Что такое ручная прочность
Прочность
Про́чность (в физике и материаловедении) — свойство материала сопротивляться разрушению под действием внутренних напряжений, возникающих под воздействием внешних сил.
Свойство конструкции выполнять назначение, не разрушаясь в течение заданного времени.
Содержание
Классификация
Прочность подразделяют на статическую, под действием постоянных нагрузок, динамическую и усталостную (выносливость), имеющую место при действии циклических переменных нагрузок.
Для конструкций различают общую прочность — способность всей конструкции выдерживать нагрузки без разрушения, и местную — та же способность отдельных узлов, деталей, соединений.
Количественное рассмотрение
В настоящее время при расчёте на прочность используют как расчёт по допускаемым напряжениям, так и расчёт по допускаемому числу циклов нагружения. Основные неравенства расчёта по допускаемым напряжениям:
Прикладное применение
Обеспечение прочности машин и аппаратов осуществляется следующим образом. На стадии их проектирования производится расчётная или экспериментальная оценка возможности развития в несущих элементах проектируемых конструкций процессов разрушений различных типов: усталостного, хрупкого, квазистатического, разрушения вследствие ползучести материала, коррозии, износа в процессе эксплуатации и т. п. При этом должны быть рассмотрены все возможные в условиях эксплуатации конструкции известные на данный момент механизмы разрушения материала, из которого выполнены её несущие элементы. Для вновь создаваемого класса машин или аппаратов указанные механизмы разрушения выявляются на стадии научно-исследовательского цикла проектирования. С каждым из таких механизмов разрушения связывается определённый критерий прочности — та или иная характеристика физического состояния материала элементов машин и аппаратов, определяемая расчётным или экспериментальным путём. Для каждого из критериев прочности материала конструкции экспериментально устанавливаются его предельные значения. По предельным значениям далее определяются допускаемые значения этих критериев. Последние определяются, как правило, путём деления предельных значений критерия прочности на соответствующий коэффициент запаса прочности. Значения коэффициентов запаса прочности назначаются на основе опыта эксплуатации с учётом степени ответственности проектируемой конструкции, расчётного срока её эксплуатации и возможных последствий её разрушения.
Значения коэффициентов запаса прочности для различных механизмов разрушения различны. При расчёте по допускаемым напряжениям они изменяются, как правило, в диапазоне значений от 1,05 (при обеспечении прочности элементов летательных аппаратов, имеющих краткий жизненный цикл и не предназначенных для транспортировки людей) до 6 (при обеспечении прочности тросов, используемых в конструкциях пассажирских лифтов). При расчёте по допускаемому числу циклов нагружения могут использоваться существенно большие значения этих коэффициентов. Расчёт наиболее ответственных и энергонасыщенных конструкций машин и аппаратов регламентируется отраслевыми нормами и стандартами. По мере накопления опыта эксплуатации, развития методов исследования физического состояния конструкций и совершенствования методов обеспечения прочности эти нормы и стандарты периодически пересматриваются.
Разрушения
Хрупкое и вязкое разрушение имеют разные виды разрушенной поверхности. Характер дефектов дает понятие, какого рода разрушение имеет место. При хрупком разрушении поверхность надломлена. При вязком разрушении поверхность натянута (вяжет разрушение).
Вязкость разрушения — это относительное повышение растягивающих напряжений в устье трещины при переходе её от стабильной к нестабильной стадии роста. [1]
Вязкость разрушения тесно связана с показателями прочности материала. Увеличение прочности сопровождается снижением пластичности и вязкости разрушения. Это объясняется тем, что у высокопрочных материалов мала энергия, поглощаемая при разрушении уровень которой определяется величиной пластической деформации у вершины трещины. Для высокопрочных материалов эффект увеличения прочности существенно перекрывается снижением пластичности, в результате чего вязкость разрушения уменьшается. Материалы средней и низкой прочности при комнатной температуре обычно имеют более высокие значения, чем высокопрочные. С понижением температуры прочность растет и при определённых условиях поведение материала средней и низкой прочности становится таким же, как у высокопрочного материала при комнатной температуре. При низких температурах испытание вязкости разрушения можно проводить на образцах меньших размеров.
Определение характеристик прочности
Прочность – свойство материала сопротивляться пластической деформации и разрушению под действием внешних сил.
В зависимости от способа приложения нагрузки различают прочность при растяжении, изгибе, сжатии, кручении, прочность на срез, при действии циклической или знакопеременной нагрузки – усталостную прочность и др.
В зависимости от скорости приложения нагрузки различают
статическую прочность, характеристики которой определяются при медленном равномерном возрастании нагрузки;
динамическую прочность, характеристики которой определяются при ударном приложении нагрузки.
В зависимости от температуры испытания различают
прочность при температуре ( ) °C, низкотемпературную прочность и прочность при повышенной и высокой температуре.
1.1. Определение характеристик статической прочности
Основными характеристиками статической прочности материалов являются предел текучести σт, который характеризует способность материала
сопротивляться пластической деформации, и предел прочности при растяжении (временное сопротивление) σв. Значения названных характеристик определяют по ГОСТ 1497-84 (Металлы. Методы испытаний на растяжение). Для испытаний применяют специальные цилиндрические или плоские стандартные разрывные образцы (рис. 1), которые изготавливаются на металлорежущих станках из заготовок. Правила вырезки этих заготовок из изделий указаны в стандартах. Образец закрепляют в испытательной машине, схема которой приведена на рис. 2, и нагружают.
Рис. 1. Стандартные образцы для испытания на статическое осевое
растяжение: а – круглые образцы; б – плоские образцы с головками
На рис. 2 обозначено: 1 – собственно машина; 2 – винт грузовой; 3 – нижний
захват (активный); 4 – образец; 5 – верхний захват (пассивный); 6 – силоизмерительный датчик; 7 – индикатор нагрузок;
8 – привод нагружающего механизма.
Результаты испытаний фиксируются на диаграмме растяжения (график зависимости напряжения σ от деформации ε, рис. 3). При этом силу Р, растягивающую образец, относят к первоначальной площади поперечного сечения F0 (это отношение называется напряжением σ), а удлинение образца Dl – к первоначальной длине расчетной части образца l0:
|
|
|
|
Предел текучести физический (нижний предел текучести) σт – наименьшее напряжение, соответствующее растягивающему усилию Рт, при котором образец деформируется без заметного увеличения этого усилия, Н/м 2 (МПа, кгс/мм 2 ):
где Рт – наименьшая нагрузка, соответствующая стадии текучести материала на диаграмме растяжения образца, Н (кгс);
F0– начальная площадь поперечного сечения образца, м 2 (мм 2 ).
Предел прочности при растяжении (временное сопротивление) σв – напряжение, соответствующее наибольшему усилию Рmax, предшествующему разрыву образца, Н/м 2 (МПа, кгс/мм 2 ):
1.2. Определение характеристик прочности при циклическом нагружении
(испытания на усталость)
Процесс постепенного накопления напряжения в металле при действии циклических нагрузок, приводящий к образованию трещин и разрушению, называется усталостью. Разрушение таких деталей, как валы, рессоры, рельсы, шестерни и др., в эксплуатации происходит в результате циклического нагружения при напряжении, значительно меньшем, чем временное сопротивление металла. Свойство металла выдерживать большое число циклов переменных напряжений, т. е. противостоять усталости, называется выносливостью, или циклической (усталостной) прочностью.
Усталостная прочность – способность металла сопротивляться упругим и пластическим деформациям при переменных нагрузках, она характеризуется наибольшим напряжением σ-1, которое выдерживает металл, не разрушаясь при бесконечно большом числе циклов нагружения, и называется пределом усталости, или пределом выносливости. Для оценки способности материала сопротивляться действию циклических напряжений и исследования различных стадий усталостного разрушения в технике широко используют кривые усталости (рис. 4), которые показывают связь между уровнем переменного напряжения σ и числом циклов до разрушения N (кривые Велера).
Для углеродистой конструкционной стали предел усталости условно принимается равным (0,4 – 0,5) σв.
Значение предела выносливости зависит от многих факторов: степени загрязненности металла неметаллическими включениями, макро- и микроструктуры металла, состояния поверхности, формы и размеров детали и др.
Важной характеристикой конструктивной прочности (надежности) металла является живучесть при циклическом нагружении.Живучесть − это способность металла работать в поврежденном состоянии после образования трещины до полного разрушения, она измеряется числом циклов нагружения или скоростью развития трещины усталости при данном напряжении. Живучесть является самостоятельным свойством, которое не зависит от других свойств металла. Живучесть имеет важное значение для оценки работоспособности деталей, работа которых контролируется различными методами дефектоскопии. Чем меньше скорость развития трещины усталости, тем легче ее обнаружить.
1.3. Определение характеристик динамической прочности
Основной характеристикой динамической прочности материалов является ударная вязкостьKCUилиKCV, Дж/м 2 (кгс∙м/см 2 ).
В процессе эксплуатации многие детали машин испытывают динами-ческие (ударные) нагрузки. Для определения стойкости металла к удару и одновременной оценки его склонности к хрупкому разрушению проводят испытания на ударный изгиб по ГОСТ 9454-78 (Металлы. Метод испытания на ударный изгиб при пониженных, комнатной и повышенных температурах).
Метод основан на разрушении стандартного образца для испытания на динамическую прочность (рис. 5) с концентратором посередине одним ударом маятникового копра. Концы образца располагают на опорах (схема испытания представлена на рис. 6). При испытании определяют полную работу, затраченную на разрушение образца ударным изгибом (работу удара), по значению которой рассчитывается ударная вязкость.
Ударную вязкость (KC) в Дж/см 2 (кгс·м/см 2 ) вычисляют по формуле:
где K – работа удара, Дж (кгс·м);
где Н1 – начальная высота рабочей
части образца, см;
B − начальная ширина образца, см.
Для определения ударной вязкости применяют образцы (обычно размером 10 ´ 10 ´ 55 мм) с U— или V-образным надрезом. Надрез посередине образца называется концентратором. Испытания проводят на маятниковом копре 1 (рис. 6, а). Маятник 2, падая с определенной высоты, разрушает образец 3, свободно установленный на двух опорах копра (рис. 6, б). Работа удара K (Дж или кгс×м), затраченная на излом (разрушение) образца, фиксируется стрелкой на шкале копра и определяется из разности энергии маятника в положении его до и после удара. Ее можно определить по формуле:
где G – сила тяжести, Н, G = mg;
m – масса маятника, кг;
h1 – исходная высота подъема маятника, м;
h2 – высота подъема маятника после разрушения образца, м.
Если образец имеет U-образный надрез, то в обозначение ударной вяз-кости добавляется буква U (КСU), а если V-образный, то добавляется буква
V (КСV).
Рис. 6. Схема испытаний на ударную вязкость:
а – маятниковый копер; б – установка образца
Для обозначения работы удара и ударной вязкости при пониженной и повышенной температуре вводится цифровой индекс, указывающий температуру испытания. Цифровой индекс ставят вверху после буквенных составляющих, например: KCV −40 – работа удара, определенная на образце с концентратором вида V при температуре минус 40 °С; KCU +100 – ударная вязкость, определенная на образце с концентратором вида U при температуре плюс 100 °С.
1.4. Определение характеристик жаропрочности – прочности металла
при высокой температуре
Жаропрочность − свойство металлов при высокой температуре соп-ротивляться деформации и разрушению при действии приложенных напряжений. Жаропрочность зависит от химического состава, структуры и технологии изготовления сплава.
Основными характеристиками жаропрочности являются предел ползучести σпл и предел длительной прочности σдл. О жаропрочности судят по результатам длительных испытаний на статическое осевое растяжение стандартных образцов (см. рис. 1) при высокой температуре (ГОСТ 9651-84), на ползучесть (ГОСТ 3248-81) и длительную прочность (ГОСТ 10145-81). Образец при испытаниях помещается в термостат, в котором поддерживается заданная температура.
Пределом ползучести называется напряжение, которое вызывает за установленное время испытания при данной температуре заданное удлинение образца (суммарное или остаточное) или заданную скорость ползучести на прямолинейном участке кривой ползучести.
Предел ползучести является базовой расчетной характеристикой конст-рукций, работающих с ограниченной суммарной деформацией ползучести. Например, для подвижных узлов турбин (валов, лопаток) суммарная деформация ползучести за весь период работы не должна превышать определенного значения, обусловленного конструктивными соображениями работоспособности.
Ползучесть − свойство металлов медленно и непрерывно пластически деформироваться при статическом нагружении, особенно при высокой температуре. При повышенной температуре металлы приобретают способность получать остаточные деформации («ползти») даже в тех случаях, когда действующие напряжения лежат значительно ниже предела текучести (упругости) данного металла при заданной температуре.
Испытания на ползучесть дают возможность получения кривой ползу-чести, представляющей собой графическое изображение зависимости деформации от времени при постоянных температуре и напряжении, по которой определяют деформацию за установленное время или скорость ползучести.
Пределом длительной прочности называется напряжение, которое вызывает разрушение материала при заданной температуре за определенное время.
Предел длительной прочности обозначается как напряжение МПа, с числовыми индексами − верхний указывает температуру в градусах, а нижний − длительность испытания в часах. Например,
означает, что температура испытания − 650 °С, длительность испытания − 100 000 ч.
Механические свойства (прочность, упругость, пластичность, Ккк, твердость, истираемость, хрупкость, ударная прочность) – определение, формулы, единицы измерения, взаимосвязь с другими свойствами, прим
Механические свойства металлов и сплавов
К основным механическим свойствам металлов относятся прочность, вязкость, пластичность, твердость, выносливость, ползучесть, износостойкость. Они являются главными характеристиками металла или сплава.
Рассмотрим некоторые термины, применяемые при характеристике механических свойств. Изменения размеров и формы, происходящие в твердом теле под действием внешних сил, называются деформациями, а процесс, их вызывающий,— деформированием. Деформации, исчезающие при разгрузке, называются упругими, а не исчезающие после снятия нагрузки — остаточными или пластическими.
называется величина внутренних сил, возникающих в твердом теле под влиянием внешних сил.
Под прочностью материала понимают его способность сопротивляться деформации или разрушению под действием статических или динамических нагрузок. О прочности судят по характеристикам механических свойств, которые получают при механических испытаниях. К статическим испытаниям на прочность относятся растяжение, сжатие, изгиб, кручение, вдавливание. К динамическим относятся испытания на ударную вязкость, выносливость и износостойкость. Эластичностью называется способность материалов упруго деформироваться, а пластичностью — способность пластически деформироваться без разрушения.
— это свойство материала, которое определяет его способность к поглощению механической энергии при постепенном увеличении пластической деформации вплоть до разрушения материала. Материалы должны быть одновременно прочными и пластичными.
— это способность материала сопротивляться проникновению в него других тел.
— это способность материала выдерживать, не разрушаясь, большое число повторно-переменных нагрузок.
— это способность материала сопротивляться поверхностному разрушению под действием внешнего трения.
— это способность материала медленно и непрерывно пластически деформироваться (ползти) при постоянном напряжении (особенно при высоких температурах).
Поведение некоторых металлов (например, отожженной стали) при испытании на растяжение показано на рис. 3
. При увеличении нагрузки в металле сначала развиваются процессы упругой деформации, удлинение образца при этом незначительно. Затем наблюдается пластическое течение металла без повышения напряжения, этот период называется текучестью. Напряжение, при котором продолжается деформация образца без заметного увеличения нагрузки, называют пределом текучести. При дальнейшем повышении нагрузки происходит развитие в металле процессов наклепа (упрочнения под нагрузкой). Наибольшее напряжение, предшествующее разрушению образца, называют пределом прочности при растяжении.
Рис. 3. Диаграмма деформации при испытании металлов на растяжение.
— это состояние тела, находящегося под действием уравновешенных сил, при установившемся упругом равновесии всех его частиц. Остаточные напряжения — это напряжения, остающиеся в теле, после прекращения действия внешних сил, или возникающие при быстром нагревании и охлаждении, если линейное расширение или усадка слоев металла и частей тела происходит неравномерно.
Внутренние напряжения образуются при быстром охлаждении или нагревании в температурных зонах перехода от пластического к упругому состоянию металла. Эти температуры для стали соответствую 400—600°. Если образующиеся внутренние напряжения превышают предел прочности, то в деталях образуются трещины, если они превышают предел упругости, то происходит коробление детали.
Предел прочности при растяжении в кг/мм2
определяется на разрывной машине как отношение нагрузки Р в кГ, необходимой для разрушения стандартного образца (
рис. 4, а
), к площади поперечного сечения образца в мм2.
Рис. 4. Методы испытания прочности материалов: а — на растяжение; б — на изгиб; в — на ударную вязкость; г — на твёрдость
Предел прочности при изгибе в кГ/мм2
определяется разрушением образца, который устанавливаете» на двух опорах (
рис. 4, б
), нагруженного по середине сосредоточенной нагрузкой Р.
Для установления пластичности материала определяют относительное удлинение δ при растяжении или прогиб ƒ при изгибе.
Относительное удлиненней δ в %
определяется на образцах, испытуемых на растяжение. На образец наносят деления (рис. 4, а) и измеряют между ними расстояние до испытания (l0) и после разрушения (l) и определяют удлинение
Прогиб при изгибе в мм определяется при помощи прогибомера машины, указывающего прогиб ƒ, образующийся на образце в момент его разрушения (рис. 4, б).
Ударная вязкость в кГм/см2 определяется на образцах (рис. 4, в
), подвергаемых на копре разрушению ударом отведенного в сторону маятника. Для этого работу деформации в кГм делят на площадь поперечного сечения образца в см 2.
Твердость по Бринелю (НВ) определяют на зачищенной поверхности образца, в которую вдавливают стальной шарик (рис. 4, г
) диаметром 5 или 10 мм под соответствующей нагрузкой в 750 или 3000 кГ и замеряют диаметр d образовавшейся лунки. Отношение нагрузки в кГ к площади лунки πd2 / 4 в мм2 дает число твердости.
Показатели для механических свойств для основных сплавов приведены в табл. 1
Легирующие добавки в составе сплавов
Это вещества, намеренно добавляемые в расплав для улучшения свойств сплава и доведения его параметров до требуемых. Одни из них добавляются в больших количествах (более процента), другие — в очень малых. Наиболее часто применяю следующие легирующие добавки:
Читать также: Как проверить биполярный транзистор тестером
Металлурги используют и более сложные комбинации легирующих добавок, добиваясь получения уникальных сочетаний физико-механических свойств стали. Стоимость таких марок в несколько раз (а то и десятков раз) превышает стоимость обычных низкоуглеродистых сталей. Применяются они для особо ответственных конструкций и узлов.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Современное производство нуждается в большом количестве прочных стальных изделий. При строительстве мостов, домов, сложных конструкций используют различные стали. Одним из главнейших вопросов является расчет прочности металла и значения величины напряжения стальной арматуры. Чтобы конструкции служили долго и были безопасны необходимо точно знать предел текучести стального материала, который подвергается основной нагрузке.
Проверка сплава
Перед запуском в производство для изучения свойств металлического сплава, проводят испытания. На образцы металла воздействуют различными нагрузками до полной потери всех свойств.
Для этих целей применяют специальные станки и создают условия, максимально приближенные к режиму эксплуатации будущей конструкции.
Проведение испытаний
Для проведения испытаний на цилиндрический образец сечением в двадцать миллиметров и расчетной длиной в десять миллиметров применяют нагрузку на растяжение. Сам образец имеет длину более десяти миллиметров, чтобы была возможность надежно его захватить, а на нем отмечена длина в десять миллиметров и именно она называется расчетной. Силу растяжения увеличивают и замеряют растущее удлинение образца. Для наглядности данные наносят на график. Он носит название диаграммы условного растяжения.
Читать также: Олимпокс промышленная безопасность тесты 2017
При небольшой нагрузке образец удлиняется пропорционально. Когда сила растяжения достаточно увеличится, то будет достигнут предел пропорциональности. После прохождения этого предела начинается непропорциональное удлинение материала при равномерном изменении силы растяжения. Затем достигается предел, после прохождения которого образец не может возвратиться к первоначальной длине. При прохождении этого значения, изменение испытываемой детали происходит без увеличения силы растяжения. Например, для стального прута Ст. 3 эта величина равна 2450 кг на один квадратный сантиметр.
Невыраженная точка текучести
Если при постоянной силе воздействия, материал способен длительное время самостоятельно деформироваться, то его называют идеально пластическим.
При испытаниях часто бывает, что площадка текучести нечетка определена, тогда вводят определение условного предела текучести. Это означает, что сила, действующая на металл, вызвала деформацию или остаточное изменение около 0.2%. Значение остаточного изменения зависит от пластичности металла.
Чем металл пластичнее, тем выше значение остаточной деформации. Типичными сплавами, в которых нечетко выражена такая деформация, являются медь, латунь, алюминий, стали с малым содержанием углерода. Образцы этих сплавов называют уплотняющимися.
Когда металл начинает «течь» то, как демонстрируют опыты и исследования, в нём происходят сильные изменения в кристаллической решетке. На её поверхности появляются линии сдвига и слои кристаллов значительно сдвигаются.
После того как металл самопроизвольно растянулся, он переходит в следующее состояние и опять приобретает способность сопротивления. Затем сплав достигает своего предела прочности и на детали четко проявляется наиболее слабый участок, на котором происходит резкое сужение образца.
Площадь поперечного сечения становится меньше и в этом месте происходит разрыв и разрушение. Величина силы растяжения в этот момент падает вместе со значением напряжения и деталь рвётся.
Высокопрочные сплавы выдерживают нагрузку до 17500 килограмм на сантиметр квадратный. Предел прочности стали СТ.3 находится в пределах 4−5 тыс. килограммов на сантиметр квадратный.
Характеристика пластичности
Пластичность материала является важным параметром, который должен учитываться при проектировании конструкций. Пластичность определяется двумя показателями:
Остаточное удлинение вычисляют путем замера общей длины детали после того, как она разорвалась. Она состоит из суммы длин каждой половины образца. Затем в процентах определяют отношение к первоначальной условной длине. Чем прочнее металлический сплав, тем меньше значение относительного удлинения.
Остаточное сужение — это отношение в процентах самого узкого места разрыва к изначальной площади сечения исследуемого прута.
Показатель хрупкости
Самым хрупким металлическим сплавом считается инструментальная сталь и чугун. Хрупкость — это свойство обратное пластичности, и оно несколько условно, поскольку сильно зависит от внешних условий.
Такими условиями могут являться:
При изменении внешних условий, один и тот же материал ведет себя по-разному. Если чугунную болванку зажать со всех сторон, то она не разбивается даже при значительных нагрузках. А, например, когда на стальном пруте есть проточки, то деталь становиться очень хрупкой.
Поэтому на практике применяют не понятие предела хрупкости, а определяют состояние образца как хрупкое или довольно пластичное.
Прочность материала
Это механическое свойство заготовки и характеризуется способностью выдерживать нагрузки полностью не разрушаясь. Для испытываемого образца создают условия наиболее отражающие будущие условия эксплуатации и применяют разнообразные воздействия, постепенно увеличивая нагрузки. Повышение сил воздействия вызывают в образце пластические деформации. У пластичных материалов деформация происходит на одном, ярко выраженном участке, который называется шейка. Хрупкие материалы могут разрушаться на нескольких участках одновременно.
Сталь проходит испытание для точного выяснения различных свойств, чтобы получить ответ о возможности её использования в тех или иных условиях при строительстве и создании сложных конструкций.
Значения текучести различных марок сталей занесены в специальные Стандарты и Технические Условия. Предусмотрено четыре основных класса. Значение текучести изделий первого класса может доходить до 500 кг/см кв., второй класс отвечает требованиям к нагрузке до 3 тыс. кг/см кв., третий — до 4 тыс. кг/см кв. и четвертый класс выдерживает до 6 тыс. кг/см кв.
– это то же, что и временное сопротивление материала. Но несмотря на то, что правильнее использовать термин
временное сопротивление
, понятие предел прочности лучше прижилось в технической разговорной речи. В то же время в нормативной документации, стандартах применяют термин «временное сопротивление».
– это сопротивление материала деформации и разрушению, одно из основных
механических свойств
. Другими словами, прочность – это свойство материалов, не разрушаясь, воспринимать те или иные воздействия (нагрузки, температурные, магнитные и другие поля).
К характеристикам прочности при растяжении
относятся модуль нормальной упругости, предел пропорциональности, предел упругости, предел текучести и временное сопротивление (предел прочности).
– это максимальное механическое напряжение, выше которого происходит разрушение материала, подвергаемого деформации; предел прочности при растяжении обозначается σВ и измеряется в килограммах силы на квадратный сантиметр (кгс/см 2 ), а также указывается в мегапаскалях (МПа).
Предел кратковременной прочности (МПа)
определяется с помощью испытаний на растяжение, деформацию проводят до разрушения. С помощью испытаний на растяжение определяют временное сопротивление, удлинение, предел упругости и др.. Испытания на длительную прочность предназначены главным образом для оценки возможности использования материалов при высоких температурах (длительная прочность, ползучесть); в результате определяется σB/Zeit – предел ограниченной длительной прочности на заданный срок службы. [1]
основал Галилей: обобщая свои опыты, он открыл (1638 г.), что при растяжении или сжатии нагрузка разрушения
P
для данного материала зависит только от площади поперечного сечения
F
. Так появилась новая физическая величина – напряжение
σ=P
/
F
– и физическая постоянная материала: напряжение разрушения [4].
Читать также: Какие виды рнк существуют
Физика разрушения как фундаментальная наука о прочности металлов
возникла в конце 40-х годов XX века [5]; это было продиктовано острой необходимостью разработки научно обоснованных мер для предотвращения участившихся катастрофических разрушений машин и сооружений. Раньше в области прочности и разрушения изделий учитывалась только классическая механика, основанная на постулатах однородного упруго-пластического твёрдого тела, без учёта внутренней структуры металла. Физика разрушения учитывает также атомно-кристаллическое строение решётки металлов, наличие дефектов металлической решётки и законы взаимодействия этих дефектов с элементами внутренней структуры металла: границами зёрен, второй фазой, неметаллическими включениями и др.
Большое влияние на прочность материала
оказывает наличие ПАВ в окружающей среде, способных сильно адсорбироваться (влага, примеси); происходит уменьшение предела прочности.
К повышению прочности металла приводят целенаправленние изменения металлической структуры, в том числе – модифицирование сплава.
Учебный фильм о прочности металлов (СССР, год выпуска: