡ Π²ΡΠ²ΠΎΠ΄Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ReLU ΠΈΠ³Π½ΠΎΡΠΈΡΡΠ΅Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΡΠ°Π·Π»ΠΈΡΠΈΡ ΠΌΠ΅ΠΆΠ΄Ρ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΌΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ.
ΠΡΠΎ ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅ΡΠΈΡΡ Π»ΠΈΠ±ΠΎ ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ReLU ΠΈ Π΄ΠΎΠ±Π°Π²Π»Π΅Π½ΠΈΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅Π³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ, Π»ΠΈΠ±ΠΎ Π½ΠΎΡΠΌΠ°Π»ΠΈΠ·Π°ΡΠΈΠ΅ΠΉ Π΄Π°Π½Π½ΡΡ Π΄ΠΎ ΡΡΡΠΎΠ³ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π° ΠΏΠ΅ΡΠ΅Π΄ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ΠΌ.
Π Π΅Π°Π»ΠΈΠ·Π°ΡΠΈΡ
ΠΡΠΏΠΎΠ»ΡΠ·ΡΡ Keras, ΠΏΠΎΡΡΡΠΎΠΈΠΌ ΡΡΡΡΠΊΡΡΡΡ ΠΈΡΠΊΡΡΡΡΠ²Π΅Π½Π½ΠΎΠΉ Π½Π΅ΠΉΡΠΎΠ½Π½ΠΎΠΉ ΡΠ΅ΡΠΈ, Ρ ΠΎΡΡ ΡΠΎ ΠΆΠ΅ ΡΠ°ΠΌΠΎΠ΅ ΠΌΠΎΠΆΠ½ΠΎ Π±ΡΠ»ΠΎ Π±Ρ ΡΠ΄Π΅Π»Π°ΡΡ ΡΠΎ ΡΠ²Π΅ΡΡΠΎΡΠ½ΠΎΠΉ Π½Π΅ΠΉΡΠΎΠ½Π½ΠΎΠΉ ΡΠ΅ΡΡΡ ΠΈΠ»ΠΈ Π΄ΡΡΠ³ΠΎΠΉ ΡΠ΅ΡΡΡ, Π΅ΡΠ»ΠΈ ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠΉ ΡΠ»ΠΎΠΉ ΡΠ²Π»ΡΠ΅ΡΡΡ Π»ΠΈΠ±ΠΎ ΠΏΠ»ΠΎΡΠ½ΡΠΌ ΡΠ»ΠΎΠ΅ΠΌ Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠ΅ΠΉ, Π»ΠΈΠ±ΠΎ ΠΏΡΠΎΡΡΠΎ ΡΠ»ΠΎΠ΅ΠΌ Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠ΅ΠΉ. (ΠΠ±ΡΠ°ΡΠΈΡΠ΅ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, ΡΡΠΎ ΠΈΠΌΠΏΠΎΡΡΡ Keras Π½Π΅ ΡΠΊΠ°Π·Π°Π½Ρ Π΄Π»Ρ ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΈ ΠΌΠ΅ΡΡΠ°).
model = Sequential()
model.add(Dense(100, input_dim=3, activation=’sigmoid’))
model.add(ReLU(alpha=1.0))
model.add(Dense(50, activation=’sigmoid’))
model.add(ReLU(alpha=1.0))
model.add(Dense(25, activation=’softmax’))
#IMPORTANT PART
model.add(Dense(1, activation=’linear’))
ΠΡΠΎΠ±Π»Π΅ΠΌΠ° Π½Π΅ΠΉΡΠΎΠ½Π½ΡΡ ΡΠ΅ΡΠ΅ΠΉ Π²ΡΠ΅Π³Π΄Π° Π·Π°ΠΊΠ»ΡΡΠ°Π»Π°ΡΡ Π² ΠΈΡ Π²ΡΡΠΎΠΊΠΎΠΉ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ ΠΈ ΡΠΊΠ»ΠΎΠ½Π½ΠΎΡΡΠΈ ΠΊ ΠΏΠ΅ΡΠ΅ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ. Π ΠΏΡΠΈΠ²Π΅Π΄Π΅Π½Π½ΠΎΠΌ Π²ΡΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ ΠΊΠΎΠ΄Π° ΠΌΠ½ΠΎΠ³ΠΎ ΠΈΡΡΠΎΡΠ½ΠΈΠΊΠΎΠ² Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡΠΈ, ΡΠ°ΠΊΠΈΡ ΠΊΠ°ΠΊ SoftMax ΠΈΠ»ΠΈ sigmoid.
ΠΡΠ»ΠΈ Π²Π°ΡΠ° Π½Π΅ΠΉΡΠΎΠ½Π½Π°Ρ ΡΠ΅ΡΡ Ρ ΠΎΡΠΎΡΠΎ ΡΠΏΡΠ°Π²Π»ΡΠ΅ΡΡΡ Ρ ΠΎΠ±ΡΡΠ°ΡΡΠΈΠΌΠΈ Π΄Π°Π½Π½ΡΠΌΠΈ Ρ ΡΠΈΡΡΠΎ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΡΡΡΠΊΡΡΡΠΎΠΉ, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ, Π»ΡΡΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ Ρ ΡΡΠ΅ΡΠ΅Π½Π½ΡΠΌ Π΄Π΅ΡΠ΅Π²ΠΎΠΌ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΠΌΡΠ»ΠΈΡΡΠ΅Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΠΈ Π²ΡΡΠΎΠΊΠΎΠ΄ΠΈΡΠΏΠ΅ΡΡΠ½ΡΡ Π½Π΅ΠΉΡΠΎΠ½Π½ΡΡ ΡΠ΅ΡΡ, Π½ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π΄Π°ΡΠ°-ΡΠ°ΠΉΠ΅Π½ΡΠΈΡΡΡ Π»ΡΡΡΠ΅ ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΠΎΠ²Π°ΡΡ Π³Π»ΡΠ±ΠΈΠ½Ρ, ΡΠΈΡΠΈΠ½Ρ ΠΈ Π΄ΡΡΠ³ΠΈΠ΅ Π°ΡΡΠΈΠ±ΡΡΡ Π΄Π»Ρ ΠΊΠΎΠ½ΡΡΠΎΠ»Ρ ΠΏΠ΅ΡΠ΅ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ.
2. Π Π΅Π³ΡΠ΅ΡΡΠΈΡ Π΄Π΅ΡΠ΅Π²Π° ΡΠ΅ΡΠ΅Π½ΠΈΠΉ
Π’Π΅ΠΎΡΠΈΡ
ΠΠ΅ΡΠ΅Π²ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π² ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΈ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ ΠΎΡΠ΅Π½Ρ ΠΏΠΎΡ ΠΎΠΆΠΈ, ΠΏΠΎΡΠΊΠΎΠ»ΡΠΊΡ ΡΠ°Π±ΠΎΡΠ°ΡΡ ΠΏΡΡΠ΅ΠΌ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π΄Π΅ΡΠ΅Π²ΡΠ΅Π² Ρ ΡΠ·Π»Π°ΠΌΠΈ Β«Π΄Π°/Π½Π΅ΡΒ». ΠΠ΄Π½Π°ΠΊΠΎ Π² ΡΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠ°ΠΊ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠ΅ ΡΠ·Π»Ρ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΏΡΠΈΠ²ΠΎΠ΄ΡΡ ΠΊ ΠΎΠ΄Π½ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΠΊΠ»Π°ΡΡΠ° (Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, 1 ΠΈΠ»ΠΈ 0 Π΄Π»Ρ Π·Π°Π΄Π°ΡΠΈ Π±ΠΈΠ½Π°ΡΠ½ΠΎΠΉ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ), Π΄Π΅ΡΠ΅Π²ΡΡ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ Π·Π°ΠΊΠ°Π½ΡΠΈΠ²Π°ΡΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ Π² Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅ (Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, 4593,49 ΠΈΠ»ΠΈ 10,98).
ΠΠ»Π»ΡΡΡΡΠ°ΡΠΈΡ Π°Π²ΡΠΎΡΠ°
ΠΠ·-Π·Π° ΡΠΏΠ΅ΡΠΈΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΈ Π²ΡΡΠΎΠΊΠΎΠ΄ΠΈΡΠΏΠ΅ΡΡΠ½ΠΎΠΉ ΠΏΡΠΈΡΠΎΠ΄Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ ΠΏΡΠΎΡΡΠΎ ΠΊΠ°ΠΊ Π·Π°Π΄Π°ΡΠΈ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ, ΡΠ΅Π³ΡΠ΅ΡΡΠΎΡΡ Π΄Π΅ΡΠ΅Π²Π° ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΡΠ»Π΅Π΄ΡΠ΅Ρ ΡΡΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΠΎΠ±ΡΠ΅Π·Π°ΡΡ. Π’Π΅ΠΌ Π½Π΅ ΠΌΠ΅Π½Π΅Π΅, ΠΏΠΎΠ΄Ρ ΠΎΠ΄ ΠΊ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ Π½Π΅ΡΠ΅Π³ΡΠ»ΡΡΠ΅Π½ β Π²ΠΌΠ΅ΡΡΠΎ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ Π²ΡΡΠΈΡΠ»ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π² Π½Π΅ΠΏΡΠ΅ΡΡΠ²Π½ΠΎΠΌ ΠΌΠ°ΡΡΡΠ°Π±Π΅, ΠΎΠ½ ΠΏΡΠΈΡ ΠΎΠ΄ΠΈΡ ΠΊ Π·Π°Π΄Π°Π½Π½ΡΠΌ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΌ ΡΠ·Π»Π°ΠΌ. ΠΡΠ»ΠΈ ΡΠ΅Π³ΡΠ΅ΡΡΠΎΡ ΠΎΠ±ΡΠ΅Π·Π°Π½ ΡΠ»ΠΈΡΠΊΠΎΠΌ ΡΠΈΠ»ΡΠ½ΠΎ, Ρ Π½Π΅Π³ΠΎ ΡΠ»ΠΈΡΠΊΠΎΠΌ ΠΌΠ°Π»ΠΎ ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ ΡΠ·Π»ΠΎΠ², ΡΡΠΎΠ±Ρ Π΄ΠΎΠ»ΠΆΠ½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π²ΡΠΏΠΎΠ»Π½ΠΈΡΡ ΡΠ²ΠΎΡ Π·Π°Π΄Π°ΡΡ.
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π΄Π΅ΡΠ΅Π²ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π±ΡΡΡ ΠΎΠ±ΡΠ΅Π·Π°Π½ΠΎ ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΠΎΠ½ΠΎ ΠΈΠΌΠ΅Π»ΠΎ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΡΡ ΡΠ²ΠΎΠ±ΠΎΠ΄Ρ (Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠ΅ Π²ΡΡ ΠΎΠ΄Π½ΡΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ β ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΊΠΎΠ½Π΅ΡΠ½ΡΡ ΡΠ·Π»ΠΎΠ²), Π½ΠΎ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΠΎ, ΡΡΠΎΠ±Ρ ΠΎΠ½ΠΎ Π±ΡΠ»ΠΎ ΡΠ»ΠΈΡΠΊΠΎΠΌ Π³Π»ΡΠ±ΠΎΠΊΠΈΠΌ. ΠΡΠ»ΠΈ Π΅Π³ΠΎ Π½Π΅ ΠΎΠ±ΡΠ΅Π·Π°ΡΡ, ΡΠΎ ΠΈ Π±Π΅Π· ΡΠΎΠ³ΠΎ Π²ΡΡΠΎΠΊΠΎΠ΄ΠΈΡΠΏΠ΅ΡΡΠ½ΡΠΉ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΡΡΠ°Π½Π΅Ρ ΡΡΠ΅Π·ΠΌΠ΅ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ½ΡΠΌ ΠΈΠ·-Π·Π° ΠΏΡΠΈΡΠΎΠ΄Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ.
Π Π΅Π°Π»ΠΈΠ·Π°ΡΠΈΡ
Π Π΅Π³ΡΠ΅ΡΡΠΈΡ Π΄Π΅ΡΠ΅Π²Π° ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π»Π΅Π³ΠΊΠΎ ΡΠΎΠ·Π΄Π°Π½Π° Π² sklearn :
ΠΠΎΠ½ΡΡ: Π±Π»ΠΈΠ·ΠΊΠΈΠΉ ΡΠΎΠ΄ΡΡΠ²Π΅Π½Π½ΠΈΠΊ Π΄Π΅ΡΠ΅Π²Π° ΡΠ΅ΡΠ΅Π½ΠΈΠΉ, Π°Π»Π³ΠΎΡΠΈΡΠΌ random forest (Π°Π»Π³ΠΎΡΠΈΡΠΌ ΡΠ»ΡΡΠ°ΠΉΠ½ΠΎΠ³ΠΎ Π»Π΅ΡΠ°), ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΡΠ΅Π³ΡΠ΅ΡΡΠΎΡΠ°. Π Π΅Π³ΡΠ΅ΡΡΠΎΡ ΡΠ»ΡΡΠ°ΠΉΠ½ΠΎΠ³ΠΎ Π»Π΅ΡΠ° ΠΌΠΎΠΆΠ΅Ρ ΡΠ°Π±ΠΎΡΠ°ΡΡ Π»ΡΡΡΠ΅ ΠΈΠ»ΠΈ Π½Π΅ Π»ΡΡΡΠ΅, ΡΠ΅ΠΌ Π΄Π΅ΡΠ΅Π²ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π² ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ (Π² ΡΠΎ Π²ΡΠ΅ΠΌΡ ΠΊΠ°ΠΊ ΠΎΠ½ ΠΎΠ±ΡΡΠ½ΠΎ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ Π»ΡΡΡΠ΅ Π² ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ) ΠΈΠ·-Π·Π° ΡΠΎΠ½ΠΊΠΎΠ³ΠΎ Π±Π°Π»Π°Π½ΡΠ° ΠΌΠ΅ΠΆΠ΄Ρ ΠΈΠ·Π±ΡΡΠΎΡΠ½ΡΠΌ ΠΈ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΎΡΠ½ΡΠΌ Π² ΠΏΡΠΈΡΠΎΠ΄Π΅ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π΄Π΅ΡΠ΅Π²Π°.
3. Π Π΅Π³ΡΠ΅ΡΡΠΈΡ LASSO
ΠΠ΅ΡΠΎΠ΄ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ Π»Π°ΡΡΠΎ (LASSO, Least Absolute Shrinkage and Selection Operator) β ΡΡΠΎ Π²Π°ΡΠΈΠ°ΡΠΈΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ, ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎ Π°Π΄Π°ΠΏΡΠΈΡΠΎΠ²Π°Π½Π½Π°Ρ Π΄Π»Ρ Π΄Π°Π½Π½ΡΡ , ΠΊΠΎΡΠΎΡΡΠ΅ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΡΡΡ ΡΠΈΠ»ΡΠ½ΡΡ ΠΌΡΠ»ΡΡΠΈΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°ΡΠ½ΠΎΡΡΡ (ΡΠΎ Π΅ΡΡΡ ΡΠΈΠ»ΡΠ½ΡΡ ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΡ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ² Π΄ΡΡΠ³ Ρ Π΄ΡΡΠ³ΠΎΠΌ).
ΠΠ½Π° Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΈΡΡΠ΅Ρ ΡΠ°ΡΡΠΈ Π²ΡΠ±ΠΎΡΠ° ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΡΠ°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ Π²ΡΠ±ΠΎΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ ΠΈΠ»ΠΈ ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ². LASSO ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅Ρ ΡΠΆΠ°ΡΠΈΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² (shrinkage), ΡΠΎ Π΅ΡΡΡ ΠΏΡΠΎΡΠ΅ΡΡ, Π² ΠΊΠΎΡΠΎΡΠΎΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π΄Π°Π½Π½ΡΡ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ°ΡΡΡΡ ΠΊ ΡΠ΅Π½ΡΡΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ (Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ ΡΡΠ΅Π΄Π½Π΅ΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ).
ΠΠ»Π»ΡΡΡΡΠ°ΡΠΈΡ Π°Π²ΡΠΎΡΠ°. Π£ΠΏΡΠΎΡΠ΅Π½Π½Π°Ρ Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΡΠΆΠ°ΡΠΈΡ
ΠΡΠΎΡΠ΅ΡΡ ΡΠΆΠ°ΡΠΈΡ Π΄ΠΎΠ±Π°Π²Π»ΡΠ΅Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½ΡΠΌ ΠΌΠΎΠ΄Π΅Π»ΡΠΌ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²:
Π Π΅Π³ΡΠ΅ΡΡΠΈΡ Π»Π°ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅Ρ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠ·Π°ΡΠΈΡ L1, ΡΠΎ Π΅ΡΡΡ Π²Π·Π²Π΅ΡΠΈΠ²Π°Π΅Ρ ΠΎΡΠΈΠ±ΠΊΠΈ ΠΏΠΎ ΠΈΡ Π°Π±ΡΠΎΠ»ΡΡΠ½ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ. ΠΠΌΠ΅ΡΡΠΎ, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, ΡΠ΅Π³ΡΠ»ΡΡΠΈΠ·Π°ΡΠΈΠΈ L2, ΠΊΠΎΡΠΎΡΠ°Ρ Π²Π·Π²Π΅ΡΠΈΠ²Π°Π΅Ρ ΠΎΡΠΈΠ±ΠΊΠΈ ΠΏΠΎ ΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΡ, ΡΡΠΎΠ±Ρ ΡΠΈΠ»ΡΠ½Π΅Π΅ Π½Π°ΠΊΠ°Π·ΡΠ²Π°ΡΡ Π·Π° Π±ΠΎΠ»Π΅Π΅ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΡΠ΅ ΠΎΡΠΈΠ±ΠΊΠΈ.
Π’Π°ΠΊΠ°Ρ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠ·Π°ΡΠΈΡ ΡΠ°ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ Π±ΠΎΠ»Π΅Π΅ ΡΠ°Π·ΡΠ΅ΠΆΠ΅Π½Π½ΡΠΌ ΠΌΠΎΠ΄Π΅Π»ΡΠΌ Ρ ΠΌΠ΅Π½ΡΡΠΈΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ², ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ ΠΌΠΎΠ³ΡΡ ΡΡΠ°ΡΡ Π½ΡΠ»Π΅Π²ΡΠΌΠΈ ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π±ΡΠ΄ΡΡ ΠΈΡΠΊΠ»ΡΡΠ΅Π½Ρ ΠΈΠ· ΠΌΠΎΠ΄Π΅Π»ΠΈ. ΠΡΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π΅Π΅ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠΈΡΠΎΠ²Π°ΡΡ.
Π Π΅Π°Π»ΠΈΠ·Π°ΡΠΈΡ
Π sklearn ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ Π»Π°ΡΡΠΎ ΠΏΠΎΡΡΠ°Π²Π»ΡΠ΅ΡΡΡ Ρ ΠΌΠΎΠ΄Π΅Π»ΡΡ ΠΏΠ΅ΡΠ΅ΠΊΡΠ΅ΡΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ²Π΅ΡΠΊΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ Π²ΡΠ±ΠΈΡΠ°Π΅Ρ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΡΠ΅ ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΈΡ ΠΎΠ±ΡΡΠ΅Π½Π½ΡΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠΌΠΈ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌΠΈ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠ°ΠΌΠΈ ΠΈ ΠΏΡΡΡΠΌΠΈ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ, ΡΡΠΎ Π°Π²ΡΠΎΠΌΠ°ΡΠΈΠ·ΠΈΡΡΠ΅Ρ Π·Π°Π΄Π°ΡΡ, ΠΊΠΎΡΠΎΡΡΡ ΠΈΠ½Π°ΡΠ΅ ΠΏΡΠΈΡΠ»ΠΎΡΡ Π±Ρ Π²ΡΠΏΠΎΠ»Π½ΡΡΡ Π²ΡΡΡΠ½ΡΡ.
4. ΠΡΠ΅Π±Π½Π΅Π²Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ (ΡΠΈΠ΄ΠΆ-ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ)
Π’Π΅ΠΎΡΠΈΡ
ΠΡΠ΅Π±Π½Π΅Π²Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ ΠΈΠ»ΠΈ ΡΠΈΠ΄ΠΆ-ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ ΠΎΡΠ΅Π½Ρ ΠΏΠΎΡ ΠΎΠΆΠ° Π½Π° ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ LASSO Π² ΡΠΎΠΌ, ΡΡΠΎ ΠΎΠ½Π° ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅Ρ ΡΠΆΠ°ΡΠΈΠ΅. ΠΠ±Π° Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° Ρ ΠΎΡΠΎΡΠΎ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΡΡ Π΄Π»Ρ Π½Π°Π±ΠΎΡΠΎΠ² Π΄Π°Π½Π½ΡΡ Ρ Π±ΠΎΠ»ΡΡΠΈΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ², ΠΊΠΎΡΠΎΡΡΠ΅ Π½Π΅ ΡΠ²Π»ΡΡΡΡΡ Π½Π΅Π·Π°Π²ΠΈΡΠΈΠΌΡΠΌΠΈ Π΄ΡΡΠ³ ΠΎΡ Π΄ΡΡΠ³Π° (ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°ΡΠ½ΠΎΡΡΡ).
ΠΠ΄Π½Π°ΠΊΠΎ ΡΠ°ΠΌΠΎΠ΅ Π±ΠΎΠ»ΡΡΠΎΠ΅ ΡΠ°Π·Π»ΠΈΡΠΈΠ΅ ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΠΌΠΈ Π² ΡΠΎΠΌ, ΡΡΠΎ Π³ΡΠ΅Π±Π½Π΅Π²Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅Ρ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠ·Π°ΡΠΈΡ L2, ΡΠΎ Π΅ΡΡΡ Π½ΠΈ ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² Π½Π΅ ΡΡΠ°Π½ΠΎΠ²ΠΈΡΡΡ Π½ΡΠ»Π΅Π²ΡΠΌ, ΠΊΠ°ΠΊ ΡΡΠΎ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ Π² ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ LASSO. ΠΠΌΠ΅ΡΡΠΎ ΡΡΠΎΠ³ΠΎ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΡ Π²ΡΡ Π±ΠΎΠ»ΡΡΠ΅ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ°ΡΡΡΡ ΠΊ Π½ΡΠ»Ρ, Π½ΠΎ Π½Π΅ ΠΈΠΌΠ΅ΡΡ Π±ΠΎΠ»ΡΡΠΎΠ³ΠΎ ΡΡΠΈΠΌΡΠ»Π° Π΄ΠΎΡΡΠΈΡΡ Π΅Π³ΠΎ ΠΈΠ·-Π·Π° ΠΏΡΠΈΡΠΎΠ΄Ρ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠ·Π°ΡΠΈΠΈ L2.
Π‘ΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ ΠΎΡΠΈΠ±ΠΎΠΊ Π² ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ Π»Π°ΡΡΠΎ (ΡΠ»Π΅Π²Π°) ΠΈ Π³ΡΠ΅Π±Π½Π΅Π²ΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ (ΡΠΏΡΠ°Π²Π°). ΠΠΎΡΠΊΠΎΠ»ΡΠΊΡ Π³ΡΠ΅Π±Π½Π΅Π²Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅Ρ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠ·Π°ΡΠΈΡ L2, Π΅Π΅ ΠΏΠ»ΠΎΡΠ°Π΄Ρ Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°Π΅Ρ ΠΊΡΡΠ³, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠ·Π°ΡΠΈΡ Π»Π°ΡΡΠΎ L1 ΡΠΈΡΡΠ΅Ρ ΠΏΡΡΠΌΡΠ΅ Π»ΠΈΠ½ΠΈΠΈ. Π‘Π²ΠΎΠ±ΠΎΠ΄Π½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅. ΠΡΡΠΎΡΠ½ΠΈΠΊ
Π Π»Π°ΡΡΠΎ ΡΠ»ΡΡΡΠ΅Π½ΠΈΠ΅ ΠΎΡ ΠΎΡΠΈΠ±ΠΊΠΈ 5 Π΄ΠΎ ΠΎΡΠΈΠ±ΠΊΠΈ 4 Π²Π·Π²Π΅ΡΠΈΠ²Π°Π΅ΡΡΡ ΡΠ°ΠΊ ΠΆΠ΅, ΠΊΠ°ΠΊ ΡΠ»ΡΡΡΠ΅Π½ΠΈΠ΅ ΠΎΡ 4 Π΄ΠΎ 3, Π° ΡΠ°ΠΊΠΆΠ΅ ΠΎΡ 3 Π΄ΠΎ 2, ΠΎΡ 2 Π΄ΠΎ 1 ΠΈ ΠΎΡ 1 Π΄ΠΎ 0. Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, Π±ΠΎΠ»ΡΡΠ΅ ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² Π΄ΠΎΡΡΠΈΠ³Π°Π΅Ρ Π½ΡΠ»Ρ ΠΈ ΡΡΡΡΠ°Π½ΡΠ΅ΡΡΡ Π±ΠΎΠ»ΡΡΠ΅ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ².
ΠΠ΄Π½Π°ΠΊΠΎ Π² Π³ΡΠ΅Π±Π½Π΅Π²ΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ ΡΠ»ΡΡΡΠ΅Π½ΠΈΠ΅ ΠΎΡ ΠΎΡΠΈΠ±ΠΊΠΈ 5 Π΄ΠΎ ΠΎΡΠΈΠ±ΠΊΠΈ 4 Π²ΡΡΠΈΡΠ»ΡΠ΅ΡΡΡ ΠΊΠ°ΠΊ 5Β² β 4Β² = 9, ΡΠΎΠ³Π΄Π° ΠΊΠ°ΠΊ ΡΠ»ΡΡΡΠ΅Π½ΠΈΠ΅ ΠΎΡ 4 Π΄ΠΎ 3 Π²Π·Π²Π΅ΡΠΈΠ²Π°Π΅ΡΡΡ ΡΠΎΠ»ΡΠΊΠΎ ΠΊΠ°ΠΊ 7. ΠΠΎΡΡΠ΅ΠΏΠ΅Π½Π½ΠΎ Π²ΠΎΠ·Π½Π°Π³ΡΠ°ΠΆΠ΄Π΅Π½ΠΈΠ΅ Π·Π° ΡΠ»ΡΡΡΠ΅Π½ΠΈΠ΅ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ; ΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΡΡΡΠ°Π½ΡΠ΅ΡΡΡ ΠΌΠ΅Π½ΡΡΠ΅ ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ².
ΠΡΠ΅Π±Π½Π΅Π²Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ Π»ΡΡΡΠ΅ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ Π² ΡΠΈΡΡΠ°ΡΠΈΠΈ, ΠΊΠΎΠ³Π΄Π° ΠΌΡ Ρ ΠΎΡΠΈΠΌ ΡΠ΄Π΅Π»Π°ΡΡ ΠΏΡΠΈΠΎΡΠΈΡΠ΅ΡΠ½ΡΠΌΠΈ Π±ΠΎΠ»ΡΡΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ , ΠΊΠ°ΠΆΠ΄Π°Ρ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΠΈΠΌΠ΅Π΅Ρ Π½Π΅Π±ΠΎΠ»ΡΡΠΎΠΉ ΡΡΡΠ΅ΠΊΡ. ΠΡΠ»ΠΈ Π² ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΡΡΠΈΡΡΠ²Π°ΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ , ΠΊΠ°ΠΆΠ΄Π°Ρ ΠΈΠ· ΠΊΠΎΡΠΎΡΡΡ ΠΈΠΌΠ΅Π΅Ρ ΡΡΠ΅Π΄Π½ΠΈΠΉ ΠΈΠ»ΠΈ Π±ΠΎΠ»ΡΡΠΎΠΉ ΡΡΡΠ΅ΠΊΡ, Π»ΡΡΡΠΈΠΌ Π²ΡΠ±ΠΎΡΠΎΠΌ Π±ΡΠ΄Π΅Ρ Π»Π°ΡΡΠΎ.
Π Π΅Π°Π»ΠΈΠ·Π°ΡΠΈΡ
ΠΡΠ΅Π±Π½Π΅Π²ΡΡ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ Π² sklearn ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΅Π°Π»ΠΈΠ·ΠΎΠ²Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ (ΡΠΌ. Π½ΠΈΠΆΠ΅). ΠΠ°ΠΊ ΠΈ Π΄Π»Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ Π»Π°ΡΡΠΎ, Π² sklearn Π΅ΡΡΡ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΡ Π΄Π»Ρ ΠΏΠ΅ΡΠ΅ΠΊΡΠ΅ΡΡΠ½ΠΎΠΉ ΠΏΡΠΎΠ²Π΅ΡΠΊΠΈ Π²ΡΠ±ΠΎΡΠ° Π»ΡΡΡΠΈΡ ΠΈΠ· ΠΌΠ½ΠΎΠ³ΠΈΡ ΠΎΠ±ΡΡΠ΅Π½Π½ΡΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ.
5. Π Π΅Π³ΡΠ΅ΡΡΠΈΡ ElasticNet
Π’Π΅ΠΎΡΠΈΡ
ElasticNet ΡΡΡΠ΅ΠΌΠΈΡΡΡ ΠΎΠ±ΡΠ΅Π΄ΠΈΠ½ΠΈΡΡ Π»ΡΡΡΠ΅Π΅ ΠΈΠ· Π³ΡΠ΅Π±Π½Π΅Π²ΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ ΠΈ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ Π»Π°ΡΡΠΎ, ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΡΡ ΡΠ΅Π³ΡΠ»ΡΡΠΈΠ·Π°ΡΠΈΡ L1 ΠΈ L2.
ΠΠ°ΡΡΠΎ ΠΈ Π³ΡΠ΅Π±Π½Π΅Π²Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΡΡ ΡΠΎΠ±ΠΎΠΉ Π΄Π²Π° ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΡΠ΅Π³ΡΠ»ΡΡΠΈΠ·Π°ΡΠΈΠΈ. Π ΠΎΠ±ΠΎΠΈΡ ΡΠ»ΡΡΠ°ΡΡ Ξ» β ΡΡΠΎ ΠΊΠ»ΡΡΠ΅Π²ΠΎΠΉ ΡΠ°ΠΊΡΠΎΡ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΊΠΎΠ½ΡΡΠΎΠ»ΠΈΡΡΠ΅Ρ ΡΠ°Π·ΠΌΠ΅Ρ ΡΡΡΠ°ΡΠ°:
9 ΠΊΠ»ΡΡΠ΅Π²ΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ ΠΏΡΠΎΡΡΡΠΌ ΡΠ·ΡΠΊΠΎΠΌ
ΠΠ°ΡΠΈΠ½Π½ΠΎΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ (ΠΠ) ΡΠΆΠ΅ ΠΌΠ΅Π½ΡΠ΅Ρ ΠΌΠΈΡ. Google ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅Ρ ΠΠ ΠΏΡΠ΅Π΄Π»Π°Π³Π°Ρ ΠΈ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Ρ ΠΎΡΠ²Π΅ΡΡ Π½Π° ΠΏΠΎΠΈΡΠΊΠΎΠ²ΡΠ΅ Π·Π°ΠΏΡΠΎΡΡ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»Π΅ΠΉ. Netflix ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅Ρ Π΅Π³ΠΎ, ΡΡΠΎΠ±Ρ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°ΡΡ Π²Π°ΠΌ ΡΠΈΠ»ΡΠΌΡ Π½Π° Π²Π΅ΡΠ΅Ρ. Π Facebook ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅Ρ Π΅Π³ΠΎ, ΡΡΠΎΠ±Ρ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠΈΡΡ Π²Π°ΠΌ Π½ΠΎΠ²ΡΡ Π΄ΡΡΠ·Π΅ΠΉ, ΠΊΠΎΡΠΎΡΡΡ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π·Π½Π°ΡΡ.
ΠΠ°ΡΠΈΠ½Π½ΠΎΠ΅ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠ΅ Π½ΠΈΠΊΠΎΠ³Π΄Π° Π΅ΡΠ΅ Π½Π΅ Π±ΡΠ»ΠΎ Π½Π°ΡΡΠΎΠ»ΡΠΊΠΎ Π²Π°ΠΆΠ½ΡΠΌ ΠΈ, Π² ΡΠΎΠΆΠ΅ Π²ΡΠ΅ΠΌΡ, Π½Π°ΡΡΠΎΠ»ΡΠΊΠΎ ΡΡΡΠ΄Π½ΡΠΌ Π΄Π»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ. ΠΡΠ° ΠΎΠ±Π»Π°ΡΡΡ ΠΏΠΎΠ»Π½Π° ΠΆΠ°ΡΠ³ΠΎΠ½ΠΎΠ², Π° ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΡΠ°Π·Π½ΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΠΠ ΡΠ°ΡΡΠ΅Ρ Ρ ΠΊΠ°ΠΆΠ΄ΡΠΌ Π³ΠΎΠ΄ΠΎΠΌ.
ΠΡΠ° ΡΡΠ°ΡΡΡ ΠΏΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΡ Π²Π°Ρ Ρ ΡΡΠ½Π΄Π°ΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌΠΈ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΡΠΌΠΈ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ. Π ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½Π΅Π΅, ΠΌΡ ΠΎΠ±ΡΡΠ΄ΠΈΠΌ ΠΎΡΠ½ΠΎΠ²Π½ΡΠ΅ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΠΈ 9ΡΠΈ ΡΠ°ΠΌΡΡ Π²Π°ΠΆΠ½ΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΠΠ Π½Π° ΡΠ΅Π³ΠΎΠ΄Π½ΡΡΠ½ΠΈΠΉ Π΄Π΅Π½Ρ.
Π‘ΠΈΡΡΠ΅ΠΌΠ° ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΉ(Recommendation system)
ΠΠ»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ ΠΏΠΎΠ»Π½ΠΎΡΠ΅Π½Π½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΉ Ρ 0, ΡΡΠ΅Π±ΡΡΡΡΡ Π³Π»ΡΠ±ΠΎΠΊΠΈΠ΅ Π·Π½Π°Π½ΠΈΡ Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π°Π»Π³Π΅Π±ΡΠ΅. ΠΠ·-Π·Π° ΡΠ΅Π³ΠΎ, Π΅ΡΠ»ΠΈ Π²Ρ Π½ΠΈΠΊΠΎΠ³Π΄Π° Π½Π΅ ΠΈΠ·ΡΡΠ°Π»ΠΈ ΡΡΡ Π΄ΠΈΡΡΠΈΠΏΠ»ΠΈΠ½Ρ, Π²Π°ΠΌ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΡΠ»ΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ½ΡΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΡΠ΅ ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΠΈ ΡΡΠΎΠ³ΠΎ ΡΠ°Π·Π΄Π΅Π»Π°.
ΠΠΎ Π½Π΅ Π±Π΅ΡΠΏΠΎΠΊΠΎΠΉΡΠ΅ΡΡ β scikit-learn Π±ΠΈΠ±Π»ΠΈΠΎΡΠ΅ΠΊΠ° Python ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ Π΄ΠΎΠ²ΠΎΠ»ΡΠ½ΠΎ ΠΏΡΠΎΡΡΠΎ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π‘Π . Π’Π°ΠΊ ΡΡΠΎ Π²Π°ΠΌ Π½Π΅ ΠΏΠΎΡΡΠ΅Π±ΡΠ΅ΡΡΡ ΡΠ°ΠΊΠΈΡ ΡΠΆ Π³Π»ΡΠ±ΠΎΠΊΠΈΡ ΠΏΠΎΠ·Π½Π°Π½ΠΈΠΉ Π² Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ Π°Π»Π³Π΅Π±ΡΠ΅, ΡΡΠΎΠ±Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ ΡΠ°Π±ΠΎΡΡΡ Π‘Π .
ΠΠ°ΠΊ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ Π‘Π ?
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ 2 ΠΎΡΠ½ΠΎΠ²Π½ΡΡ ΡΠΈΠΏΠ° ΡΠΈΡΡΠ΅ΠΌΠ° ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΉ:
ΠΠΎΠ»Π»Π°Π±ΠΎΡΠ°ΡΠΈΠ²Π½Π°Ρ ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΡ Π‘Π ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠ΅ΠΊΠΎΠΌΠΌΠ΅Π½Π΄Π°ΡΠΈΠΈ, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΠ΅ Π½Π° Π·Π½Π°Π½ΠΈΡΡ ΠΎ ΡΠΎΠΌ ΠΊΠ°ΠΊ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»Ρ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΡΠ΅Ρ Ρ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ(*ΠΏΡΠΈΠΌΠ΅ΡΠ°Π½ΠΈΠ΅: Π·Π° ΠΎΡΠ½ΠΎΠ²Ρ Π²Π·ΡΡΡ Π²Π·Π°ΠΈΠΌΠΎΠ΄Π΅ΠΉΡΡΠ²ΠΈΡ Ρ ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°ΠΌΠΈ Π΄ΡΡΠ³ΠΈΡ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»Π΅ΠΉ, ΡΡ ΠΎΠΆΠΈΡ ΠΏΠΎ ΠΏΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Ρ Π΄Π°Π½Π½ΡΠΌ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»Π΅ΠΌ). ΠΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΠΎΠ½ΠΈ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ Β«ΠΌΡΠ΄ΡΠΎΡΡΡ ΡΠΎΠ»ΠΏΡΒ»(ΠΎΡΡΡΠ΄Π° ΠΈ Β«ΠΊΠΎΠ»Π»Π°Π±ΠΎΡΠ°ΡΠΈΠ²Π½ΡΠΉΒ» Π² Π½Π°Π·Π²Π°Π½ΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°).
Π ΡΠ΅Π°Π»ΡΠ½ΠΎΠΌ ΠΌΠΈΡΠ΅ ΠΊΠΎΠ»Π»Π°Π±ΠΎΡΠ°ΡΠΈΠ²Π½Π°Ρ ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΡ Π‘Π ΠΊΡΠ΄Π° Π±ΠΎΠ»Π΅Π΅ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½Π΅Π½Π°, Π½Π΅ΠΆΠ΅Π»ΠΈ ΠΎΡΠ½ΠΎΠ²Π°Π½Π½Π°Ρ Π½Π° ΠΊΠΎΠ½ΡΠ΅Π½ΡΠ΅ ΡΠΈΡΡΠ΅ΠΌΠ°. ΠΡΠΎ ΠΎΠ±ΡΡΠ»ΠΎΠ²Π»Π΅Π½ΠΎ, ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ, ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΠΎΠ½ΠΈ ΠΎΠ±ΡΡΠ½ΠΎ Π΄Π°ΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°Ρ Π»ΡΡΡΠ΅. ΠΠ΅ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡ ΡΠ°ΠΊΠΆΠ΅ Π½Π°Ρ ΠΎΠ΄ΡΡ ΠΊΠΎΠ»Π»Π°Π±ΠΎΡΠ°ΡΠΈΠ²Π½ΡΡ ΡΠΈΡΡΠ΅ΠΌΡ Π±ΠΎΠ»Π΅Π΅ ΠΏΡΠΎΡΡΠΎΠΉ Π΄Π»Ρ ΠΏΠΎΠ½ΠΈΠΌΠ°Π½ΠΈΡ.
ΠΠΎΠ»Π»Π°Π±ΠΎΡΠ°ΡΠΈΠ²Π½Π°Ρ ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΡ Π‘Π ΡΠ°ΠΊΠΆΠ΅ ΠΎΠ±Π»Π°Π΄Π°Π΅Ρ ΡΠ½ΠΈΠΊΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΡΡ, ΠΊΠΎΡΠΎΡΠΎΠΉ Π½Π΅Ρ Π² ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΠΎΠΉ Π½Π° ΠΊΠΎΠ½ΡΠ΅Π½ΡΠ΅ ΡΠΈΡΡΡΠ΅ΠΌΠ΅. Π ΠΈΠΌΠ΅Π½Π½ΠΎ, Ρ Π½ΠΈΡ Π΅ΡΡΡ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡΡ ΠΎΠ±ΡΡΠ°ΡΡΡΡ ΡΠΈΡΠ°ΠΌ ΡΠ°ΠΌΠΎΡΡΠΎΡΡΠ΅Π»ΡΠ½ΠΎ.
ΠΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ ΠΎΠ½ΠΈ ΠΌΠΎΠ³ΡΡ Π΄Π°ΠΆΠ΅ Π½Π°ΡΠ°ΡΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅ Π² ΡΠ»Π΅ΠΌΠ΅Π½ΡΠ°Ρ , ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°ΡΡΡ Π½Π° ΡΠ²ΠΎΠΉΡΡΠ²Π°Ρ ΠΈΠ»ΠΈ ΡΠ΅ΡΡΠ°Ρ , ΠΊΠΎΡΠΎΡΡΠ΅ Π²Ρ Π΄Π°ΠΆΠ΅ Π½Π΅ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»ΡΠ»ΠΈ Π΄Π»Ρ ΡΠ°Π±ΠΎΡΡ ΡΡΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΠ΅.
Π‘ΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ 2 ΠΏΠΎΠ΄ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ ΠΊΠΎΠ»Π»Π°Π±ΠΎΡΠ°ΡΠΈΠ²Π½ΠΎΠΉ ΡΠΈΠ»ΡΡΡΠ°ΡΠΈΠΈ:
ΠΠΎΠ΄Π²Π΅Π΄Π΅ΠΌ ΠΈΡΠΎΠ³
ΠΠΎΡ ΠΊΡΠ°ΡΠΊΠΎΠ΅ ΡΠ΅Π·ΡΠΌΠ΅ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΠΌΡ ΡΠ·Π½Π°Π»ΠΈ ΠΎ ΡΠΈΡΡΠ΅ΠΌΠ΅ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΉ Π² Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ°ΡΡΠ΅:
ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ (Linear Regression)
ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½ΠΈΠΉ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ y ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°ΡΡΡ Π½Π° Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ x.
ΠΡΡΠΎΡΠΈΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ
ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ(ΠΠ ) Π±ΡΠ»Π° ΠΈΠ·ΠΎΠ±ΡΠ΅ΡΠ΅Π½Π° Π² 1800 Π³ΠΎΠ΄Ρ Π€ΡΠ΅Π½ΡΠΈΡΠΎΠΌ ΠΠ°Π»ΡΡΠΎΠ½ΠΎΠΌ. ΠΠ°Π»ΡΡΠΎΠ½ Π±ΡΠ» ΡΡΠ΅Π½ΡΠΌ, ΠΈΠ·ΡΡΠ°ΡΡΠΈΠΌ ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΠ΄ΠΈΡΠ΅Π»ΡΠΌΠΈ ΠΈ Π΄Π΅ΡΡΠΌΠΈ. Π ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½Π΅Π΅, ΠΠ°Π»ΡΡΠΎΠ½ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π» ΡΠ²ΡΠ·Ρ ΠΌΠ΅ΠΆΠ΄Ρ ΡΠΎΡΡΠΎΠΌ ΠΎΡΡΠΎΠ² ΠΈ ΡΠΎΡΡΠΎΠΌ ΠΈΡ ΡΡΠ½ΠΎΠ²Π΅ΠΉ. ΠΠ΅ΡΠ²ΡΠΌ ΠΎΡΠΊΡΡΡΠΈΠ΅ΠΌ ΠΠ°Π»ΡΡΠΎΠ½Π° ΡΡΠ°Π» ΡΠΎΡ ΡΠ°ΠΊΡ, ΡΡΠΎ ΡΠΎΡΡ ΡΡΠ½ΠΎΠ²Π΅ΠΉ, ΠΊΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π±ΡΠ» ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ°ΠΊΠΈΠΌ ΠΆΠ΅ ΠΊΠ°ΠΊ ΡΠΎΡΡ ΠΈΡ ΠΎΡΡΠΎΠ². Π§ΡΠΎ Π½Π΅ ΡΠ΄ΠΈΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ.
ΠΠΎΠ·Π΄Π½Π΅Π΅, ΠΠ°Π»ΡΡΠΎΠ½ ΠΎΡΠΊΡΡΠ» Π½Π΅ΡΡΠΎ Π±ΠΎΠ»Π΅Π΅ ΠΈΠ½ΡΠ΅ΡΠ΅ΡΠ½ΠΎΠ΅. Π ΠΎΡΡ ΡΡΠ½Π°, ΠΊΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π±ΡΠ» Π±Π»ΠΈΠΆΠ΅ ΠΊ ΡΡΠ΅Π΄Π½Π΅-ΠΎΠ±ΡΠ΅ΠΌΡ ΡΠΎΡΡΡ Π²ΡΠ΅Ρ Π»ΡΠ΄Π΅ΠΉ, ΡΠ΅ΠΌ ΠΊ ΡΠΎΡΡΡ Π΅Π³ΠΎ ΡΠΎΠ±ΡΡΠ²Π΅Π½Π½ΠΎΠ³ΠΎ ΠΎΡΡΠ°.
ΠΠ°Π»ΡΡΠΎΠ½ Π΄Π°Π»Ρ ΡΡΠΎΠΌΡ ΡΠ΅Π½ΠΎΠΌΠ΅Π½Ρ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ β ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ. Π ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, ΠΎΠ½ ΡΠΊΠ°Π·Π°Π»: » Π ΠΎΡΡ ΡΡΠ½Π° ΠΈΠΌΠ΅Π΅Ρ ΡΠ΅Π½Π΄Π΅Π½ΡΠΈΡ ΠΊ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ(ΠΈΠ»ΠΈ ΠΊ ΡΠΌΠ΅ΡΠ΅Π½ΠΈΡ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ) ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ ΡΠΎΡΡΠ°».
ΠΡΠΎ ΠΏΡΠΈΠ²Π΅Π»ΠΎ ΠΊ ΡΠ΅Π»ΠΎΠΉ ΠΎΠ±Π»Π°ΡΡΠΈ Π² ΡΡΠ°ΡΠΈΡΡΠΈΠΊΠ΅ ΠΈ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠΌ ΠΎΠ±ΡΡΠ΅Π½ΠΈΠΈ ΠΏΠΎΠ΄ Π½Π°Π·Π²Π°Π½ΠΈΠ΅ΠΌ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ.
ΠΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠ° Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ
Π ΠΏΡΠΎΡΠ΅ΡΡΠ΅ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ, Π²ΡΠ΅ ΡΡΠΎ ΠΌΡ ΠΏΡΡΠ°Π΅ΠΌΡΡ ΡΠ΄Π΅Π»Π°ΡΡ β ΡΡΠΎ Π½Π°ΡΠΈΡΠΎΠ²Π°ΡΡ Π»ΠΈΠ½ΠΈΡ Π½Π°ΡΡΠΎΠ»ΡΠΊΠΎ Π±Π»ΠΈΠ·ΠΊΠΎ ΠΊ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΠΈΠ· Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ , Π½Π° ΡΠΊΠΎΠ»ΡΠΊΠΎ ΡΡΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ.
Π’ΠΈΠΏΠΈΡΠ½ΡΠΉ ΠΏΡΠΈΠΌΠ΅Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ ΠΎΠ΄Π° β Β«ΠΌΠ΅ΡΠΎΠ΄ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ²Β» Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΡΠ°ΡΡΡΠΈΡΡΠ²Π°ΡΡ Π±Π»ΠΈΠ·ΠΎΡΡΡ Π»ΠΈΠ½ΠΈΠΈ Π² Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ Π²Π΅ΡΡ -Π½ΠΈΠ·.
ΠΡΠΈΠΌΠ΅Ρ Π΄Π»Ρ ΠΈΠ»Π»ΡΡΡΡΠ°ΡΠΈΠΈ:
ΠΠΎΠ³Π΄Π° Π²Ρ ΡΠΎΠ·Π΄Π°Π΅ΡΠ΅ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½ΡΡ ΠΌΠΎΠ΄Π΅Π»Ρ, Π²Π°Ρ ΠΊΠΎΠ½Π΅ΡΠ½ΡΠΉ ΠΏΡΠΎΠ΄ΡΠΊΡ β ΡΡΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ y Π΄Π»Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΡ x Π±Π΅Π· ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ Π·Π½Π°ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ y Π½Π°ΠΏΠ΅ΡΠ΅Π΄.
ΠΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ (Logistic Regression)
ΠΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ ΡΡ ΠΎΠΆΠ° Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ, Π·Π° ΠΈΡΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅ΠΌ ΡΠΎΠ³ΠΎ ΡΠ°ΠΊΡΠ°, ΡΡΠΎ Π²ΠΌΠ΅ΡΡΠΎ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Ρ, ΠΎΠ½Π° ΠΎΡΠ΅Π½ΠΈΠ²Π°Π΅Ρ ΠΊ ΠΊΠ°ΠΊΠΎΠΉ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ Π΄Π°Π½Π½Π°Ρ ΡΠΎΡΠΊΠ° Π΄Π°Π½Π½ΡΡ .
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π»ΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ?
ΠΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ β ΡΡΠΎ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΠ°ΡΡΡ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ.
ΠΠΈΠΆΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΎ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ² ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΡ Π·Π°Π΄Π°Ρ ΠΠ:
ΠΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ Ρ ΠΎΡΠΎΡΠΎ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ Π΄Π²ΠΎΠΈΡΠ½ΠΎΠΉ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ β ΠΌΡ ΠΏΡΠΎΡΡΠΎ Π½Π°Π·Π½Π°ΡΠ°Π΅ΠΌ ΡΠ°Π·Π½ΡΠΌ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΡΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ 0 ΠΈ 1 ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ.
ΠΠ°ΡΠ΅ΠΌ Π½ΡΠΆΠ½Π° Π»ΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ? ΠΠΎΡΠΎΠΌΡ ΡΡΠΎ Π²Ρ Π½Π΅ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΡ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ Π΄Π»Ρ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΎΠ² ΠΏΠΎ Π΄Π²ΠΎΠΈΡΠ½ΠΎΠΉ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ. ΠΠ½Π° ΠΏΡΠΎΡΡΠΎ Π½Π΅ Π±ΡΠ΄Π΅Ρ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡΡ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π²Ρ Π±ΡΠ΄Π΅ΡΠ΅ ΠΏΡΡΠ°ΡΡΡΡ ΠΏΡΠΎΠ²Π΅ΡΡΠΈ ΠΏΡΡΠΌΡΡ Π»ΠΈΠ½ΠΈΡ ΡΠ΅ΡΠ΅Π· Π½Π°Π±ΠΎΡ Π΄Π°Π½Π½ΡΡ Ρ Π΄Π²ΡΠΌΡ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΡΠΌΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΡΠΌΠΈ.
ΠΡΠΎ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΠΌΠΎΡΡ ΠΏΠΎΠ½ΡΡΡ ΠΏΠΎΡΠ΅ΠΌΡ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ ΠΏΠ»ΠΎΡ ΠΎ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΠΈΡ Π΄Π»Ρ Π΄Π²ΠΎΠΈΡΠ½ΠΎΠΉ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ:
ΠΠ° ΡΡΠΎΠΌ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΠΎΡΡ Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΡΠΎΠ³ΠΎ, ΡΡΠΎ ΠΎΠΏΡΡ ΠΎΠ»Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ. ΠΠ½Π°ΡΠ΅Π½ΠΈΡ 1-Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ, ΡΡΠΎ ΠΎΠΏΡΡ ΠΎΠ»Ρ Π΄ΠΎΠ±ΡΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½Π°Ρ. ΠΠ°ΠΊ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π²ΠΈΠ΄Π΅ΡΡ, ΠΌΠΎΠ΄Π΅Π»Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ ΠΎΡΠ΅Π½Ρ ΠΏΠ»ΠΎΡ ΠΎ ΡΡΠ°Π±Π°ΡΡΠ²Π°Π΅Ρ Π΄Π»Ρ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½ΠΈΡ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠΈ Π΄Π»Ρ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Π° Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΠΉ Π² Π½Π°Π±ΠΎΡΠ΅ Π΄Π°Π½Π½ΡΡ .
ΠΠΎΡ ΠΏΠΎΡΠ΅ΠΌΡ Π»ΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΏΠΎΠ»Π΅Π·Π½Π°. Π£ Π½Π΅Π΅ Π΅ΡΡΡ ΠΈΠ·Π³ΠΈΠ± ΠΊ Π»ΠΈΠ½ΠΈΠΈ Π»ΡΡΡΠ΅Π³ΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΠ²ΠΈΡ, ΡΡΠΎ Π΄Π΅Π»Π°Π΅Ρ Π΅Π΅(ΠΌΠΎΠ΄Π΅Π»Ρ) Π³ΠΎΡΠ°Π·Π΄ΠΎ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΡΡΠ΅ΠΉ Π΄Π»Ρ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½ΠΈΠΉ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ (ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΉΠ½ΡΡ ) Π΄Π°Π½Π½ΡΡ .
ΠΠΎΡ ΠΏΡΠΈΠΌΠ΅Ρ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΈΠ»Π»ΡΡΡΡΠΈΡΡΠ΅Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΠΈ Π»ΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½ΡΡ ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ Π½Π° ΠΎΠ΄Π½ΠΈΡ ΠΈ ΡΠ΅Ρ ΠΆΠ΅ Π΄Π°Π½Π½ΡΡ :
Π‘ΠΈΠ³ΠΌΠΎΠΈΠ΄Π° (The Sigmoid Function)
ΠΡΠΈΡΠΈΠ½Π° ΠΏΠΎ ΠΊΠΎΡΠΎΡΠΎΠΉ Π»ΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ ΠΈΠΌΠ΅Π΅Ρ ΠΈΠ·Π³ΠΈΠ± β ΡΡΠΎ ΡΠΎΡ ΡΠ°ΠΊΡ, ΡΡΠΎ Π΄Π»Ρ Π΅Ρ Π²ΡΡΠΈΡΠ»Π΅Π½ΠΈΡ Π½Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅. ΠΠΌΠ΅ΡΡΠΎ Π½Π΅Π³ΠΎ Π»ΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅Π³Π΅ΡΡΡΠΈΠΎΠ½Π½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΡΡΡΠΎΠΈΡΡΡ Π½Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠΈΠ³ΠΌΠΎΠΈΠ΄Ρ (ΡΠ°ΠΊΠΆΠ΅ Π½Π°Π·ΡΠ²Π°Π΅ΠΌΠΎΠΉ Π»ΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠ΅ΠΉ, Ρ.ΠΊ. ΠΎΠ½Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π² Π»ΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ).
ΠΠ»Ρ Π²Π°Ρ Π½Π΅ ΠΎΠ±ΡΠ·Π°ΡΠ΅Π»ΡΠ½ΠΎ Π΄ΠΎΡΠΊΠΎΠ½Π°Π»ΡΠ½ΠΎ Π·Π°ΠΏΠΎΠΌΠΈΠ½Π°ΡΡ ΡΠΈΠ³ΠΌΠΎΠΈΠ΄Ρ, ΡΡΠΎΠ±Ρ ΠΏΡΠ΅ΡΡΠΏΠ΅ΡΡ Π² ΠΠ. ΠΠΎ Π²ΡΠ΅-ΡΠ°ΠΊΠΈ ΠΈΠΌΠ΅ΡΡ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΎΠ± ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π±ΡΠ΄Π΅Ρ ΠΏΠΎΠ»Π΅Π·Π½ΠΎ.
ΠΠ»Π°Π²Π½Π°Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° ΡΠΈΠ³ΠΌΠΎΠΈΠ΄Ρ, ΠΊΠΎΡΠΎΡΠ°Ρ ΡΡΠΎΠΈΡ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ Ρ Π½Π΅ΠΉ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡΡΡ β Π½Π΅ Π²Π°ΠΆΠ½ΠΎ ΠΊΠ°ΠΊΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²Ρ ΠΏΠ΅ΡΠ΅Π΄Π°Π΄ΠΈΡΠ΅ ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ, ΠΎΠ½Π° Π²ΡΠ΅Π³Π΄Π° Π²Π΅ΡΠ½Π΅Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π² ΠΏΡΠΎΠΌΠ΅ΠΆΡΡΠΊΠ΅ 0-1.
ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π»ΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π΄Π»Ρ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½ΠΈΠΉ
Π§ΡΠΎΠ±Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π»ΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΡΡ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ Π΄Π»Ρ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½ΠΈΠΉ, Π²Π°ΠΌ, ΠΊΠ°ΠΊ ΠΏΡΠ°Π²ΠΈΠ»ΠΎ, Π½ΡΠΆΠ½ΠΎ ΡΠΎΡΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΠΎΡΠΊΡ ΠΎΡΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΡΠ° ΡΠΎΡΠΊΠ° ΠΎΡΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΎΠ±ΡΡΠ½ΠΎ 0.5.
ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π½Π°Ρ ΠΏΡΠΈΠΌΠ΅Ρ Ρ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΎΠΉ ΡΠ°ΠΊΠ° Ρ ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅Π³ΠΎ Π³ΡΠ°ΡΠΈΠΊΠ°, ΡΡΠΎΠ±Ρ ΡΠ²ΠΈΠ΄Π΅ΡΡ ΡΡΠΎΡ ΠΏΡΠΈΠ½ΡΠΈΠΏ Π½Π° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅. ΠΡΠ»ΠΈ Π»ΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½Π°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Π²ΡΠ΄Π°ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π½ΠΈΠΆΠ΅ 0.5, ΡΠΎ ΡΡΠ° ΡΠΎΡΠΊΠ° Π΄Π°Π½Π½ΡΡ Π±ΡΠ΄Π΅Ρ ΠΎΡΠ½Π΅ΡΠ΅Π½Π° ΠΊ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ Π΄ΠΎΠ±ΡΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠΉ ΠΎΠΏΡΡ ΠΎΠ»ΠΈ. ΠΠΎΠ΄ΠΎΠ±Π½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, Π΅ΡΠ»ΠΈ ΡΠΈΠ³ΠΌΠΎΠΈΠ΄Π° Π²ΡΠ΄Π°ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ΅ 0.5, ΡΠΎ ΠΎΠΏΡΡ ΠΎΠ»Ρ ΠΎΡΠ½Π΅ΡΡΡ ΠΊ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ .
ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ°ΡΡΠΈΡΡ ΠΎΡΠΈΠ±ΠΎΠΊ Π΄Π»Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π»ΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ
ΠΠ°ΡΡΠΈΡΠ° ΠΎΡΠΈΠ±ΠΎΠΊ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π° Π² ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ° Π΄Π»Ρ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ ΠΈΡΡΠΈΠ½Π½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ , ΠΈΡΡΠΈΠ½Π½ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ , Π»ΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΈ Π»ΠΎΠΆΠ½ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΡ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ Π² ΠΠ.
ΠΠ°ΡΡΠΈΡΠ° ΠΎΡΠΈΠ±ΠΎΠΊ, Π² ΡΠ°ΡΡΠ½ΠΎΡΡΠΈ, ΠΏΠΎΠ»Π΅Π·Π½Π°, ΠΊΠΎΠ³Π΄Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΡ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π»ΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ. ΠΠΎΡ ΠΏΡΠΈΠΌΠ΅Ρ, ΠΊΠ°ΠΊ ΠΌΡ ΠΌΠΎΠΆΠ΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΠΌΠ°ΡΡΠΈΡΡ ΠΎΡΠΈΠ±ΠΎΠΊ:
Π ΡΡΠΎΠΉ ΡΠ°Π±Π»ΠΈΡΠ΅ TN ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ Β«ΠΈΡΡΠΈΠ½Π½ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΒ», FN β Β«Π»ΠΎΠΆΠ½ΠΎ ΠΎΡΡΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΒ», FP β Β«Π»ΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΒ», TP β Β«ΠΈΡΡΠΈΠ½Π½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΒ».
ΠΠ°ΡΡΠΈΡΠ° ΠΎΡΠΈΠ±ΠΎΠΊ ΠΏΠΎΠ»Π΅Π·Π½Π° Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈ, Π΅ΡΡΡ Π»ΠΈ Π² Π½Π΅ΠΉ Β«ΡΠ»Π°Π±ΡΠ΅Β» ΠΊΠ²Π°Π΄ΡΠ°Π½ΡΡ Π² ΠΌΠ°ΡΡΠΈΡΠ΅ ΠΎΡΠΈΠ±ΠΎΠΊ. ΠΠ°ΠΊ ΠΏΡΠΈΠΌΠ΅Ρ, ΠΎΠ½Π° ΠΌΠΎΠΆΠ΅Ρ ΠΈΠΌΠ΅ΡΡ Π½Π΅Π½ΠΎΡΠΌΠ°Π»ΡΠ½ΠΎ Π±ΠΎΠ»ΡΡΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π»ΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ².
ΠΠ½Π° ΡΠ°ΠΊΠΆΠ΅ Π΄ΠΎΠ²ΠΎΠ»ΡΠ½ΠΎ ΠΏΠΎΠ»Π΅Π·Π½Π° Π² Π½Π΅ΠΊΠΎΡΠΎΡΡΡ ΡΠ»ΡΡΠ°ΡΡ , Π΄Π»Ρ ΡΠΎΠ³ΠΎ ΡΡΠΎΠ±Ρ ΡΠ±Π΅Π΄ΠΈΡΡΡΡ, ΡΡΠΎ Π²Π°ΡΠ° ΠΌΠΎΠ΄Π΅Π»Ρ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ ΠΊΠΎΡΡΠ΅ΠΊΡΠ½ΠΎ Π² ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎ ΠΎΠΏΠ°ΡΠ½ΠΎΠΉ Π·ΠΎΠ½Π΅ ΠΌΠ°ΡΡΠΈΡΡ ΠΎΡΠΈΠ±ΠΎΠΊ.
Π ΡΡΠΎΠΌ ΠΏΡΠΈΠΌΠ΅ΡΠ΅ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΡΠ°ΠΊΠ°, Π½Π°ΠΏΡΠΈΠΌΠ΅Ρ, Π²Ρ Π±Ρ Ρ ΠΎΡΠ΅Π»ΠΈ Π±ΡΡΡ ΡΠΎΡΠ½ΠΎ ΡΠ²Π΅ΡΠ΅Π½Ρ, ΡΡΠΎ Ρ Π²Π°ΡΠ΅ΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π½Π΅ ΡΠ»ΠΈΡΠΊΠΎΠΌ Π±ΠΎΠ»ΡΡΠΎΠ΅ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ Π»ΠΎΠΆΠ½ΠΎ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ², Ρ.ΠΊ. ΡΡΠΎ Π±ΡΠ΄Π΅Ρ ΠΎΠ·Π½Π°ΡΠ°ΡΡ, ΡΡΠΎ ΡΡΡ-ΡΠΎ Π·Π»ΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ ΠΎΠΏΡΡ ΠΎΠ»Ρ Π²Ρ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠΎΠ²Π°Π»ΠΈ ΠΊΠ°ΠΊ Π΄ΠΎΠ±ΡΠΎΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ.
ΠΠΎΠ΄Π²Π΅Π΄Π΅ΠΌ ΠΈΡΠΎΠ³
Π ΡΡΠΎΠΌ ΡΠ°Π·Π΄Π΅Π»Π΅ Ρ Π²Π°Ρ Π±ΡΠ»ΠΎ ΠΏΠ΅ΡΠ²ΠΎΠ΅ Π·Π½Π°ΠΊΠΎΠΌΡΡΠ²ΠΎ Ρ ΠΌΠΎΠ΄Π΅Π»ΡΡ ΠΠ β Π»ΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠ΅ΠΉ.
ΠΠΎΡ ΠΊΡΠ°ΡΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π²Ρ ΡΠ·Π½Π°Π»ΠΈ ΠΎ Π»ΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ:
ΠΠ»Π³ΠΎΡΠΈΡΠΌ k-Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΡ ΡΠΎΡΠ΅Π΄Π΅ΠΉ (K-Nearest Neighbors)
ΠΠ»Π³ΠΎΡΠΈΡΠΌ k-Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΡ ΡΠΎΡΠ΅Π΄Π΅ΠΉ ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΠΌΠΎΡΡ ΡΠ΅ΡΠΈΡΡ Π·Π°Π΄Π°ΡΡ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ, Π² ΡΠ»ΡΡΠ°Π΅, ΠΊΠΎΠ³Π΄Π° ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΉ Π±ΠΎΠ»ΡΡΠ΅, ΡΠ΅ΠΌ 2.
Π§ΡΠΎ ΠΈΠ· ΡΠ΅Π±Ρ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ Π°Π»Π³ΠΎΡΠΈΡΠΌ k-Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΡ ΡΠΎΡΠ΅Π΄Π΅ΠΉ?
ΠΡΠΎ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΎΠ½Π½ΡΠΉ Π°Π»Π³ΠΎΡΠΈΡΠΌ, ΠΊΠΎΡΠΎΡΡΠΉ Π±Π°Π·ΠΈΡΡΠ΅ΡΡΡ Π½Π° ΠΏΡΠΎΡΡΠΎΠΌ ΠΏΡΠΈΠ½ΡΠΈΠΏΠ΅. ΠΠ° ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅, ΠΏΡΠΈΠ½ΡΠΈΠΏ Π½Π°ΡΡΠΎΠ»ΡΠΊΠΎ ΠΏΡΠΎΡΡ, ΡΡΠΎ Π»ΡΡΡΠ΅ Π΅Π³ΠΎ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°ΡΡ Π½Π° ΠΏΡΠΈΠΌΠ΅ΡΠ΅.
ΠΡΠ΅Π΄ΡΡΠ°Π²ΡΡΠ΅, ΡΡΠΎ Ρ Π²Π°Ρ Π΅ΡΡΡ Π΄Π°Π½Π½ΡΠ΅ ΠΏΠΎ Π²ΡΡΠΎΡΠ΅ ΠΈ Π²Π΅ΡΡ ΡΡΡΠ±ΠΎΠ»ΠΈΡΡΠΎΠ² ΠΈ Π±Π°ΡΠΊΠ΅ΡΠ±ΠΎΠ»ΠΈΡΡΠΎΠ². ΠΠ»Π³ΠΎΡΠΈΡΠΌ k-Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΡ ΡΠΎΡΠ΅Π΄Π΅ΠΉ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ Π΄Π»Ρ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π»ΠΈ Π½ΠΎΠ²ΡΠΉ ΠΈΠ³ΡΠΎΠΊ ΡΡΡΠ±ΠΎΠ»ΠΈΡΡΠΎΠΌ ΠΈΠ»ΠΈ Π±Π°ΡΠΊΠ΅ΡΠ±ΠΎΠ»ΠΈΡΡΠΎΠΌ. Π§ΡΠΎΠ±Ρ ΡΡΠΎ ΡΠ΄Π΅Π»Π°ΡΡ, Π°Π»Π³ΠΎΡΠΈΡΠΌ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ Π ΡΠΎΡΠ΅ΠΊ Π΄Π°Π½Π½ΡΡ , Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΡ ΠΊ ΠΎΠ±ΡΠ΅ΠΊΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ.
ΠΠ°Π½Π½ΠΎΠ΅ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠ΅ Π΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΡΠ΅Ρ ΡΡΠΎΡ ΠΏΡΠΈΠ½ΡΠΈΠΏ Ρ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠΌ Π = 3:
ΠΠ° ΡΡΠΎΠΌ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΈ ΡΡΡΠ±ΠΎΠ»ΠΈΡΡΡ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½Ρ Π³ΠΎΠ»ΡΠ±ΡΠΌΠΈ ΠΎΡΠΌΠ΅ΡΠΊΠ°ΠΌΠΈ, Π° Π±Π°ΡΠΊΠ΅ΡΠ±ΠΎΠ»ΠΈΡΡΡ β ΠΎΡΠ°Π½ΠΆΠ΅Π²ΡΠΌΠΈ. Π’ΠΎΡΠΊΠ°, ΠΊΠΎΡΠΎΡΡΡ ΠΌΡ ΠΏΡΡΠ°Π΅ΠΌΡΡ ΠΊΠ»Π°ΡΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°ΡΡ, ΠΏΠΎΠΊΡΠ°ΡΠ΅Π½Π° Π² Π·Π΅Π»Π΅Π½ΡΠΉ ΡΠ²Π΅Ρ. Π’Π°ΠΊ ΠΊΠ°ΠΊ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²ΠΎ (2 ΠΈΠ· 3) Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΡ ΠΊ Π·Π΅Π»Π΅Π½ΠΎΠΉ ΡΠΎΡΠΊΠ΅ ΠΎΡΠΌΠ΅ΡΠΎΠΊ ΠΎΠΊΡΠ°ΡΠ΅Π½Ρ Π² Π³ΠΎΠ»ΡΠ±ΠΎΠΉ (ΡΡΡΠ±ΠΎΠ»ΡΠ½ΡΠ΅ ΠΈΠ³ΡΠΎΠΊΠΈ), ΡΠΎ Π·Π½Π°ΡΠΈΡ Π°Π»Π³ΠΎΡΠΈΡΠΌ Π-Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΡ ΡΠΎΡΠ΅Π΄Π΅ΠΉ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·ΡΠ²Π°Π΅Ρ, ΡΡΠΎ Π½ΠΎΠ²ΡΠΉ ΠΈΠ³ΡΠΎΠΊ ΡΠΎΠΆΠ΅ ΠΎΠΊΠ°ΠΆΠ΅ΡΡΡ ΡΡΡΠ±ΠΎΠ»ΠΈΡΡΠΎΠΌ.
ΠΠ°ΠΊ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌ Π-Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΡ ΡΠΎΡΠ΅Π΄Π΅ΠΉ
ΠΡΠ½ΠΎΠ²Π½ΡΠ΅ ΡΠ°Π³ΠΈ Π΄Π»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡ Π΄Π°Π½Π½ΠΎΠ³ΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ°:
ΠΠ°ΠΆΠ½ΠΎΡΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π Π² Π°Π»Π³ΠΎΡΠΈΡΠΌΠ΅ Π-Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΡ ΡΠΎΡΠ΅Π΄Π΅ΠΉ
Π₯ΠΎΡΡ ΡΡΠΎ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ Π½Π΅ ΠΎΡΠ΅Π²ΠΈΠ΄Π½ΠΎ Ρ ΡΠ°ΠΌΠΎΠ³ΠΎ Π½Π°ΡΠ°Π»Π°, ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π Π² Π΄Π°Π½Π½ΠΎΠΌ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ΅ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΡ, Π² ΠΊΠΎΡΠΎΡΡΡ ΠΏΠΎΠΏΠ°Π΄Π΅Ρ Π½ΠΎΠ²Π°Ρ ΡΠΎΡΠΊΠ° Π΄Π°Π½Π½ΡΡ .
ΠΠΎΠ½ΠΊΡΠ΅ΡΠ½Π΅Π΅, ΡΠ»ΠΈΡΠΊΠΎΠΌ ΠΌΠ°Π»Π΅Π½ΡΠΊΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π ΠΏΡΠΈΠ²Π΅Π΄Π΅Ρ ΠΊ ΡΠΎΠΌΡ, ΡΡΠΎ Π²Π°ΡΠ° ΠΌΠΎΠ΄Π΅Π»Ρ Π±ΡΠ΄Π΅Ρ ΡΠΎΡΠ½ΠΎ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°ΡΡ Π½Π° ΠΎΠ±ΡΡΠ°ΡΡΠ΅ΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ Π΄Π°Π½Π½ΡΡ , Π½ΠΎ Π±ΡΠ΄Π΅Ρ ΠΊΡΠ°ΠΉΠ½Π΅ Π½Π΅ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½Π° Π΄Π»Ρ ΡΠ΅ΡΡΠΎΠ²ΡΡ Π΄Π°Π½Π½ΡΡ . Π’Π°ΠΊΠΆΠ΅, ΠΈΠΌΠ΅Ρ ΡΠ»ΠΈΡΠΊΠΎΠΌ Π²ΡΡΠΎΠΊΠΈΠΉ Π ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ, Π²Ρ ΡΠ΄Π΅Π»Π°Π΅ΡΠ΅ ΠΌΠΎΠ΄Π΅Π»Ρ Π½Π΅ΠΎΠΏΡΠ°Π²Π΄Π°Π½Π½ΠΎ ΡΠ»ΠΎΠΆΠ½ΠΎΠΉ.
ΠΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Π½Π°Ρ Π½ΠΈΠΆΠ΅ ΠΈΠ»Π»ΡΡΡΡΠ°ΡΠΈΡ ΠΎΡΠ»ΠΈΡΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·ΡΠ²Π°Π΅Ρ ΡΡΠΎΡ ΡΡΡΠ΅ΠΊΡ:
ΠΠ»ΡΡΡ ΠΈ ΠΌΠΈΠ½ΡΡΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° Π-Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΡ ΡΠΎΡΠ΅Π΄Π΅ΠΉ
Π§ΡΠΎΠ±Ρ ΠΏΠΎΠ΄Π²Π΅ΡΡΠΈ ΠΈΡΠΎΠ³ Π·Π½Π°ΠΊΠΎΠΌΡΡΠ²Π° Ρ ΡΡΠΈΠΌ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠΌ, Π΄Π°Π²Π°ΠΉΡΠ΅ ΠΊΠΎΡΠΎΡΠΊΠΎ ΠΎΠ±ΡΡΠ΄ΠΈΠΌ Π΄ΠΎΡΡΠΎΠΈΠ½ΡΡΠ²Π° ΠΈ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΠΈ Π΅Π³ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ.
ΠΠΎΠ΄Π²Π΅Π΄Π΅ΠΌ ΠΈΡΠΎΠ³
ΠΡΠ°ΡΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π²Ρ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΎ ΡΠ·Π½Π°Π»ΠΈ ΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ΅ Π-Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΡ ΡΠΎΡΠ΅Π΄Π΅ΠΉ:
ΠΠ΅ΡΠ΅Π²ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΈ Π‘Π»ΡΡΠ°ΠΉΠ½ΡΠΉ Π»Π΅Ρ (Decision Trees and Random Forests)
ΠΠ΅ΡΠ΅Π²ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΈ ΡΠ»ΡΡΠ°ΠΉΠ½ΡΠΉ Π»Π΅Ρ β ΡΡΠΎ 2 ΠΏΡΠΈΠΌΠ΅ΡΠ° Π΄ΡΠ΅Π²ΠΎΠ²ΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π°. Π’ΠΎΡΠ½Π΅Π΅, Π΄Π΅ΡΠ΅Π²ΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ β ΡΡΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΠ, ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΠ΅ Π΄Π»Ρ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΡΠ΅Π· ΡΠΈΠΊΠ»ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΠΏΡΠΎΡΠΌΠΎΡΡ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π² Π½Π°Π±ΠΎΡΠ΅ Π΄Π°Π½Π½ΡΡ ΠΎΠ΄ΠΈΠ½ Π·Π° ΠΎΠ΄Π½ΠΈΠΌ. Π‘Π»ΡΡΠ°ΠΉΠ½ΡΠΉ Π»Π΅Ρ β ΡΡΠΎ Π°Π½ΡΠ°ΠΌΠ±Π»Ρ (ΠΊΠΎΠΌΠΈΡΠ΅Ρ) Π΄Π΅ΡΠ΅Π²ΡΠ΅Π² ΡΠ΅ΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΡΠ»ΡΡΠ°ΠΉΠ½ΡΠ΅ ΠΏΠΎΡΡΠ΄ΠΊΠΈ ΠΎΠ±ΡΠ΅ΠΊΡΠΎΠ² Π² Π½Π°Π±ΠΎΡΠ΅ Π΄Π°Π½Π½ΡΡ .
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ Π΄ΡΠ΅Π²ΠΎΠ²ΠΈΠ΄Π½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄?
ΠΠ΅ΡΠ΅Π΄ ΡΠ΅ΠΌ, ΠΊΠ°ΠΊ ΠΌΡ Π½ΡΡΠ½Π΅ΠΌ Π² ΡΠ΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΎΡΠ½ΠΎΠ²Ρ Π΄ΡΠ΅Π²ΠΎΠ²ΠΈΠ΄Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° Π² ΠΠ, Π±ΡΠ΄Π΅Ρ Π½Π΅Π»ΠΈΡΠ½ΠΈΠΌ Π½Π°ΡΠ°ΡΡ Ρ ΠΏΡΠΈΠΌΠ΅ΡΠ°.
ΠΡΠ΅Π΄ΡΡΠ°Π²ΡΡΠ΅, ΡΡΠΎ Π²Ρ ΠΈΠ³ΡΠ°Π΅ΡΠ΅ Π² Π±Π°ΡΠΊΠ΅ΡΠ±ΠΎΠ» ΠΊΠ°ΠΆΠ΄ΡΠΉ ΠΏΠΎΠ½Π΅Π΄Π΅Π»ΡΠ½ΠΈΠΊ. ΠΠΎΠ»Π΅Π΅ ΡΠΎΠ³ΠΎ, Π²Ρ Π²ΡΠ΅Π³Π΄Π° ΠΏΡΠΈΠ³Π»Π°ΡΠ°Π΅ΡΠ΅ ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈ ΡΠΎΠ³ΠΎ ΠΆΠ΅ Π΄ΡΡΠ³Π° ΠΏΠΎΠΉΡΠΈ ΠΏΠΎΠΈΠ³ΡΠ°ΡΡ Ρ Π²Π°ΠΌΠΈ. ΠΠ½ΠΎΠ³Π΄Π° Π΄ΡΡΠ³ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΠΏΡΠΈΡ ΠΎΠ΄ΠΈΡ, ΠΈΠ½ΠΎΠ³Π΄Π° Π½Π΅Ρ. Π Π΅ΡΠ΅Π½ΠΈΠ΅ ΠΏΡΠΈΡ ΠΎΠ΄ΠΈΡΡ ΠΈΠ»ΠΈ Π½Π΅Ρ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΡΠ°ΠΊΡΠΎΡΠΎΠ²: ΠΊΠ°ΠΊΠ°Ρ ΠΏΠΎΠ³ΠΎΠ΄Π°, ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ°, Π²Π΅ΡΠ΅Ρ ΠΈ ΡΡΡΠ°Π»ΠΎΡΡΡ. ΠΡ Π½Π°ΡΠΈΠ½Π°Π΅ΡΠ΅ Π·Π°ΠΌΠ΅ΡΠ°ΡΡ ΡΡΠΈ ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡΠΈ ΠΈ ΠΎΡΡΠ»Π΅ΠΆΠΈΠ²Π°ΡΡ ΠΈΡ Π²ΠΌΠ΅ΡΡΠ΅ Ρ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²Π°ΡΠ΅Π³ΠΎ Π΄ΡΡΠ³Π° ΠΈΠ³ΡΠ°ΡΡ ΠΈΠ»ΠΈ Π½Π΅Ρ.
ΠΡ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΡΠΈ Π΄Π°Π½Π½ΡΠ΅ Π΄Π»Ρ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·Π°Π½ΠΈΡ ΠΏΡΠΈΠ΄Π΅Ρ Π»ΠΈ Π²Π°Ρ Π΄ΡΡΠ³ ΡΠ΅Π³ΠΎΠ΄Π½Ρ ΠΈΠ»ΠΈ Π½Π΅Ρ. ΠΠ΄Π½Π° ΠΈΠ· ΡΠ΅Ρ Π½ΠΈΠΊ, ΠΊΠΎΡΠΎΡΠΎΠΉ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π²ΠΎΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ β ΡΡΠΎ Π΄Π΅ΡΠ΅Π²ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ. ΠΠΎΡ ΠΊΠ°ΠΊ ΡΡΠΎ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ:
Π£ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π΄Π΅ΡΠ΅Π²Π° ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π΅ΡΡΡ 2 ΡΠΈΠΏΠ° ΡΠ»Π΅ΠΌΠ΅Π½ΡΠΎΠ²:
ΠΠΎΡ Π΅ΡΠ΅ ΠΏΠ°ΡΠΎΡΠΊΠ° ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠΉ, ΠΊΠΎΡΠΎΡΡΠ΅ Π²Ρ Π΄ΠΎΠ»ΠΆΠ½Ρ ΠΏΠΎΠ½ΠΈΠΌΠ°ΡΡ ΠΏΠ΅ΡΠ΅Π΄ ΡΠ΅ΠΌ, ΠΊΠ°ΠΊ ΠΌΡ Π½Π°ΡΠ½Π΅ΠΌ:
ΠΠ°ΠΊ ΠΏΠΎΡΡΡΠΎΠΈΡΡ Π΄Π΅ΡΠ΅Π²ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Ρ Π½ΡΠ»Ρ
ΠΠΎΡΡΡΠΎΠ΅Π½ΠΈΠ΅ Π΄Π΅ΡΠ΅Π²Π° ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΡΠ»ΠΎΠΆΠ½Π΅Π΅, ΡΠ΅ΠΌ ΠΌΠΎΠΆΠ΅Ρ ΠΏΠΎΠΊΠ°Π·Π°ΡΡΡΡ. ΠΡΠΎ ΠΏΡΠΎΠΈΡΡ ΠΎΠ΄ΠΈΡ ΠΏΠΎΡΠΎΠΌΡ ΡΡΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π½Π° ΠΊΠ°ΠΊΠΈΠ΅ ΡΠ°Π·Π²Π΅ΡΠ²Π»Π΅Π½ΠΈΡ (Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ) Π΄Π΅Π»ΠΈΡΡ Π²Π°ΡΠΈ Π΄Π°Π½Π½ΡΠ΅ (ΡΡΠΎ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅ΠΌΠΎΠΉ ΠΈΠ· ΠΎΠ±Π»Π°ΡΡΠΈ ΡΠ½ΡΡΠΎΠΏΠΈΠΈ ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½ΠΈΡ Π΄Π°Π½Π½ΡΡ ) β ΡΡΠΎ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈ ΡΠ»ΠΎΠΆΠ½Π°Ρ Π·Π°Π΄Π°ΡΠ°.
Π§ΡΠΎΠ±Ρ Π΅Π΅ ΡΠ°Π·ΡΠ΅ΡΠΈΡΡ, ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΡ ΠΠ ΠΎΠ±ΡΡΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π΄Π΅ΡΠ΅Π²ΡΠ΅Π² ΡΠ΅ΡΠ΅Π½ΠΈΡ, ΠΏΡΠΈΠΌΠ΅Π½ΡΡ ΡΠ»ΡΡΠ°ΠΉΠ½ΡΠ΅ Π½Π°Π±ΠΎΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ, Π²ΡΠ±ΡΠ°Π½Π½ΡΡ Π΄Π»Ρ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄Π΅ΡΠ΅Π²Π° Π½Π° Π½ΠΈΡ . ΠΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, Π½ΠΎΠ²ΡΠ΅ ΡΠ»ΡΡΠ°ΠΉΠ½ΡΠ΅ Π½Π°Π±ΠΎΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ Π²ΡΠ±ΠΈΡΠ°ΡΡΡΡ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΠ³ΠΎ Π΄Π΅ΡΠ΅Π²Π°, Π½Π° ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΎΡΠ΄Π΅Π»ΡΠ½ΠΎΠΌ ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΠΈ. ΠΡΠ° ΡΠ΅Ρ Π½ΠΈΠΊΠ° Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΡΠ»ΡΡΠ°ΠΉΠ½ΡΠ΅ Π»Π΅ΡΠ°.
Π ΠΎΠ±ΡΠ΅ΠΌ ΡΠ»ΡΡΠ°Π΅, ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΡ ΠΎΠ±ΡΡΠ½ΠΎ Π²ΡΠ±ΠΈΡΠ°ΡΡ ΡΠ°Π·ΠΌΠ΅Ρ ΡΠ»ΡΡΠ°ΠΉΠ½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡΠ° Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ (ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ m) ΡΠ°ΠΊ, ΡΡΠΎΠ±Ρ ΠΎΠ½ Π±ΡΠ» ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΌ ΠΊΠΎΡΠ½Π΅ΠΌ ΠΎΠ±ΡΠ΅Π³ΠΎ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ Π² Π½Π°Π±ΠΎΡΠ΅ Π΄Π°Π½Π½ΡΡ (ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ°Π΅ΡΡΡ Ρ). ΠΡΠ»ΠΈ ΠΊΠΎΡΠΎΡΠΊΠΎ, ΡΠΎ m β ΡΡΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ½ΡΠΉ ΠΊΠΎΡΠ΅Π½Ρ ΠΈΠ· Ρ ΠΈ ΡΠΎΠ³Π΄Π° ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½Π°Ρ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° ΡΠ»ΡΡΠ°ΠΉΠ½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π²ΡΠ±ΠΈΡΠ°Π΅ΡΡΡ ΠΈΠ· m.
ΠΡΠ³ΠΎΠ΄Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ»ΡΡΠ°ΠΉΠ½ΠΎΠ³ΠΎ Π»Π΅ΡΠ°
ΠΡΠ΅Π΄ΡΡΠ°Π²ΡΡΠ΅, ΡΡΠΎ Π²Ρ ΡΠ°Π±ΠΎΡΠ°Π΅ΡΠ΅ Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎΠΌ Π΄Π°Π½Π½ΡΡ , Ρ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π΅ΡΡΡ ΠΎΠ΄Π½Π° Β«ΡΠΈΠ»ΡΠ½Π°ΡΒ» Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°. ΠΠ½ΡΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, Π² ΡΡΠΎΠΌ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π΅ Π΄Π°Π½Π½ΡΡ Π΅ΡΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ°, ΠΊΠΎΡΠΎΡΠ°Ρ Π½Π°ΠΌΠ½ΠΎΠ³ΠΎ Π±ΠΎΠ»Π΅Π΅ ΠΏΡΠ΅Π΄ΡΠΊΠ°Π·ΡΠ΅ΠΌΠ° Π² ΠΎΡΠ½ΠΎΡΠ΅Π½ΠΈΠΈ ΠΊΠΎΠ½Π΅ΡΠ½ΠΎΠ³ΠΎ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠ°, ΡΠ΅ΠΌ ΠΎΡΡΠ°Π»ΡΠ½ΡΠ΅ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠΈ ΡΡΠΎΠ³ΠΎ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π°.
ΠΡΠ»ΠΈ Π²Ρ ΡΡΡΠΎΠΈΡΠ΅ Π΄Π΅ΡΠ΅Π²ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Π²ΡΡΡΠ½ΡΡ, ΡΠΎ ΠΈΠΌΠ΅Π΅Ρ ΡΠΌΡΡΠ» ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ ΡΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΊΡ Π΄Π»Ρ ΡΠ°ΠΌΠΎΠ³ΠΎ Β«Π²Π΅ΡΡ Π½Π΅Π³ΠΎΒ» ΡΠ°Π·Π΄Π΅Π»Π΅Π½ΠΈΡ Π² Π²Π°ΡΠ΅ΠΌ Π΄Π΅ΡΠ΅Π²Π΅. ΠΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ Ρ Π²Π°Ρ Π±ΡΠ΄Π΅Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π΄Π΅ΡΠ΅Π²ΡΠ΅Π², ΠΏΡΠΎΠ³Π½ΠΎΠ·Ρ ΠΊΠΎΡΠΎΡΡΡ ΡΠΈΠ»ΡΠ½ΠΎ ΠΊΠΎΡΡΠ΅Π»ΠΈΡΡΡΡ.
ΠΡ Ρ ΠΎΡΠΈΠΌ ΡΡΠΎΠ³ΠΎ ΠΈΠ·Π±Π΅ΠΆΠ°ΡΡ, Ρ.ΠΊ. ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΡΠ΅Π΄Π½Π΅ΠΉ ΠΎΡ ΡΠΈΠ»ΡΠ½ΠΎ ΠΊΠΎΡΡΠ΅Π»ΠΈΡΡΡΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ Π½Π΅ ΡΠ½ΠΈΠΆΠ°Π΅Ρ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΡ. ΠΡΠΏΠΎΠ»ΡΠ·ΡΡ ΡΠ»ΡΡΠ°ΠΉΠ½ΡΠ΅ Π½Π°Π±ΠΎΡΡ Ρ Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ Π΄Π»Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ Π΄Π΅ΡΠ΅Π²Π° Π² ΡΠ»ΡΡΠ°ΠΉΠ½ΠΎΠΌ Π»Π΅ΡΡ, ΠΌΡ Π΄Π΅ΠΊΠΎΡΡΠ΅Π»ΠΈΡΡΠ΅ΠΌ Π΄Π΅ΡΠ΅Π²ΡΡ ΠΈ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ. ΠΡΠ° Π΄Π΅ΠΊΠΎΡΡΠ΅Π»ΡΡΠΈΡ β Π³Π»Π°Π²Π½ΠΎΠ΅ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²ΠΎ Π² ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠΈ ΡΠ»ΡΡΠ°ΠΉΠ½ΡΡ Π»Π΅ΡΠΎΠ² Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Ρ Π΄Π΅ΡΠ΅Π²ΡΡΠΌΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ, ΠΏΠΎΡΡΡΠΎΠ΅Π½Π½ΡΠΌΠΈ Π²ΡΡΡΠ½ΡΡ.
ΠΠΎΠ΄Π²Π΅Π΄Π΅ΠΌ ΠΈΡΠΎΠ³
ΠΡΠ°ΠΊ, ΠΊΡΠ°ΡΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π²Ρ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΎ ΡΠ·Π½Π°Π»ΠΈ ΠΎ Π΄Π΅ΡΠ΅Π²ΡΡΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΈ ΡΠ»ΡΡΠ°ΠΉΠ½ΡΡ Π»Π΅ΡΠ°Ρ :
ΠΠ΅ΡΠΎΠ΄ ΠΎΠΏΠΎΡΠ½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ²(Support Vector Machines)
ΠΠ΅ΡΠΎΠ΄ ΠΎΠΏΠΎΡΠ½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΡΡΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ (Ρ ΠΎΡΡ, ΡΠ΅Ρ Π½ΠΈΡΠ΅ΡΠΊΠΈ Π³ΠΎΠ²ΠΎΡΡ, ΠΎΠ½ΠΈ ΡΠ°ΠΊΠΆΠ΅ ΠΌΠΎΠ³ΡΡ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½ΡΡ Π·Π°Π΄Π°Ρ), ΠΊΠΎΡΠΎΡΡΠΉ Π΄Π΅Π»ΠΈΡ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎ Π΄Π°Π½Π½ΡΡ Π½Π° ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ Π² ΠΌΠ΅ΡΡΠ°Ρ Π½Π°ΠΈΠ±ΠΎΠ»ΡΡΠΈΡ Β«ΡΠ°Π·ΡΡΠ²ΠΎΠ²Β» ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΡΠΌΠΈ. ΠΡΠ° ΠΊΠΎΠ½ΡΠ΅ΠΏΡΠΈΡ ΡΡΠ°Π½Π΅Ρ Π±ΠΎΠ»Π΅Π΅ ΠΏΠΎΠ½ΡΡΠ½ΠΎΠΉ, Π΅ΡΠ»ΠΈ ΡΠ°Π·ΠΎΠ±ΡΠ°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΉ ΠΏΡΠΈΠΌΠ΅Ρ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΌΠ΅ΡΠΎΠ΄ ΠΎΠΏΠΎΡΠ½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ²?
ΠΠ΅ΡΠΎΠ΄ ΠΎΠΏΠΎΡΠ½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² (ΠΠΠ) β ΡΡΠΎ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΠ Ρ ΡΡΠΈΡΠ΅Π»Π΅ΠΌ, Ρ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΡΡΡΠΈΠΌΠΈ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ°ΠΌΠΈ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ, ΠΊΠΎΡΠΎΡΡΠ΅ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΡΡΡ Π΄Π°Π½Π½ΡΠ΅ ΠΈ ΡΠ°ΡΠΏΠΎΠ·Π½Π°ΡΡ Π·Π°ΠΊΠΎΠ½ΠΎΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ. ΠΠΠ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ ΠΊΠ°ΠΊ Π΄Π»Ρ Π·Π°Π΄Π°Ρ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ, ΡΠ°ΠΊ ΠΈ Π΄Π»Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°. Π ΡΡΠΎΠΉ ΡΡΠ°ΡΡΠ΅ ΠΌΡ ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎ Π½Π° ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΎΠΏΠΎΡΠ½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ.
ΠΠ°ΠΊ ΠΠΠ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ?
ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΊΠ°ΠΏΠ½Π΅ΠΌ ΠΏΠΎΠ³Π»ΡΠ±ΠΆΠ΅ Π² ΡΠΎ, ΠΊΠ°ΠΊ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ ΠΠΠ.
ΠΠ°ΠΌ Π΄Π°Π½ Π½Π°Π±ΠΎΡ ΡΡΠ΅Π½ΠΈΡΠΎΠ²ΠΎΡΠ½ΡΡ ΠΏΡΠΈΠΌΠ΅ΡΠΎΠ², ΠΊΠ°ΠΊΠΆΠ΄ΡΠΉ ΠΈΠ· ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΏΡΠΎΠΌΠ°ΡΠΊΠΈΡΠΎΠ²Π°Π½ ΠΊΠ°ΠΊ ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°ΡΠΈΠΉ ΠΊ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· 2Ρ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΉ, ΠΈ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΡΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡΠ° ΠΠΠ ΡΡΡΠΎΠΈΡ ΠΌΠΎΠ΄Π΅Π»Ρ. ΠΡΠ° ΠΌΠΎΠ΄Π΅Π»Ρ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ Π½ΠΎΠ²ΡΠ΅ ΠΏΡΠΈΠΌΠ΅ΡΡ Π² ΠΎΠ΄Π½Ρ ΠΈΠ· Π΄Π²ΡΡ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΉ. ΠΡΠΎ Π΄Π΅Π»Π°Π΅Ρ ΠΠΠ Π½Π΅Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΠ½ΡΠΌ Π΄Π²ΠΎΠΈΡΠ½ΡΠΌ Π»ΠΈΠ½Π΅ΠΉΠ½ΡΠΌ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΎΡΠΎΠΌ.
ΠΠΠ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅Ρ Π³Π΅ΠΎΠΌΠ΅ΡΡΠΈΡ Π΄Π»Ρ ΡΠΎΡΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΏΡΠΎΠ³Π½ΠΎΠ·ΠΎΠ² ΠΏΠΎ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΡΠΌ. ΠΠΎΠ½ΠΊΡΠ΅ΡΠ½Π΅Π΅ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΎΠΏΠΎΡΠ½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² ΡΠΎΠΏΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ ΡΠΎΡΠΊΠΈ Π΄Π°Π½Π½ΡΡ ΠΊΠ°ΠΊ ΡΠΎΡΠΊΠΈ Π² ΠΏΡΠΎΡΡΡΠ°Π½ΡΡΠ²Π΅ ΠΈ ΡΠ°Π·Π΄Π΅Π»ΡΠ΅Ρ Π½Π° ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΠ΅ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ ΡΠ°ΠΊ, ΡΡΠΎ ΠΎΠ½ΠΈ ΡΠ°Π·Π΄Π΅Π»ΡΡΡΡΡ Π½Π°ΡΡΠΎΠ»ΡΠΊΠΎ ΡΠΈΡΠΎΠΊΠΈΠΌ ΡΠ°Π·ΡΡΠ²ΠΎΠΌ, Π½Π°ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ. ΠΡΠΎΠ³Π½ΠΎΠ· ΠΏΡΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ½ΠΎΡΡΠΈ Π½ΠΎΠ²ΡΡ ΡΠΎΡΠ΅ΠΊ Π΄Π°Π½Π½ΡΡ ΠΊ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°Π΅ΡΡΡ Π½Π° ΡΠΎΠΌ, Ρ ΠΊΠ°ΠΊΠΎΠΉ ΡΡΠΎΡΠΎΠ½Ρ ΡΠ°Π·ΡΡΠ²Π° Π½Π°Ρ ΠΎΠ΄ΠΈΡΡΡ ΡΠΎΡΠΊΠ°.
ΠΠΎΡ ΠΏΡΠΈΠΌΠ΅Ρ Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠΎΠΌΠΎΠΆΠ΅Ρ Π²Π°ΠΌ ΠΏΠΎΠ½ΡΡΡ ΠΈΠ½ΡΡΠΈΡΠΈΡ ΠΠΠ:
ΠΠ°ΠΊ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π½Π°Π±Π»ΡΠ΄Π°ΡΡ, Π΅ΡΠ»ΠΈ Π½ΠΎΠ²Π°Ρ ΡΠΎΡΠΊΠ° Π΄Π°Π½Π½ΡΡ ΠΏΠ°Π΄Π°Π΅Ρ Π½Π° Π»Π΅Π²ΡΡ ΠΎΡ Π·Π΅Π»Π΅Π½ΠΎΠΉ Π»ΠΈΠ½ΠΈΠΈ ΡΡΠΎΡΠΎΠ½Ρ, ΡΠΎ ΠΎΠ½Π° Π±ΡΠ΄Π΅Ρ ΠΎΡΠ½Π΅ΡΠ΅Π½Π° ΠΊ Β«ΠΊΡΠ°ΡΠ½ΡΠΌΒ», Π° Π΅ΡΠ»ΠΈ Π½Π° ΠΏΡΠ°Π²ΡΡ β ΡΠΎ ΠΊ Β«ΡΠΈΠ½ΠΈΠΌΒ». ΠΡΠ° Π·Π΅Π»Π΅Π½Π°Ρ Π»ΠΈΠ½ΠΈΡ Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Π³ΠΈΠΏΠ΅ΡΠΏΠ»ΠΎΡΠΊΠΎΡΡΡΡ, ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π²Π°ΠΆΠ½ΡΠΌ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠΌ Π΄Π»Ρ ΡΠ°Π±ΠΎΡΡ Ρ ΠΠΠ.
ΠΠ°Π²Π°ΠΉΡΠ΅ ΠΏΠΎΡΠΌΠΎΡΡΠΈΠΌ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ Π²ΠΈΠ·ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΠΠΠ:
ΠΠ° ΡΡΠΎΠΉ Π΄ΠΈΠ°Π³ΡΠ°ΠΌΠΌΠ΅ Π³ΠΈΠΏΠ΅ΡΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ ΠΎΠ±ΠΎΠ·Π½Π°ΡΠ΅Π½Π° ΠΊΠ°ΠΊ Β«ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½Π°Ρ Π³ΠΈΠΏΠ΅ΡΠΏΠ»ΠΎΡΠΊΠΎΡΡΡΒ» (optimal hyperplane). Π’Π΅ΠΎΡΠΈΡ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΎΠΏΠΎΡΠ½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ² Π΄Π°Π΅Ρ ΡΠ°ΠΊΠΎΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΠΏΡΠΈΠΌΠ°Π»ΡΠ½ΠΎΠΉ Π³ΠΈΠΏΠ΅ΡΠΏΠ»ΠΎΡΠΊΠΎΡΡΠΈ β ΡΡΠΎ Π³ΠΈΠΏΠ΅ΡΠΏΠ»ΠΎΡΠΊΠΎΡΡΡ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΌΠ°ΠΊΡΠΈΠΌΠΈΠ·ΠΈΡΡΠ΅Ρ ΠΏΠΎΠ»Π΅ ΠΌΠ΅ΠΆΠ΄Ρ Π΄Π²ΡΠΌΡ Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΠΌΠΈ ΡΠΎΡΠΊΠ°ΠΌΠΈ Π΄Π°Π½Π½ΡΡ ΠΈΠ· ΡΠ°Π·Π½ΡΡ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΉ.
ΠΠ°ΠΊ Π²Ρ Π²ΠΈΠ΄ΠΈΡΠ΅, Π³ΡΠ°Π½ΠΈΡΠ° ΠΏΠΎΠ»Ρ Π΄Π΅ΠΉΡΡΠ²ΠΈΡΠ΅Π»ΡΠ½ΠΎ Π·Π°ΡΡΠ°Π³ΠΈΠ²Π°Π΅Ρ 3 ΡΠΎΡΠΊΠΈ Π΄Π°Π½Π½ΡΡ β 2 ΠΈΠ· ΠΊΡΠ°ΡΠ½ΠΎΠΉ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΈ ΠΈ 1 ΠΈΠ· ΡΠΈΠ½Π΅ΠΉ. ΠΡΠΈ ΡΠΎΡΠΊΠΈ, ΠΊΠΎΡΠΎΡΡΠ΅ ΡΠΎΠΏΡΠΈΠΊΠ°ΡΠ°ΡΡΡΡ Ρ Π³ΡΠ°Π½ΠΈΡΠ΅ΠΉ ΠΏΠΎΠ»Ρ, ΠΈ Π½Π°Π·ΡΠ²Π°ΡΡΡΡ ΠΎΠΏΠΎΡΠ½ΡΠΌΠΈ Π²Π΅ΠΊΡΠΎΡΠ°ΠΌΠΈ β ΠΎΡΠΊΡΠ΄Π° ΠΈ ΠΏΠΎΡΠ»ΠΎ Π½Π°Π·Π²Π°Π½ΠΈΠ΅.
ΠΠΎΠ΄Π²Π΅Π΄Π΅ΠΌ ΠΈΡΠΎΠ³
ΠΠΎΡ ΠΊΡΠ°ΡΠΊΠΈΠΉ ΠΎΡΠ΅ΡΠΊ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π²Ρ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΎ ΡΠ·Π½Π°Π»ΠΈ ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π΅ ΠΎΠΏΠΎΡΠ½ΡΡ Π²Π΅ΠΊΡΠΎΡΠΎΠ²:
ΠΠ΅ΡΠΎΠ΄ Π-ΡΡΠ΅Π΄Π½ΠΈΡ (K-Means Clustering)
ΠΠ΅ΡΠΎΠ΄ Π-ΡΡΠ΅Π΄Π½ΠΈΡ β ΡΡΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ Π±Π΅Π· ΡΡΠΈΡΠ΅Π»Ρ. ΠΡΠΎ Π·Π½Π°ΡΠΈΡ, ΡΡΠΎ ΠΎΠ½ ΠΏΡΠΈΠ½ΠΈΠΌΠ°Π΅Ρ Π½Π΅ΠΏΠΎΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΠΈ ΠΏΡΡΠ°Π΅ΡΡΡ ΡΠ³ΡΡΠΏΠΏΠΈΡΠΎΠ²Π°ΡΡ ΠΊΠ»Π°ΡΡΠ΅ΡΡ ΠΏΠΎΠ΄ΠΎΠ±Π½ΡΡ Π½Π°Π±Π»ΡΠ΄Π΅Π½ΠΈΠΉ Π²Π°ΡΠΈΡ Π΄Π°Π½Π½ΡΡ . ΠΠ΅ΡΠΎΠ΄ Π-ΡΡΠ΅Π΄Π½ΠΈΡ ΠΊΡΠ°ΠΉΠ½Π΅ ΠΏΠΎΠ»Π΅Π·Π΅Π½ Π΄Π»Ρ ΡΠ΅ΡΠ΅Π½ΠΈΡ ΡΠ΅Π°Π»ΡΠ½ΡΡ ΠΏΡΠΈΠΊΠ»Π°Π΄Π½ΡΡ Π·Π°Π΄Π°Ρ. ΠΠΎΡ ΠΏΡΠΈΠΌΠ΅ΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ Π·Π°Π΄Π°Ρ, ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΡΡΠΈΡ Π΄Π»Ρ ΡΡΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ:
ΠΠΎΡ Π²ΠΈΠ·ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½ΠΈΠ΅ ΡΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ ΡΡΠΎ Π²ΡΠ³Π»ΡΠ΄ΠΈΡ Π½Π° ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅:
ΠΡ ΠΈΠ·ΡΡΠΈΠΌ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΡΡ ΡΠΎΡΡΠ°Π²Π»ΡΡΡΡΡ ΠΌΠ΅ΡΠΎΠ΄Π° Π-ΡΡΠ΅Π΄Π½ΠΈΡ Π²ΡΠ»Π΅Π΄ΡΡΡΠ΅ΠΌ ΡΠ°Π·Π΄Π΅Π»Π΅ ΡΡΠΎΠΉ ΡΡΠ°ΡΡΠΈ.
ΠΠ°ΠΊ ΡΠ°Π±ΠΎΡΠ°Π΅Ρ ΠΌΠ΅ΡΠΎΠ΄ Π-ΡΡΠ΅Π΄Π½ΠΈΡ ?
ΠΠ΅ΡΠ²ΡΠΉ ΡΠ°Π³ Π² ΡΠ°Π±ΠΎΡΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π° Π-ΡΡΠ΅Π΄Π½ΠΈΡ β ΡΡΠΎ Π²ΡΠ±ΠΎΡ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π° Π³ΡΡΠΏΠΏ Π½Π° ΠΊΠΎΡΠΎΡΠΎΠ΅ Π²Ρ Ρ ΠΎΡΠΈΡΠ΅ ΡΠ°Π·Π΄Π΅Π»ΠΈΡΡ Π²Π°ΡΠΈ Π΄Π°Π½Π½ΡΠ΅. ΠΡΠΈΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ ΠΈ ΡΠ²Π»ΡΠ΅ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π, ΠΎΡΡΠ°ΠΆΠ΅Π½Π½ΠΎΠ΅ Π² Π½Π°Π·Π²Π°Π½ΠΈΠΈ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ°. ΠΡΠ±ΠΎΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π Π² ΠΌΠ΅ΡΠΎΠ΄Π΅ Π-ΡΡΠ΅Π΄Π½ΠΈΡ ΠΎΡΠ΅Π½Ρ Π²Π°ΠΆΠ΅Π½. Π§ΡΡΡ ΠΏΠΎΠ·ΠΆΠ΅ ΠΌΡ ΠΎΠ±ΡΡΠ΄ΠΈΠΌ ΠΊΠ°ΠΊ Π²ΡΠ±ΡΠ°ΡΡ ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ΅ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π.
ΠΠ°Π»Π΅Π΅, Π²Ρ Π΄ΠΎΠ»ΠΆΠ½Ρ ΡΠ»ΡΡΠ°ΠΉΠ½ΡΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ Π²ΡΠ±ΡΠ°ΡΡ ΡΠΎΡΠΊΡ Π² Π½Π°Π±ΠΎΡΠ΅ Π΄Π°Π½Π½ΡΡ ΠΈ ΠΏΡΠΈΡΠΈΡΠ»ΠΈΡΡ Π΅Π΅ ΠΊ ΡΠ»ΡΡΠ°ΠΉΠ½ΠΎΠΌΡ ΠΊΠ»Π°ΡΡΠ΅ΡΡ. ΠΡΠΎ Π΄Π°ΡΡ Π²Π°ΠΌ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π΄Π°Π½Π½ΡΡ , Π½Π° ΠΊΠΎΡΠΎΡΠΎΠΌ Π²Ρ ΠΏΡΠΎΠ³ΠΎΠ½ΡΠ΅ΡΠ΅ ΡΠ»Π΅Π΄ΡΡΡΡΡ ΠΈΡΠ΅ΡΠ°ΡΠΈΡ Π΄ΠΎ ΡΠ΅Ρ ΠΏΠΎΡ, ΠΏΠΎΠΊΠ° ΠΊΠ»Π°ΡΡΠ΅ΡΡ ΠΏΠ΅ΡΠ΅ΡΡΠ°Π½ΡΡ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ:
ΠΡΠ±ΠΎΡ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΡΡΠ΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π Π² ΠΌΠ΅ΡΠΎΠ΄Π΅ Π-ΡΡΠ΅Π΄Π½ΠΈΡ
Π‘ΡΡΠΎΠ³ΠΎ Π³ΠΎΠ²ΠΎΡΡ, Π²ΡΠ±ΠΎΡ ΠΏΠΎΠ΄Ρ ΠΎΠ΄ΡΡΠ΅Π³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π β ΡΡΠΎ Π΄ΠΎΠ²ΠΎΠ»ΡΠ½ΠΎ ΡΠ»ΠΎΠΆΠ½ΠΎ. ΠΠ΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Β«ΠΏΡΠ°Π²ΠΈΠ»ΡΠ½ΠΎΠ³ΠΎΒ» ΠΎΡΠ²Π΅ΡΠ° Π² Π²ΡΠ±ΠΎΡΠ΅ Β«Π»ΡΡΡΠ΅Π³ΠΎΒ» Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π. ΠΠ΄ΠΈΠ½ ΠΈΠ· ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ², ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΏΠ΅ΡΠΈΠ°Π»ΠΈΡΡΡ ΠΏΠΎ ΠΠ ΡΠ°ΡΡΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ Β«ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ Π»ΠΎΠΊΡΡΒ».
ΠΠ»Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΡΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π°, ΠΏΠ΅ΡΠ²ΠΎΠ΅, ΡΡΠΎ Π²Π°ΠΌ Π½Π΅ΠΎΠ±Ρ ΠΎΠ΄ΠΈΠΌΠΎ ΡΠ΄Π΅Π»Π°ΡΡ, ΡΡΠΎ Π²ΡΡΠΈΡΠ»ΠΈΡΡ ΡΡΠΌΠΌΡ ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠΉ(sum of squared errors) β Π‘ΠΠ Π΄Π»Ρ Π²Π°ΡΠ΅Π³ΠΎ Π°Π»Π³ΠΎΡΠΈΡΠΌΠ° Π΄Π»Ρ Π³ΡΡΠΏΠΏΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π. Π‘ΠΠ Π² ΠΌΠ΅ΡΠΎΠ΄Π΅ Π-ΡΡΠ΅Π΄Π½ΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° ΠΊΠ°ΠΊ ΡΡΠΌΠΌΠ° ΠΊΠ²Π°Π΄ΡΠ°ΡΠΎΠ² ΡΠ°ΡΡΡΠΎΡΠ½ΠΈΠΉ ΠΌΠ΅ΠΆΠ΄Ρ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΡΠΎΡΠΊΠΎΠΉ Π΄Π°Π½Π½ΡΡ Π² ΠΊΠ»Π°ΡΡΠ΅ΡΠ΅ ΠΈ ΡΠ΅Π½ΡΡΠΎΠΌ ΡΡΠΆΠ΅ΡΡΠΈ ΡΡΠΎΠ³ΠΎ ΠΊΠ»Π°ΡΡΠ΅ΡΠ°.
Π ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΏΡΠΈΠΌΠ΅ΡΠ° ΡΡΠΎΠ³ΠΎ ΡΠ°Π³Π°, Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ Π²ΡΡΠΈΡΠ»ΠΈΡΡ Π‘ΠΠ Π΄Π»Ρ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π 2, 4, 6, 8 ΠΈ 10. ΠΠ°Π»Π΅Π΅ Π²Ρ Π·Π°Ρ ΠΎΡΠΈΡΠ΅ ΡΠ³Π΅Π½Π΅ΡΠΈΡΠΎΠ²Π°ΡΡ Π³ΡΠ°ΡΠΈΠΊ Π‘ΠΠ ΠΈ ΡΡΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ Π. ΠΡ ΡΠ²ΠΈΠ΄ΠΈΡΠ΅, ΡΡΠΎ ΠΎΡΠΊΠ»ΠΎΠ½Π΅Π½ΠΈΠ΅ ΡΠΌΠ΅Π½ΡΡΠ°Π΅ΡΡΡ Ρ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π.
Π ΡΡΠΎ ΠΈΠΌΠ΅Π΅Ρ ΡΠΌΡΡΠ»: ΡΠ΅ΠΌ Π±ΠΎΠ»ΡΡΠ΅ ΠΊΠ°ΡΠ΅Π³ΠΎΡΠΈΠΉ Π²Ρ ΡΠΎΠ·Π΄Π°Π΄ΠΈΡΠ΅ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Π΄Π°Π½Π½ΡΡ
β ΡΠ΅ΠΌ Π±ΠΎΠ»Π΅Π΅ Π²Π΅ΡΠΎΡΡΠ½ΠΎ, ΡΡΠΎ ΠΊΠ°ΠΆΠ΄Π°Ρ ΡΠΎΡΠΊΠ° Π΄Π°Π½Π½ΡΡ
ΠΎΠΊΠ°ΠΆΠ΅ΡΡΡ Π±Π»ΠΈΠ·ΠΊΠΎ ΠΊ ΡΠ΅Π½ΡΡΡ ΠΊΠ»Π°ΡΡΠ΅ΡΠ° ΡΡΠΎΠΉ ΡΠΎΡΠΊΠΈ.
Π‘ ΡΡΠ΅ΡΠΎΠΌ ΡΠΊΠ°Π·Π°Π½Π½ΠΎΠ³ΠΎ, ΠΎΡΠ½ΠΎΠ²Π½Π°Ρ ΠΈΠ΄Π΅Ρ ΠΌΠ΅ΡΠΎΠ΄Π° Π»ΠΎΠΊΡΡ β ΡΡΠΎ Π²ΡΠ±ΡΠ°ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π ΠΏΡΠΈ ΠΊΠΎΡΠΎΡΠΎΠΌ Π‘ΠΠ ΡΠ΅Π·ΠΊΠΎ Π·Π°ΠΌΠ΅Π΄Π»ΠΈΡ ΡΠ΅ΠΌΠΏΡ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ. ΠΡΠΎ ΡΠ΅Π·ΠΊΠΎΠ΅ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ±ΡΠ°Π·ΡΠ΅Ρ Β«Π»ΠΎΠΊΠΎΡΡΒ» Π½Π° Π³ΡΠ°ΡΠΈΠΊΠ΅.
ΠΠ°ΠΊ ΠΏΡΠΈΠΌΠ΅Ρ, Π²ΠΎΡ Π³ΡΠ°ΡΠΈΠΊ Π‘ΠΠ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π. Π ΡΡΠΎΠΌ ΡΠ»ΡΡΠ°Π΅, ΠΌΠ΅ΡΠΎΠ΄ Π»ΠΎΠΊΡΡ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠΈΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π ΠΏΡΠΈΠΌΠ΅ΡΠ½ΠΎ ΡΠ°Π²Π½ΠΎΠ΅ 6.
ΠΠ°ΠΆΠ½ΠΎ, ΡΡΠΎ Π=6 ΠΏΡΠΎΡΡΠΎ ΠΎΡΠ΅Π½ΠΊΠ° ΠΏΡΠΈΠ΅ΠΌΠ»Π΅ΠΌΠΎΠ³ΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π. ΠΠ΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ Β«Π»ΡΡΡΠ΅Π³ΠΎΒ» Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π Π² ΠΌΠ΅ΡΠΎΠ΄Π΅ Π-ΡΡΠ΅Π΄Π½ΠΈΡ . ΠΠ°ΠΊ ΠΈ ΠΌΠ½ΠΎΠ³ΠΈΠ΅ Π²Π΅ΡΠΈ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΠ, ΡΡΠΎ ΠΎΡΠ΅Π½Ρ Π·Π°Π²ΠΈΡΡΡΠ΅Π΅ ΠΎΡ ΡΠΈΡΡΠ°ΡΠΈΠΈ ΡΠ΅ΡΠ΅Π½ΠΈΠ΅.
ΠΠΎΠ΄Π²Π΅Π΄Π΅ΠΌ ΠΈΡΠΎΠ³
ΠΠΎΡ ΠΊΡΠ°ΡΠΊΠΈΠΉ ΠΎΡΠ΅ΡΠΊ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π²Ρ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΎ ΡΠ·Π½Π°Π»ΠΈ Π² ΡΡΠΎΠΌ ΡΠ°Π·Π΄Π΅Π»Π΅:
ΠΠ΅ΡΠΎΠ΄ Π³Π»Π°Π²Π½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ (Principal Component Analysis)
ΠΠ΅ΡΠΎΠ΄ Π³Π»Π°Π²Π½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΡ Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ c ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²ΠΎΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π² Π½ΠΎΠ²ΡΠΉ Π½Π°Π±ΠΎΡ Π΄Π°Π½Π½ΡΡ Ρ ΠΌΠ΅Π½ΡΡΠΈΠΌ ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎΠΌ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΈ ΠΊΠ°ΠΆΠ΄ΡΠΉ Π½ΠΎΠ²ΡΠΉ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡ ΡΡΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ β ΡΡΠΎ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΡ ΡΠ°Π½Π½Π΅Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΡΡΠΈΡ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ². ΠΡΠΈ ΠΏΡΠ΅ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½Π½ΡΠ΅ Π΄Π°Π½Π½ΡΠ΅ ΡΡΡΠ΅ΠΌΡΡΡΡ ΠΎΠ±ΠΎΡΠ½ΠΎΠ²Π°ΡΡ Π±ΠΎΠ»ΡΡΡΡ ΡΠ°ΡΡΡ Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ ΠΎΡΠΈΠ³ΠΈΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ Ρ Π³ΠΎΡΠ°Π·Π΄ΠΎ Π±ΠΎΠ»ΡΡΠ΅ΠΉ ΠΏΡΠΎΡΡΠΎΡΠΎΠΉ.
Π§ΡΠΎ ΡΠ°ΠΊΠΎΠ΅ ΠΌΠ΅ΡΠΎΠ΄ Π³Π»Π°Π²Π½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ²?
ΠΠ΅ΡΠΎΠ΄ Π³Π»Π°Π²Π½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ (ΠΠΠ) β ΡΡΠΎ ΡΠ΅Ρ Π½ΠΈΠΊΠ° ΠΠ, ΠΊΠΎΡΠΎΡΠ°Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΡΡΡ Π΄Π»Ρ ΠΈΠ·ΡΡΠ΅Π½ΠΈΡ Π²Π·Π°ΠΈΠΌΠΎΡΠ²ΡΠ·Π΅ΠΉ ΠΌΠ΅ΠΆΠ΄Ρ Π½Π°Π±ΠΎΡΠ°ΠΌΠΈ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ . ΠΡΡΠ³ΠΈΠΌΠΈ ΡΠ»ΠΎΠ²Π°ΠΌΠΈ, ΠΠΠ ΠΈΠ·ΡΡΠ°Π΅Ρ Π½Π°Π±ΠΎΡΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ Π΄Π»Ρ ΡΠΎΠ³ΠΎ, ΡΡΠΎΠ±Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π±Π°Π·ΠΎΠ²ΡΡ ΡΡΡΡΠΊΡΡΡΡ ΡΡΠΈΡ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ . ΠΠΠ Π΅ΡΠ΅ ΠΈΠ½ΠΎΠ³Π΄Π° Π½Π°Π·ΡΠ²Π°ΡΡ ΡΠ°ΠΊΡΠΎΡΠ½ΡΠΌ Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ.
ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΡΡΠΎΠ³ΠΎ ΠΎΠΏΠΈΡΠ°Π½ΠΈΡ Π²Ρ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΠΏΠΎΠ΄ΡΠΌΠ°ΡΡ, ΡΡΠΎ ΠΠΠ ΠΎΡΠ΅Π½Ρ ΡΡ ΠΎΠΆ Ρ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠ΅ΠΉ. ΠΠΎ ΡΡΠΎ Π½Π΅ ΡΠ°ΠΊ. ΠΠ° ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅, ΡΡΠΈ 2 ΡΠ΅Ρ Π½ΠΈΠΊΠΈ ΠΈΠΌΠ΅ΡΡ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ Π²Π°ΠΆΠ½ΡΡ ΠΎΡΠ»ΠΈΡΠΈΠΉ.
Π Π°Π·Π»ΠΈΡΠΈΡ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ ΠΈ ΠΠΠ
ΠΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΡ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ Π»ΠΈΠ½ΠΈΡ Π½Π°ΠΈΠ»ΡΡΡΠ΅Π³ΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΡ ΡΠ΅ΡΠ΅Π· Π½Π°Π±ΠΎΡ Π΄Π°Π½Π½ΡΡ . ΠΠ΅ΡΠΎΠ΄ Π³Π»Π°Π²Π½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ΅Ρ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΎ ΠΎΡΡΠΎΠ³ΠΎΠ½Π°Π»ΡΠ½ΡΡ Π»ΠΈΠ½ΠΈΠΉ Π½Π°ΠΈΠ»ΡΡΡΠ΅Π³ΠΎ ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΡ Π΄Π»Ρ Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ .
ΠΡΠ»ΠΈ Π²Ρ Π½Π΅ Π·Π½Π°ΠΊΠΎΠΌΡ Ρ ΡΠ΅ΡΠΌΠΈΠ½ΠΎΠΌ ΠΎΡΡΠΎΠ³ΠΎΠ½Π°Π»ΡΠ½ΡΠΉ, ΡΠΎ ΡΡΠΎ ΠΏΡΠΎΡΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ Π»ΠΈΠ½ΠΈΠΈ Π½Π°Ρ
ΠΎΠ΄ΡΡΡΡ ΠΏΠΎΠ΄ ΠΏΡΡΠΌΡΠΌ ΡΠ³Π»ΠΎΠΌ Π΄ΡΡΠ³ ΠΊ Π΄ΡΡΠ³Ρ, ΠΊΠ°ΠΊ ΡΠ΅Π²Π΅Ρ, Π²ΠΎΡΡΠΎΠΊ, ΡΠ³ ΠΈ Π·Π°ΠΏΠ°Π΄ Π½Π° ΠΊΠ°ΡΡΠ΅.
ΠΠ°Π²Π°ΠΉΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠΈΠΌ ΠΏΡΠΈΠΌΠ΅Ρ, ΡΡΠΎΠ±Ρ ΠΏΠΎΠΌΠΎΡΡ Π²Π°ΠΌ ΠΏΠΎΠ½ΡΡΡ ΡΡΠΎ Π»ΡΡΡΠ΅.
ΠΠ·Π³Π»ΡΠ½ΠΈΡΠ΅ Π½Π° ΠΌΠ΅ΡΠΊΠΈ ΠΎΡΠ΅ΠΉ Π½Π° ΡΡΠΎΠΌ ΠΈΠ·ΠΎΠ±ΡΠ°ΠΆΠ΅Π½ΠΈΠΈ. ΠΠ»Π°Π²Π½ΡΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ ΠΎΡΠΈ Ρ ΠΎΠ±ΡΡΡΠ½ΡΠ΅Ρ 73% Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ Π² ΡΡΠΎΠΌ Π½Π°Π±ΠΎΡΠ΅ Π΄Π°Π½Π½ΡΡ . ΠΠ»Π°Π²Π½ΡΠΉ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ ΠΎΡΠΈ Ρ ΠΎΠ±ΡΡΡΠ½ΡΠ΅Ρ ΠΎΠΊΠΎΠ»ΠΎ 23% Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ Π½Π°Π±ΠΎΡΠ° Π΄Π°Π½Π½ΡΡ .
ΠΡΠΎ ΠΎΠ·Π½Π°ΡΠ°Π΅Ρ, ΡΡΠΎ 4% Π΄ΠΈΡΠΏΠ΅ΡΡΠΈΠΈ ΠΎΡΡΠ°Π΅ΡΡΡ Π½Π΅ΠΎΠ±ΡΡΡΠ½Π΅Π½Π½ΡΠΌΠΈ. ΠΡ ΠΌΠΎΠΆΠ΅ΡΠ΅ ΡΠΌΠ΅Π½ΡΡΠΈΡΡ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ Π΄ΠΎΠ±Π°Π²Π»ΡΡ Π±ΠΎΠ»ΡΡΠ΅ Π³Π»Π°Π²Π½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ Π² Π²Π°Ρ Π°Π½Π°Π»ΠΈΠ·.
ΠΠΎΠ΄Π²Π΅Π΄Π΅ΠΌ ΠΈΡΠΎΠ³
ΠΡΠ°ΡΠΊΠΎΠ΅ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΡΠΎΠ³ΠΎ, ΡΡΠΎ Π²Ρ ΡΠΎΠ»ΡΠΊΠΎ ΡΡΠΎ ΡΠ·Π½Π°Π»ΠΈ ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π΅ Π³Π»Π°Π²Π½ΡΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ: