Что такое рессорный транспорт
Карета на рессорах
По плохим средневековым дорогам можно было путешествовать только верхом — езда в экипаже из-за тряски превращалась в пытку. Поэтому, пока не нашли способ избавиться от тряски, пассажирский транспорт почти не развивался. В XV в. вспомнили о римском способе борьбы с тряской и стали подвешивать кузов экипажа на ремнях. Но решило проблему тряски изобретение рессоры в конце XVII в.
Смягчающая пружина
Ремни, на которые с XV в. подвешивали кузова карет, «гасили» толчки при движении по неровной дороге, но седоки в «подвешенном состоянии» испытывали качку, как в шторм на корабле. К тому же длинные ремни быстро изнашивались и рвались, что приводило к крушениям экипажей.
В конце XVII в. в Берлине были придуманы стоячие рессоры — С-образные пружины, связывающие колёсные оси с кузовом. К верхнему концу рессоры на ремне привешивали кузов, а нижний конец рессоры через муфту соединялся с осью, не мешая ей вращаться. Рессоры делались из нескольких скреплённых воедино деревянных, а позже стальных полос, что придавало конструкции гибкость и прочность. Рама, соединяющая переднюю и задние оси, также могла поддерживать кузов, препятствуя его раскачиванию, и за счёт своей изогнутой формы смягчала толчки.
Стоячие рессоры поднимали кузов на такую высоту, что забраться в карету можно было только по лесенке. Мода на надёжные и удобные рессорные кареты, названные «берлина» (по месту изобретения рессоры) быстро распространилась.
Рессоры — пружинящие дуги между осью и кузовом, смягчающие толчки при езде и передающие нагрузку от кузова к ходовой части (к оси и колёсам).
Карета — дорогой рессорный экипаж с полностью закрытым кузовом. Кареты закладывались парой, тройкой, четвёркой и даже шестёркой лошадей, в зависимости от веса и количества седоков.
Развитие идеи
Новый импульс развитию наземного пассажирского транспорта в 1805 г. дало изобретение каретного мастера Эллиота — лежачая рессора. Эта рессора служила пружинящей «прокладкой» между колёсной осью и кузовом экипажа. Такие рессоры изготавливали из закалённых полос стали заданной дугообразной формы и делали наборную рессору под заданную грузоподъёмность экипажа из соответствующего количества полос.
В экипаже могли быть 2 лежачие рессоры, расположенные над двумя осями параллельно им, или 4 рессоры, крепящиеся перпендикулярно оси рядом с каждым колесом. Со временем под разные типы экипажей появились разные типы лежачих рессор — эллиптические, полуэллиптические, четверть эллиптические, продольные или поперечные. Но основная конструкция рессор не изменилась, и от карет рессоры наследовали современные грузовики и тракторы. В легковых автомобилях роль рессор играют пружинные и газовые амортизаторы.
Рессорная подвеска: принцип работы, плюсы и минусы
Статья про рессорную подвеску: ее основные функции, принцип работы, достоинства и недостатки. В конце статьи — видео о том, какая подвеска лучше. Статья про рессорную подвеску: ее основные функции, принцип работы, достоинства и недостатки. В конце статьи — видео о том, какая подвеска лучше.
Подвеска играет немаловажную роль в конструкции автомобиля — именно от ее работы зависит плавность перемещения машины по дорогам. А поскольку дороги бывают не очень хорошего качества, нагрузка на подвеску возрастает в несколько раз. Рессорная подвеска отлично продемонстрировала себя как раз-таки в тяжелых условиях эксплуатации автомобилей. На ее конструкции и принципе работы мы и остановимся.
Основные функции подвески
Прежде всего, следует отметить, что именно подвесные элементы соединяют кузов автомобиля с шинами. Без этого элемента машина превращается в самую обыкновенную телегу, которую трясет при появлении малейших неровностей.
Второй и также важной функцией подвесных элементов можно назвать усиление устойчивости автомобиля. Во время выполнения поворотов и разворотов автомобиль подвергается внешним боковым нагрузкам, которые могут привести к опрокидыванию. Подвеска обеспечивает устойчивость авто, обеспечивая безопасность находящимся в салоне.
И, наконец, третья функция, про которую уже говорилось ранее – подвеска соединяет шасси с кузовом.
Конструкция подвесных элементов
Любая подвеска состоит из трех компонентов:
Гасящий компонент, если судить по названию, нужен для гашения различных неровностей, которые встречаются на пути следования автомобиля. В качестве этого компонента чаще всего используют амортизаторы.
Направляющий компонент представлены рычагами, которые служат для соединения шасси и кузова автомобиля.
Принято считать, что существует два типа подвесок: механические и пневматические. Однако некоторые подвесные элементы также сочетают в себе электрические и гидравлические составляющие, что помогает добиться более плавного передвижения по дороге. Иногда за работу подвески отвечает электронный блок управления.
История рессорной подвески
Системы подрессоривания данного типа появились много лет назад. Во древнем Риме на телегах иногда использовались рессоры. В качестве упругих элементов выступали ремни из кожи или металлические цепи. Применение таких систем подрессорирования позволяло перевозить крупногабаритные грузы без потенциальной опасности повредить мосты и колеса.
Большинство грузовых автомобилей имеет в своей конструкции именно рессорную подвеску, что позволяет перевозить крупногабаритные грузы на большие расстояния и по плохим дорогам, не боясь за неожиданные поломки мостов и колес.
Конструкция и работа рессорной подвески
Данный подвесной элемент представлен металлическими рессорами – стальными листами отличающейся длины, которые скреплены между собой хомутами. Центр стальных листов отвечает за крепление подвески к мосту автомобиля. Окончания листов присоединяются к раме машины при помощи шарниров или серёг.
Необязательно использовать несколько листов, поэтому в середине прошлого века в Америке применялись системы подрессоривания с одним металлическим листом. Подобные системы устанавливались на автомобили марки Форд, и только спустя несколько лет данная система снискала свою популярность у европейских автопроизводителей.
При попадании на препятствие рессорные листы немного сгибаются, гася таким образом все колебания, появившиеся в результате наезда. Если листов несколько, большая нагрузка приходится на нижнюю рессору, поэтому ее изготавливают короче, добиваясь при этом наименьшего изгиба. Верхние рессоры наоборот делают длиннее, чтобы добиться большей гибкости и погасить оставшиеся колебания после нижних листов.
Плюсы и минусы рессор
Самым очевидным плюсом металлических листов можно назвать простоту в изготовлении, а следовательно — меньшую стоимость. Такие конструкции также отличаются надежностью, поскольку сломать толстые слои металла крайне сложно.
Машины с рессорными системами неприхотливы к качеству дорог — они могут свободно перемещаться и по пустынным магистралям. К тому же груз, находящий в багажнике, никоим образом не скажется на проседании автомобиля, поскольку все нагрузки от него будет гасить рессора.
Основной недостаток у рессор – низкий срок службы металлических листов. Частые нагрузки приводят к проседанию металла, что выливается в скрежет и дребезжание во время процесса передвижения. Рессора будет требовать постоянной смазки, к тому же часто придется менять прокладки.
Некоторые автолюбители, эксплуатирующие рессоры, жалуются на постоянные затраты, которые настолько велики, что целесообразность использования рессорной подвески становится под вопросом. В ряде случаев проще установить гидропневматический подвесной элемент, даже несмотря на его высокую стоимость.
Применение рессорных систем на легковых автомобилях встречается крайне редко. Но если вы эксплуатируете грузовой автомобиль, который занимается постоянным транспортированием грузов, рессорная подвеска покажет себя во всей красе.
Видео о том, какая подвеска лучше:
С какой целью в автомобилях устанавливают рессоры, и как они работают
В современных легковушках достаточно редко встречается рессорная подвеска. Её можно встретить в грузовиках, так как этот тип подвески в большей степени подходит для высоконагруженных машин. Данный элемент автомобиля не теряет своей актуальности как у отечественных, так и у зарубежных брендов.
Устройство и принцип работы автомобильной рессоры
О том, что такое рессоры, знали ещё изготовители телег и карет, так как эта часть механического транспортного средства в инженерных конструкциях используется давно. Она используется для передачи силовых динамических и статических нагрузок от рамы либо кузова к ходовой части.
Рессорой в автомобилях называют упругий элемент подвески, применяемый для компенсации ударов, колебаний и толчков, возникающих на неровной дорожной поверхности.
Конструкция этой части подвески является простым набором из пластин разной длины. Они собраны в пачку от самой длинной (с проушинами на конце) до самой короткой и соединены металлическими хомутами. Крепление в легковушках или джипах осуществляется под мостом, а в грузовиках непосредственно над мостом.
Передача нагрузки на изгиб происходит как при нагрузке упругой балки. В последнее время всё чаще используется не набор листов, а монолистовая балка. В гашении колебаний помогают вмонтированные амортизаторы. Основная задача, закладываемая в такую подвеску автомобиля, состоит в том, чтобы гасить вертикальные колебания.
Разновидности рессор
На современных серийных автомобилях используются такие листовые типы рессор:
Также можно встретить торсионный тип и цилиндрический. В первом случае используется упругий стержень, работающий на скручивание (актуально для военной техники), а во втором – главная роль отведена стальному пруту, скрученному по спирали, в виде конуса либо чашеобразной формой (применяется в ж/д технике).
Для изготовления листов применяется конструкционная листовая сталь марок 50ХГ, 50ХГА, 50ХГФА, 55С2А, 65С2ГВА, 70. В результате проявляется стойкость к механическому износу готового изделия.
Расположение рессор
Чтобы обнаружить, где в автомобиле располагаются рессоры, необходимо заглянуть под кузов или под грузовую часть. Этот узел может быть как в передней части, так и сзади. Во втором случае монтируется более жёсткая, выдерживающая значительные нагрузки модель.
Усиление проводится за счёт вмонтированных дополнительных листов. Усилить конструкцию помогут добавленные две-три коренные рессоры. Подобное решение снизит комфорт, но увеличит жёсткость.
Достоинства и недостатки рессор
Как и все элементы подвески, рессорные листы обладают позитивными и негативными характеристиками. Одними из важных достоинств служат относительная простота изготовления, ремонта и монтажных/демонтажных работ. Этот узел не боится перегрузок и дорог низкого качества, где имеются не только выбоины, но и множество ям.
Благодаря пружинным характеристикам гасятся колебания, возникающие во время разгона либо торможения, а также при возникновении заносов. Компактность подобной подвески обеспечивается её расположением снизу, что экономит багажное пространство в багажной части автомобиля.
Основной недостаток состоит в том, что происходит быстрый износ. Виновниками зачастую становятся автомобилисты, которые перегружают машины больше нормы, что приводит к проседанию и потере пружинных качеств. Не всем автовладельцам нравится то, что за листами, стянутыми хомутами, приходится периодически ухаживать, а также контролировать состояние смазки проушин. Если процедуру не проводить своевременно, то появятся посторонние шумы и существенно увеличится износ трущихся поверхностей.
Советы по уходу за рессорами
Чтобы рессорная подвеска служила долго и не добавляла хлопот, необходимо соблюдать некоторые правила. Желательно выбирать дороги с качественным покрытием или ровной поверхностью (для грунтовых шоссе). При перевозе грузов не рекомендуется превышать допустимый тоннаж.
Негативно сказывается на длительности ресурса резкие торможения и старты. Если выявлены проблемные листы, то важно их своевременно заменить на новые. Когда возникает скрип снизу, то высока вероятность отсутствия смазки в трущихся поверхностях, поэтому её нужно добавить в проушины и подтянуть хомуты.
Почему рессоры редко устанавливают на легковые машины
Использование рессор актуально для высоконагруженного транспорта. К нему не относятся легковые автомобили. Также у этого типа подвески существенно ниже комфортность для пассажиров в отличие от пружинных конструкций, так как практически каждая кочка будет отзываться на сиденье.
Данный тип амортизации авто более жёсткий, чем тот, что установлен в спортивных моделях авто. К минусам принято относить потерю остроты управления из-за ограниченности хода. Рессоры лучше себя проявляют под умеренной нагрузкой, например, в пикапах, фургончиках или грузовичках.
Рессора
Рессоры как направляющее устройство подвески
Рессора как направляющее устройство задней подвески
Преимущество рессоры в простоте конструкции и следующей отсюда дешевизне т.к. она одновременно является и упругим элементом и направляющим устроством подвески (устройством, задающим положение моста относительно шасси автомобиля и кинематику подвески).
Так же податливость рессоры обеспечивает отсутствие разсогласований кинематики подвески при разноименных ходах.
В гаражной среде бытует мнение что если рессора выпрямилась то значит она просела. Для не наклоненной, расположенной над мостом рессоры это не так. В статическом положении подвески она должна быть прямой или даже наоборот выгнутой в сторону большего прогиба. Вот изображение задней подвески УАЗа Хантер или Патриот:
Как видно на рисунке, рессора абсолютно прямая. Это необходимое условие того чтобы при крене в повороте задняя ось подвески не разворачивалась в сторону избыточной поворачиваемости, не усугубляла избуточную поворачиваемость, к которой и без того склонен заднеприводный автомобиль.
Рис. Рессора, сжатая не до прямого состояния над мостом при крене доворачивает мост в сторону, противоположную повороту, усугубляя избыточную поворачиваемость
Рис. Если рессора прямая, то при крене кузова мост при крене чуть сдвигается в базу но не доворачивается. (Для получения эффекта компенсации избыточной поворачиваемости рессору можно наклонить вперед)
Если рессора ещё более выгнута в сторону сжатия, или наклонена вперед, то она может даже компенсировать избыточную поворачиваемость разворачивая мост в сторону поворота (в сторону недостаточной поворачиваемости).
Рессора может быть установлена как над балкой моста, так и под. Преимущество распложения рессоры под мостом в меньшей подверженности к S-образному изгибу т.к. мост непосредственно прижат к коренному листу и плечо силы, изгибающей рессору меньше. Т.е. Можно использовать более мягкую рессору без применения дополнительных средств предотрващения S-образного изгиба (реактивных тяг). Недостаток в более низком ценре крена подвески и соответственно большем плече крена. Рессора, установленная под мостом может быть выгнута не до прямого состояния при статической подвеске (отсюда возможно и пошла гаражная легенда о «прямых рессорах»). Дело в том что кинематика такой подвески отличается от кинематики подвески с рессорой над мостом. Во-первых рессора как правило наклонена, во-вторых ось моста как правило либо на одном уровне, либо выше передней оси рессоры. Получем тот же необходимый эффект разворота оси в сторону поворота.
Рис. Кинематика подвески с не прямой рессорой, но наклонной и под мостом.
Для уменьшения склонности мягкой рессоры к S-образному изгибу возможно применение специальных реактивных тяг. Один конец тяги крепится к мосту жестко, второй на раму/шасси через серьгу для того чтобы тяга оказывала минимально возможное влияние на кинематику подвески.
Рис. Реактивная тяга
Обновлено ( 24.09.2008 17:44 )
Определение траектории перемещения ушков листовой рессоры
Если поперечно расположенная листовая рессора, закрепленная в двух точках, одновременно заменяет верхний или нижний рычаги, то в этом случае конструктор должен знать траектории центров ушков рессоры при работе подвески на поворотах. Это необходимо для определения мгновенного центра поворота, а также для того, чтобы рассчитать изменение развала и схождения колес.
Точки замеров, образующие траекторию перемещения, получают с помощью пружинных весов. В качестве исходного положения принята выпрямленная рессора (). Величина нагрузки при этом не играет роли.
Рисунок 8 – Центр дуги, описываемой ушком рессоры, закрепленной в двух точках, как правило, смещен в сторону от мест закрепления
В качестве исходных параметров используются величины ходов сжатия f1 и отбоя f2 подвески в направлении оси Y, а измеряемой величиной является боковое смещение Δl обоих салазок, что дает соответствующее значение X. В процессе изучения оба места закрепления D1 (слева) и D2 (справа, на рисунке не изображено) должны параллельно нагружаться или разгружаться. Затем рессору вычерчивают в выпрямленном состоянии в масштабе 1:1, чтобы, исходя из этого положения, иметь возможность нанести полученные значения X в соответствии со значениями Y. Начало координат располагается в центре ушка рессоры. Соединив отдельные точки, получим с обоих концов рессоры дугообразную кривую. Центр кривизны служит кинематическим центром вращения.
Аналогичный процесс может быть применен также при центральном закреплении рессоры, независимо от того, является это закрепление жестким или упругим ().
Рисунок 9 – При жестком закреплении середины рессоры центр дуги, описываемой при работе подвески ушком, располагается вне заделки
При поперечно расположенных листовых рессорах таким же путем осуществляется определение центра поворота. При продольных листовых рессорах определяют траекторию, которая потребуется для уточнения перемещения неразрезной балки, закрепленной на рессорах. В последнем случае рессора должна быть изображена на чертеже в соответствии с ее положением в автомобиле.
Как работает стабилизатор поперечной устойчивости
При повороте автомобиля одна стойка поднимается, а вторая опускается, то есть они смещаются в противоположные стороны, средняя часть стабилизатора, которая называется стержень, начинает закручиваться.
Как следствие с той стороне, где автомобиль «кренился» на бок, стабилизатор приподнимает кузов, а с противоположной стороны – опускает кузов. Чем больше величина наклона, тем сильнее сопротивление стабилизатора. Затем автомобиль выравнивается, снижается крен во время поворота и улучшается качество сцепления колес с дорогой.
Если вы хотите разобрать работу стабилизатора поперечной устойчивости более подробно, эта информация вам пригодится.
Для создания сопротивления крена автомобиля применяется торсион, который крепится в ступичном узле колеса.
Торсион работает на скручивание, создает сопротивления крену автомобиля. Крепится торсион в ступичном узле левого колеса, далее проходит в направлении движения до шарнирного узла крепления к кузову, далее в латеральном направлении к противоположному борту автомобиля, где крепится зеркально аналогично первому борту. Отрезки торсиона, проходящие в направлении движения, работают как рычаги при работе подвески в вертикальном направлении. При отсутствии крена оба отрезка поворачиваются на один и тот же угол, торсион не скручивается и проворачивается в узлах крепления к кузову как целое. При крене автомобиля левый и правый отрезки торсиона поворачиваются на различные углы, скручивая торсион и создавая упругий момент, сопротивляющийся крену. На зависимых задних подвесках часто отсутствует, вместо этого продольные рычаги прикрепляются к балке жестким соединением, способным передавать крутящий момент. Таким образом, вся балка в сборе с продольными рычагами выступает торсионом.
Стабилизаторы могут устанавливаться или на обе оси, или только на одну (обычно на переднюю).
Листовые рессоры
Листовые рессоры применяют в современном подвижном составе редко. Рессоры сочетают в себе свойства упругих элементов и гасителей колебаний. Однако недостатками таких рессор являются большая трудоемкость их изготовления и ремонта, значительная масса, непостоянная сила трения между листами (например, у новых рессор пассажирских вагонов она равна 6–8% статической нагрузки, а в процессе эксплуатации повышается до 20–25%, что нередко приводит к выключению рессор). Листовые рессоры не смягчают горизонтальные толчки.
По форме различают листовые рессоры незамкнутые (подвесные) (рис. 1, а) и замкнутые (эллиптические) (рис. 1, б). Незамкнутая листовая рессора состоит из нескольких наложенных один на другой листов разной длины, соединенных посередине шпилькой и хомутом. Для устранения бокового сдвига листам часто придают желобчатый профиль. Верхний коренной лист имеет на концах ушки или утолщения. Подкоренной лист (один или два) обрезан под прямым углом, остальные наборные листы рессоры обрезаны по трапеции.
Рис. 1 – Листовые рессоры: а – незамкнутая; б – замкнутая
Подвесные листовые рессоры имели наибольшее распространение в нетележечных вагонах, кроме того, их применяли и в тележках четырехосных вагонов. Эти рессоры собраны из нескольких наложенных друг на друга, изогнутых по дуге окружности, постепенно укорачивающихся стальных листов. Посередине листы соединяются шпилькой и прочно насаженным на них (надевается в горячем состоянии) стальным хомутом. Верхний лист, называемый коренным, имеет на концах ушки, которыми рессора шарнирно соединяется с рамой вагона. Лист, прилегающий к коренному листу, называется подкоренным, остальные листы называются наборными.
Изготовляют листовые рессоры преимущественно из желобчатой рессорной стали, профиль которой способствует удержанию листов от перемещения относительно друг друга в поперечном направлении. Кроме желобчатой, используется и плоская полосовая сталь.
Листовая рессора характеризуется размерами в свободном состоянии и под нагрузкой. Расстояние между центрами ушков коренного листа в выпрямленном состоянии называется длиной рессоры. У грузовых вагонов она обычно составляет 1040–1100 мм, а у пассажирских – 1000–1800 мм и реже 2000 мм. Расстояние между центрами ушков коренного листа ненагруженной рессоры называется длиной хорды. Расстояние, измеряемое посередине рессоры, между прямой, проходящей через центр ушков, и верхним (коренным) листом в свободном состоянии рессоры называется фабричной стрелой прогиба. Расстояние от прямой, проведенной через центры ушков коренного листа, до нижней поверхности хомута, которой он опирается на буксу, называется высотой рессоры.
Под действием нагрузки происходит выпрямление рессоры и вследствие этого уменьшение фабричной стрелы. Величина осадки рессоры под грузом, определяемая как разница между фабричной стрелой и стрелой в нагруженном состоянии, называется прогибом. Величина его имеет большое значение для спокойного хода вагона.
Зависимая подвеска с направляющими рычагами
Вероятности потерять управление над мостом нет в случае из подвеской с направляющими рычагами. Это самый распространенный тип зависимой подвески. Всего в этой подвеске 5 рычагов: четыре продольных и один поперечный.
Благодаря наличию рычагов обеспечивается отличная выносливость к следующим типам усилий:
Для того чтобы придать упругость подвески применяется пружина, а для гашения ударов – амортизатор.
Наличие поперечного рычага не дает оси автомобиля смещаться. Сам рычаг называется тяга Панара. Этот вид тяги по-разному может работать при поворотах налево или направо. Более удачными механизмами для зависимой подвески автомобиля являются механизмы Скотта-Рассела и Уатта. Ниже приведены описания нескольких типов зависимой подвески.
Подвеска Уатта
Механизм Уатта – два горизонтальных рычага, которые прикреплены на шарнирах в вертикальном положении. Сам рычаг закрепляется по центру балки и может вращаться. Когда наступает момент неравномерного движения, например при повороте, вертикальный рычаг поворачивается и все компенсирует.
Подвеска Скотта-Рассела
Механизм Скотта-Рассела – это два рычага: короткий и длинный. Длинный рычаг крепится к кузову, а короткий – к центру и краю моста. Главная особенность этого механизма – эластичное крепление к балке, благодаря чему автомобиль лучше держит курс движения и лучше управляется.
Подвеска Де Дион
Также отличной разновидностью зависимой подвески является подвеска Де Дион. Ее разработали на фирме Де Дион Бутон в 1896 году. Она представляет собой конструкцию, где корпус отделен от оси. Благодаря этому моменту снижается масса неамортизируемых деталей. Чаще всего этот вид подвески применяли в автомобилях Alfa Romeo. Разумеется, ее устанавливали только назад.
Подвеска Де Дион считается средней между зависимыми и независимыми подвесками. Все детали этой подвески способствуют облегченному ходу и высокой управляемости. Ввиду того, что купить Де Дион довольно дорого, ее используют очень редко, и то, на спортивных машинах.
Зависимая подвеска очень стара и ее история начинается еще от телег и повозок. Несмотря на это, ее можно до сих пор встретить на некоторых машинах.
Основные преимущества зависимой подвески:
Основной недостаток – жесткая связь колес, из-за чего они двигаются по очень похожему курсу, даже при прохождении препятствий. Вместе с большим весом конструкции, этот момент не может положительно сказываться на стабильности движения и управляемости.
Ниже можете посмотреть видео, как работает зависимая подвеска автомобиля.
Контроль и испытание рессор
Изготовленные рессоры при приемке осматривают, проверяют их основные размеры, плотность посадки хомута, твердость, после чего испытывают на прессе.
Форма и размеры рессор, а также допуски на них должны соответствовать утвержденным чертежам и техническим условиям. Отклонения по длине, хорды рессоры в свободном состоянии не должны превышать:
Отклонения стрелы прогиба против альбомных размеров допускаются у подвесных (незамкнутых) листовых рессор до 5 мм, эллиптических – для пассажирских вагонов до 12 мм и для грузовых – до 6 мм.
Хомут должен быть расположен в середине рессоры. Несимметричность осей опорных поверхностей коренных листов, а также несимметричность концов ступенчатой части рессоры по отношению к оси хомута не должна превышать 3 мм. Посадка хомута должна быть плотной; допускаются зазоры: между хомутом и коренным листом не более 0,1 мм глубиной до 15 мм, а между хомутом и нижним листом не более 0,3 мм; между хомутом и боковыми гранями отдельных несмежных листов 0,5 мм любой глубины и между хомутом и листами в его углах – не более 1,5 мм.
Прилегание смежных листов должно быть достаточно плотным как в свободном, так и в нагруженном состоянии рессоры. Допускаются зазоры между листами непосредственно около хомута до 0,2 мм, а на остальной длине листа – 1,5 мм. Величина зазора между поверхностями листов рессоры проверяется плоским щупом шириной 10 мм, а в углах хомута – прутком круглого сечения диаметром 1,5 мм. Зазоры между наконечниками и листами замкнутых многорядных рессор допускаются до 0,4 мм, причем щуп толщиной 0,2 мм не должен доходить до тела заклепки или болта. Чеканка или дополнительное обжатие ослабших заклепок не допускается.
Возвышение одного хомута над другим в многорядной рессоре не должно превышать 3 мм. Разность высот отдельных секций до их сбора в полукомплект не должна превышать 2 мм. Смещение одного хомута относительно другого в эллиптических рессорах допускается не более 4 мм. Зазоры между хомутами смежных секций должны быть в пределах 2 мм.
Правильность положения хомута на рессоре проверяют шаблоном, при этом разность расстояния между центром хомута и центром расстояния между ушками или концами рессор должна быть не более 5 мм.
Все рессоры, признанные годными, после наружного осмотра и обмера испытывают на прессах, чтобы проверить отсутствие у них остаточной деформации (осадки.) под пробной нагрузкой и определить прогиб под рабочей статической нагрузкой.
Испытываемую рессору устанавливают ушками вниз на подвижные опоры балки пресса (рис. 1) и сжимают пробной нагрузкой не меньше двух раз. После снятия нагрузки измеряют высоту стрелы в свободном состоянии, затем рессору вновь плавно нагружают до величины пробной нагрузки, снимают нагрузку и вновь измеряют высоту стрелы, которая должна быть не менее высоты, полученной после первичного двукратного сжатия.
Рис. 1 – Расположение рессоры на прессе для испытаний и последовательность проверки ее на отсутствие остаточной деформации
У рессор, выдержавших испытание на остаточную деформацию, проверяют прогиб под рабочей нагрузкой следующим образом. Ее плавно нагружают до рабочей нагрузки и измеряют величину прогиба. После этого нагрузку повышают до пробной, затем плавно снижают до рабочей и вторично замеряют прогиб. Разность между полусуммой измеренных прогибов и расчетным прогибом, указанным в чертеже, отнесенная к величине рессорного прогиба, не должна превышать ±8%. Так, например, если расчетный прогиб 13-листовой рессоры (сечение листов 76×13 мм) двухосных грузовых вагонов fр = 62 мм, прогиб под статической рабочей нагрузкой f1 = 59 мм, а прогиб после пробной нагрузки и снижения ее до рабочей f2 = 56 мм, то разность между полусуммой измеренных прогибов и расчетным прогибом рессоры будет
а искомое отношение составит
что находится в пределах, установленных ГОСТ 1425–76.
На верхней поверхности хомута прошедшей испытание подвесной рессоры, а у эллиптической – на боковой поверхности хомута ставится клеймо, марка или условный номер завода-изготовителя, дата испытания (месяц и год). Затем рессоры для защиты от коррозии покрывают черной краской. При массовом или серийном выпуске завод-поставщик обязан проводить испытание на выносливость не менее одной рессоры каждого типа в год.
Виды стабилизатора поперечной устойчивости
Существует два вида стабилизатора поперечной устойчивости: передний и задний стабилизаторы. В некоторых легковых автомобилях задняя поперечная стальная распорка не устанавливается, а передний стабилизатор устанавливается на всех современных автомобилях.
Активный стабилизатор поперечной устойчивости
Активный стабилизатор поперечной устойчивости дает возможность управлять изменением жесткости под разный тип дорожного покрытия и характер движения. Для более резких поворотов выставляется максимальная жесткость, на грунтовой дороге средняя жесткость, а по бездорожью функция отключается.
Кольцевые рессоры
Кольцевые рессоры применяются преимущественно в случаях, когда требуется обеспечить высокую жесткость в малых габаритах (например, в некоторых конструкциях поглощающих аппаратов автосцепки). Достигается это за счет рационального использования материала колец и наличия сил трения между кольцами. Для обеспечения стабильного трения и предотвращения заклинивания применяется смазка.
Кольцевые рессоры (рис. 4, а) представляют собой жесткий упругий элемент для восприятия сжимающих осевых нагрузок. Кольцевая рессора состоит из набора термически обработанных колец, соприкасающихся коническими поверхностями Под действием нагрузки Р, несмотря на значительные силы трения на конусных поверхностях колец, препятствующие их относительному скольжению, они вдвигаются одно в другое. Кольца, передавая усилия своими коническими поверхностями, деформируются: внешние подвергаются упругому растяжению, а внутренние – упругому сжатию. В результате общая высота рессоры H уменьшается. После снятия нагрузки, так как угол конусности β больше угла трения р = arct μ (где μ – коэффициент трения скольжения), рессора восстанавливает свои прежние размеры за счет сил упругости. Взаимное перемещение колец обычно незначительно (1,5–4,5 мм), вследствие чего для получения достаточного прогиба необходимо иметь большое количество колец.
Рис. 4 – Кольцевая рессора и диаграмма ее работы
Величина работы сил трения между кольцами (рис. 4, б), совершаемой при загружении рессоры, зависит от точности их изготовления и наличия смазки.