Что такое результирующая напряженность

Что такое результирующая напряженность

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

Одной из основных задач электростатики является оценка параметров поля при заданном, стационарном, распределении зарядов в пространстве. Один из способов решения подобных задач основан на принципе суперпозиции. Суть его в следующем.

Если поле создается несколькими точечными зарядами, то на пробный заряд q действует со стороны заряда qk такая сила, как если бы других зарядов не было. Результирующая сила определится выражением:

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

Т.к. Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность, то Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность– результирующая напряженность поля в точке, где расположен пробный заряд, так же подчиняется принципу суперпозиции:

Это соотношение выражает принцип наложения или суперпозиции электрических полей и представляет важное свойство электрического поля. Напряженность результирующего поля, системы точечных зарядов равна векторной сумме напряженностей полей, созданных в данной точке каждым из них в отдельности.

Рассмотрим применение принципа суперпозиции в случае поля, созданного электрической системой из двух зарядов с расстоянием между зарядами, равными l (рис. 1.2).

Поля, создаваемые различными зарядами, не влияют друг на друга, поэтому вектор Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженностьрезультирующего поля нескольких зарядов Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженностьможет быть найден по правилу сложения векторов (правило параллелограмма)

Рассмотрим другой пример. Найдем напряженность электростатического поля Е, создаваемую двумя положительными зарядами q 1 и q 2 в точке А, находящейся на расстоянии r 1 от первого и r 2 от второго заря-дов (рис. 1.3).

Воспользуемся теоремой косинусов:

Если поле создается не точечными зарядами, то используют обычный в таких случаях прием. Тело разбивают на бесконечно малые элементы и определяют напряженность поля создаваемого каждым элементом, затем интегрируют по всему телу:

Если же поле создано сложными по форме заряженными телами и неравномерно заряженными, то используя принцип суперпозиции, трудно найти результирующее поле.

формуле (1.4.4) мы видим, что Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность– векторная величина:

В качестве примеров можно рассмотреть линейное распределение зарядов или распределение заряда по окружности.

Определим напряженность электрического поля в точке А (рис. 1.4) на расстоянии х от бесконечно длинного, линейного, равномерно распределенного заряда. Пусть λ – заряд, приходящийся на единицу длины.

Считаем, что х – мало по сравнению с длиной проводника. Выберем систему координат так, чтобы ось y совпадала с проводником. Элемент длины dy, несет заряд Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженностьСоздаваемая этим элементом напряженность электрического поля в точке А:

Вектор Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженностьимеет проекции dEx и dEy, причем Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженностьТ.к. проводник бесконечно длинный, а задача симметричная, то у – компонента вектора Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженностьобратится в ноль (скомпенсируется), т.е. Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность.

Тогда Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность. Теперь выразим y через θ. Т.к. Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженностьто Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженностьи Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность, тогда

Таким образом, напряженность электрического поля линейно распределенных зарядов изменяется обратно пропорционально расстоянию до заряда.

Этот результат, полученный для бесконечно длинного линейного заряда, с хорошей точностью справедлив и для линейного заряда конечной длины при условии, что х – мало по сравнению с расстоянием от точки А до концов проводника.

Задание: по тонкому кольцу радиуса R равномерно распределен заряд q. Определить Е в точке А (рис. 1.5).

Источник

Напряженность электрического поля

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Что такое электрическое поле

Однажды Бенджамин Франклин, чей портрет можно увидеть на стодолларовой купюре, запускал воздушного змея во время дождя с грозой. Столь странное занятие он выбрал не просто так, а с целью исследования природы молнии. Заметив, что на промокшем шнуре волоски поднялись вверх (т. е. он наэлектризовался), Франклин хотел прикоснуться к металлическому ключу. Но стоило ему приблизить палец, раздался характерный треск и появились искры. Сработало электрическое поле.

Это случилось в середине XVIII века, но еще целое столетие ученые не могли толком объяснить, как именно заряженные тела взаимодействуют друг с другом, не соприкасаясь. Майкл Фарадей первым выяснил, что между ними есть некое промежуточное звено. Его выводы подтвердил Джеймс Максвелл, который установил, что для воздействия одного такого объекта на другой нужно время, а значит, они взаимодействуют через «посредника».

В современной физике электрическое поле — это некая материя, которая возникает между заряженными телами и обусловливает их взаимодействие. Если речь идет о неподвижных объектах, поле называют электростатическим.

Объекты, несущие одноименные заряды, будут отталкиваться, а тела с разноименными зарядами — притягиваться.

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

Определение напряженности электрического поля

Для исследования электрического поля используются точечные заряды. Давайте выясним, что это такое.

Точечным зарядом называют такой наэлектризованный объект, размерами которого можно пренебречь, поскольку он слишком мал в сравнении с расстоянием, отделяющим этот объект от других заряженных тел.

Теперь поговорим непосредственно о напряженности, которая является одной из главных характеристик электрического поля. Это векторная физическая величина. В отличие от скалярных она имеет не только значение, но и направление.

Для того, чтобы исследовать электрическую напряженность, нужно в поле заряженного тела q1 поместить еще один точечный заряд q2 (допустим, они оба будут положительными). Со стороны q1 на q2 будет действовать некая сила. Очевидно, что для расчетов нужно иметь в виду как значение данной силы, так и ее направление, то есть вектор.

Напряженность электрического поля — это показатель, равный отношению силы, действующей на заряд в электрическом поле, к величине этого заряда.

Напряженность является силовой характеристикой поля. Она говорит о том, как сильно влияние поля в данной точке не только на другой заряд, но также на живые и неживые объекты.

Единицы измерения и формулы

Из указанного выше определения понятно, как найти напряженность электрического поля в некой точке:

E = F / q, где F — действующая на заряд сила, а q — величина заряда, расположенного в данной точке.

Если нужно выразить силу через напряженность, мы получим следующую формулу:

F = q × E

Направление напряженности электрического поля всегда совпадает с направлением действующей силы. Если взять отрицательный точечный заряд, формулы будут работать аналогично.

Поскольку сила измеряется в ньютонах, а величина заряда — в кулонах, единицей измерения напряженности электрического поля является Н/Кл (ньютон на кулон).

Принцип суперпозиции

Допустим, у нас есть несколько зарядов, которые перекрестно взаимодействуют и образуют общее поле. Чему равна напряженность электрического поля, создаваемого этими зарядами?

Было установлено, что общая сила воздействия на конкретный заряд, расположенный в поле, является суммой сил, действующих на данный заряд со стороны каждого тела. Из этого следует, что и напряженность поля в любой взятой точке можно вычислить, просуммировав напряжения, создаваемые каждым зарядом в отдельности в той же точке (с учетом вектора). Это и есть принцип суперпозиции.

Это правило корректно для любых полей, за некоторыми исключениями. Принцип суперпозиции не соблюдается в следующих случаях:

речь идет о сверхсильных полях с напряженностью более 10 20 в/м.

Но задачи с такими данными выходят за пределы школьного курса физики.

Напряженность поля точечного заряда

У электрического поля, создаваемого точечным зарядом, есть одна особенность — ввиду малой величины самого заряда оно очень слабо влияет на другие наэлектризованные тела. Именно поэтому такие «точки» используют для исследований.

Но прежде чем рассказать, от чего зависит напряженность электрического поля точечного заряда, рассмотрим подробнее, как взаимодействуют эти заряды.

Закон Кулона

Предположим, в вакууме есть два точечных заряженных тела, которые статично расположены на некотором расстоянии друг от друга. В зависимости от одноименности или разноименности они могут притягиваться либо отталкиваться. В любом случае на эти объекты воздействуют силы, направленные по соединяющей их прямой.

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

Закон Кулона

Модули сил, действующих на точечные заряды в вакууме, пропорциональны произведению данных зарядов и обратно пропорциональны квадрату расстояния между ними.

Силу электрического поля в конкретной точке можно найти по формуле: Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженностьгде q1 и q2 — модули точечных зарядов, r — расстояние между ними.

В формуле участвует коэффициент пропорциональности k, который был определен опытным путем и представляет собой постоянную величину. Он обозначает, с какой силой взаимодействуют два тела с зарядом 1 Кл, расположенные на расстоянии 1 м.

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

Учитывая все вышесказанное, напряжение электрического поля точечного заряда в некой точке, удаленной от заряда на расстояние r, можно вычислить по формуле:

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

Итак, мы выяснили, что называется напряженностью электрического поля и от чего зависит эта величина. Теперь посмотрим, как она изображается графическим способом.

Онлайн-подготовка к ОГЭ по физике поможет снять стресс перед экзаменом и получить высокий балл.

Линии напряженности

Электрическое поле нельзя увидеть невооруженным глазом, но можно изобразить с помощью линий напряженности. Графически это будут непрерывные прямые, которые связывают заряженные объекты. Условная точка начала такой прямой — на положительном заряде, а конечная точка — на отрицательном.

Линии напряженности — это прямые, которые совпадают с силовыми линиями в системе из положительного и отрицательного зарядов. Касательные к ним в каждой точке электрического поля имеют то же направление, что и напряженность этого поля.

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

При графическом изображении силовых линий можно передать не только направление, но и величину напряженности электрического поля (разумеется, условно). В местах, где модуль напряженности выше, принято делать более густой рисунок линий. Есть и случаи, когда густота линий не меняется — это бывает при изображении однородного поля.

Однородное электрическое поле создается разноименными зарядами с одинаковым модулем, расположенными на двух металлических пластинах. Линии напряженности между этими зарядами представляют собой параллельные прямые всюду, за исключением краев пластин и пространства за ними.

Источник

Электрическое поле. Напряженность. Принцип суперпозиции

Электрическое поле. Напряженность электрического поля. Линии напряженности электрического поля (силовые линии). Однородное электрическое поле. Напряженность электростатического поля точечного заряда. Принцип суперпозиции полей. Теорема Гаусса. Электростатическое поле равномерно заряженных плоскости, сферы и шара.

Электрическое поле представляет собой векторное поле, существующее вокруг тел или частиц, обладающее электрическим зарядом, а также возникающее при изменении магнитного поля.

Единицы измерения: \(\displaystyle [\text<В>/\text<м>]\) (вольт на метр).

всегда начинаются на положительных зарядах и заканчиваются на отрицательных.

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

— такое поле в данной области пространства. если вектор напряженности поля одинаков в каждой точке области.

При равномерном распределении электрического заряда \(q\) по поверхности площади \(S\) поверхностная плотность заряда \(\displaystyle \sigma\) постоянна и равна

Принцип суперпозиции полей

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

Заряженная плоскость

Её электрическое поле однородно, то есть его напряжённость одинакова на любом расстоянии от плоскости, линии напряжённости параллельны. По теореме Гаусса:

Заряженная сфера

Рассмотрим электрическое поле равномерно заряженной сферы. Поток напряжённости через любую замкнутую поверхность внутри сферы равен нуля, так как внутри этой поверхности нет заряда. Отсюда следует, что внутри сферы напряжённость равна нулю.

Заряженный шар

Источник

Что такое результирующая напряженность

В XIX веке английский учёный Майкл Фарадей выдвинул гипотезу, что электрическое и магнитное взаимодействия осуществляются посредством особой среды между ними, поля. Любой заряд `q` изменяет свойства пространства вокруг себя – создаёт вокруг себя поле, а уже это поле действует на другие заряды. Развитие науки и техники показало чрезвычайную плодотворность концепции поля. Вся теория электромагнитных явлений со всеми её приложениями существенным образом основывается на концепции поля. По мнению Эйнштейна, идея поля была самым важным открытием со времён Ньютона.

Идея электрического поля большинству людей кажется некоей абстрактной теоретической концепцией, поскольку электрическое поле (в отличие от поля магнитов) в обыденной жизни, в быту невозможно «почувствовать рукой». К вопросу о том, почему это так, мы вернёмся позже. Пока же обратимся к количественному описанию электростатического поля.

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

Если в поле точечного заряда `q` поместить на расстоянии `r` пробный точечный заряд `q_1`, то на этот заряд будет действовать сила `|vecF_1|=1/(4pi epsilon_0) (|q||q_1|)/(r^2)`. Если в ту же точку поместить другой пробный заряд `q_2`, то на него заряд со стороны заряда `q` будет действовать другая сила `|vecF_2|=1/(4pi epsilon_0) (|q||q_2|)/(r^2)`. Существенно, однако, что отношение силы, действующей на пробный заряд, к его заряду, `(vecF_1)/(q_1)=(vecF_2)/(q_2)`, останется одним и тем же и будет характеристикой не пробных зарядов, но исходного заряда `q` и местоположения `vecr` точки `A`, в которую мы помещали пробные заряды (см. рис. 1). Эта характеристика называется напряжённостью электрического поля точечного заряда `q` в точке `A`. Напряжённость поля есть векторная величина. Её модуль равен

`|vecE|=1/(4pi epsilon_0) (|q|)/(r^2)`. (1.3.1)

Если заряд `q` положительный, то вектор `vecE` в точке `A` направлен в сторону от заряда вдоль прямой, соединяющей точечный заряд `q` и точку `A`; если же заряд `q` отрицательный, то вектор `vecE` в точке `A` направлен в сторону к заряду вдоль той же прямой.

`vecE=1/(4pi epsilon_0) q/(r^2) vece`. (1.3.1′)

Формулу (1.3.1.) иногда записывают в виде `|vecE|=1/(4pi epsilon_0) (|q|*(+1))/(r^2)`; при этом о напряжённости говорят как о силе, действующей со стороны заряда `q` на некий условный единичный положительный точечный заряд `(+1)` (не заряд в `+1` Кл!). Нужно, впрочем, помнить, что сила и напряжённость электрического поля имеют разную размерность. В системе СИ напряжённость электрического поля измеряется в вольтах на метр (В/м): `1`В/м `=1`Н/`1`Кл.

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

Принцип суперпозиции. Напряжённость есть векторная величина. Это означает, что если имеются два заряда `q_1` и `q_2` каждый из них в некоторой точке создаёт свои напряжённости поля `vecE_1` и `vecE_2`, то результирующая напряжённость (результирующая сила, действующая на единичный положительный заряд, со стороны обоих зарядов) будет равна векторной сумме

получаемой по правилу параллелограмма (рис. 2) или треугольника.

Аналогично, в случае `N` зарядов:

`vecE=vecE_1+vecE_2+. +vecE_N=sum_(k=1)^N vecE_k`, (1.3.3)

причём векторная сумма вычисляется по правилу многоугольника (либо последовательно несколько раз по правилу параллелограмма).

Введя понятие напряжённости электрического поля, мы каждой точке пространства около заряда `q` (или около системы зарядов) приписываем некоторый вектор `vecE=1/(4pi epsilon_0) q/(r^2)vece` (в случае системы зарядов нужно ещё вычислить сумму (1.3.3.)), который, в конце концов, позволяет вычислять по формуле `vecF=q^’vecE` силу, действующую на любой другой заряд `q^’`.

Расстояние между точечными зарядами `q_1=+1` нКл и `q_2=-2` нКл равно `d=13` см. Определить напряжённость результирующего электрического поля обоих зарядов в точке, расположенной на расстоянии `r_1=5` см от первого и `r_2=12` см от второго заряда.

Легко заметить, что `r_1^2+r_2^2=d^2`, т. е. треугольник, образованный зарядами и интересующей нас точкой, прямоугольный. Поэтому напряжённости, создаваемые в этой точке отдельными зарядами, перпендикулярны друг другу (рис. 3). Далее, по теореме Пифагора

`E=sqrt(E_1^2+E_2^2)`, где `E_1=1/(4pi epsilon_0) (q_1)/(r_1^2)=3600` В/м и `E_2=1/(4pi epsilon_0) (|q_2|)/(r_2^2)=1250` В/м.

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

Электрическое поле равномерно заряженной сферы. Вне равномерно заряженной сферы электрическое поле точно такое же, какое создавал бы помещённый в центр сферы точечный заряд, равный по величине суммарному заряду сферы (рис. 4, а – б). Нетривиальный факт состоит в том, что внутри равномерно заряженной сферы напряжённость электрического поля равна нулю (см. `[2 – 3]`).

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

Если имеются две концентрические равномерно заряженные сферы, то за пределами обеих сфер поле такое же, какое создавали бы два точечных заряда, равные зарядам сфер и помещённые в их общий центр. В области между сферами внешняя сфера не вносит вклада в напряжённость поля.

Вне равномерно заряженного по объёму шара электрическое поле точно такое же, какое создавал бы помещённый в центр шара точечный заряд, равный по величине суммарному заряду шара. Последнее легко понять: поле шара можно представить как результирующее поле множества тонких шаровых слоёв («сфер»). О том, каким будет поле внутри шара, см. Пример 8.

Оценить заряд Земли `Q`, если известно, что в среднем вблизи поверхности Земли существует статическое электрическое поле, направленное вниз перпендикулярно поверхности Земли в каждой её точке, напряжённость которого равна `E

130` В/м. Радиус Земли `R

Напряжённость электрического поля направлена вниз перпендикулярно поверхности Земли, т. е., к центру Земли. Отсюда можно сделать вывод, что заряд Земли отрицателен. По формуле (1.3.1).

Хотя атмосфера Земли обладает положительным электрическим зарядом, она не вносит вклада в напряжённость электрического поля на поверхности Земли (каждый из её сферических слоёв даёт нулевой вклад в напряжённость поля). Напряжённость поля порядка `130` В/м есть среднее поле вблизи поверхности Земли. При приближении, например, грозовой тучи поле может возрасти в тысячи раз.

Какой максимальный заряд можно сообщить металлическому шарику радиусом `r=1` см, чтобы ещё не происходило пробоя воздуха. Пробойное поле сухого воздуха `E_»пр»

3*10^6` В/м. (Если напряжённость электрического поля больше этого значения, происходит пробой воздуха – воздух начинает проводить электричество (возникает электрический ток) – и заряд стекает с заряженных тел на другие тела.)

По формуле (1.3.1) получаем `q_(max)=4pi epsilon_0E_»пр»r^2

Оценить силу взаимодействия двух шариков радиусом `r=1` см, заряженных до максимально возможного заряда (чтобы ещё не происходило пробоя воздуха вблизи шариков) при расстоянии между центрами шариков `d=10` см. Пробойное поле сухого воздуха `E_»пр»

`f=1/(4pi epsilon_0) (q_(max)^2)/(d^2)=1/(4pi epsilon_0) ((4pi epsilon_0E_»пр»r^2)^2)/(d^2)=(4pi epsilon_0E_»пр»^2r^4)/(d^2)

Мы получили весьма малую силу (сила тяжести, действующая на льдинку массой `1` г объёмом примерно в `1 «см»^3`, почти в `10` раз больше). Вот почему, хотя электрические силы обычно считаются большими, заметить их не всегда легко. Реально мы видим лишь электрическое притяжение друг к другу очень лёгких тел (например, листочков бумаги к наэлектризованной расчёске).

Пользуясь тем свойством, что внутри равномерно заряженной сферы напряжённость электрического поля равна нулю, найти напряжённость поля внутри равномерно по объёму заряженного шара радиусом `R` и зарядом `Q`. (К таким практически равномерно по объёму заряженным шарам можно с хорошей точностью отнести, например, атомные ядра.)

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

Электрический диполь. Так называется система, состоящая из двух точечных зарядов равных по величине, но противоположных по знаку. Пусть заряды `q_1=-q` и `q_2=+q` в некоторой системе координат характеризуются радиус-векторами `vecr_1` и `vecr_2` (см. рис. 6). Дипольным моментом диполя называется векторная величина `vecp=q_1vecr_1+q_2vecr_2=q(vecr_2-vecr_1)=qvecl`, а величина `l=|vecl|=|vecr_2-vecr_1|` называется плечом диполя.

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

e/(4pi epsilon_0) (2Rl)/(R^4) =1/(4pi epsilon_0) (2el)/(R^3)=1/(4pi epsilon_0) (2p)/(R^3)

Рассмотрим более сложный пример использования принципа суперпозиции.

По тонкому кольцу радиусом `r` равномерно распределён заряд `q`. Найти напряжённость электрического поля на оси кольца в точке `A`, расположенной на расстоянии `R` от центра (рис. 7).

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

1/(4pi epsilon_0) q/(R^2)` для точечного заряда.

Электрическое поле бесконечной равномерно заряженной плоскости

Вычисление поля в данном случае требует привлечения знаний высшей математики. Без сложных вычислений можно, однако, сделать два следующих утверждения, основываясь лишь на соображениях симметрии, а также на том факте, что густота линий напряжённости пропорциональна величине `vecE` (см. Учебник):

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

1) Электрическое поле бесконечной равномерно заряженной плоскости перпендикулярно плоскости (рис. 8). Дело в том, что перпендикуляр к плоскости – единственное выделенное направление в задаче. Если бы вектор `vecE` был направлен под некоторым углом `alpha` к плоскости, мы бы ещё спросили себя: «Чем это направление лучше, чем все другие прямые, имеющие тот же угол `alpha` с плоскостью, и направленные вдоль образующих конуса с углом `alpha` при вершине?» Ясно, что ничем не лучше: если плоскость бесконечная и заряжена одинаково во всех точках, то и любые направления вдоль неё эквивалентны друг другу.

Величина вектора напряжённости `vecE` может быть вычислена по формуле

Хотя в природе не существует бесконечных равномерно заряженных плоскостей, формула (1.3.4) с успехом используется для расчётов электрических полей заряженных тел в виде больших пластин или просто плоских объектов при небольшом удалении от центральной их части.

Электростатическое поле создаётся двумя бесконечными параллельными плоскостями, заряженными с поверхностными плотностями заряда `sigma_1=-1 «нКл»//»м»^2` и `sigma_2=+1 «нКл»//»м»^2`. Определить напряжённость электрического поля между плоскостями и снаружи.

`|sigma_1|=sigma_2-=sigma`, `|E_1|=|E_2|-=E=sigma//2 epsilon_0`. Далее воспользуемся принципом суперпозиции полей. Между плоскостями напряжённости полей отдельных пластин направлены в одну и ту же сторону (рис. 9), по этому результирующая напряжённость `E_(«in»)=2E=sigma//epsilon_0=113` В/м и направлена от положительной плоскости к отрицательной. Снаружи поля разных плоскостей направлены в противоположные стороны, поэтому результирующая напряжённость поля там `E_(ex)=0`.

Что такое результирующая напряженность. Смотреть фото Что такое результирующая напряженность. Смотреть картинку Что такое результирующая напряженность. Картинка про Что такое результирующая напряженность. Фото Что такое результирующая напряженность

Пользуясь принципом суперпозиции, доказать, что напряжённость электрического поля равномерно заряженной полусферической чаши во всех точках плоскости, стягивающей края чаши (как кожа на барабане), перпендикулярна этой плоскости.

Мысленно дополним полусферу ещё одной такой же полусферой так, чтобы получилась целая сфера. Напряжённость поля внутри равномерно заряженной сферы равна нулю. С другой стороны, эта напряжённость складывается из двух напряжённостей – исходной полусферы `vecE` и мысленно добавленной `vecE^’`. Таким образом, имеем равенство `vecE+vecE^’=0`, или `vecE=-vecE^’`. Последнее возможно только в том случае, если углы наклона векторов `vecE` и `vecE^’` к плоскости одинаковы, т. е. равны `90^@` (рис. 10).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *