Что такое середина интервала значений в теории вероятности
Определяем середины интервалов
Рассмотрим на примере с ростом детей, как построить интервальный ряд с равными интервалами.
Имеются первоначальные данные.
90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 92, 93, 94, 95, 96, 98, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 100, 101, 102, 104, 110, 112, 114, 116, 117, 120, 122, 123, 124, 129, 110, 111, 113, 115, 116, 117, 121, 125, 126, 127, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 111, 113, 116, 127, 123, 122, 130, 131, 132, 133, 134, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 131, 133, 135, 136, 138, 139, 140, 141, 142, 143, 145, 146, 147, 148
Расчет средней величины в интервальном вариационном ряду
Расчет средней величины в интервальных вариационных рядах немного отличается от расчета в рядах дискретных. Как рассчитать среднюю арифметическую и среднюю гармоническую в дискретных рядах можно посмотреть вот ЗДЕСЬ. Такое различие вполне объяснимо – это связано с особенностью интервальных рядов, в которых изучаемый признак приведен в интервале от и до.
Итак, посмотрим особенности расчета на примере.
Пример 1. Имеются данные о дневном заработке рабочих предприятия.
Дневной заработок рабочего, руб. | Число рабочих, чел. |
500-1000 | 15 |
1000-1500 | 30 |
1500-2000 | 80 |
2000-2500 | 60 |
2500-3000 | 25 |
Итого | 210 |
Нам необходимо рассчитать среднедневную заработную плату рабочего.
Начало решения задачи будет аналогичным правилам расчета средней величины, которые можно посмотреть в этой статье.
Начинаем мы с определения варианты и частоты, поскольку ищем мы средний заработок за день, то варианта это первая колонка, а частота вторая. Данные у нас заданы явным количеством, поэтому расчет проведем по формуле средней арифметической взвешенной (так как данные приведены в табличном виде). Но на этом сходства заканчиваются и появляются новые действия.
Дневной заработок рабочего, руб. х | Число рабочих, чел. f |
500-1000 | 15 |
1000-1500 | 30 |
1500-2000 | 80 |
2000-2500 | 60 |
2500-3000 | 25 |
Итого | 210 |
Дело в том, что интервальный рад представляет осредняемую величину в виде интервала. 500-1000, 2000-2500 и так далее. Чтобы решить эту проблему необходимо провести промежуточные действия, и только потом подсчитать среднюю величину по основной формуле.
Что же требуется в данном случае сделать. Все достаточно просто, чтобы провести расчет нам нужно, чтобы варианта была представлена одним числом, а не интервалом. Для получения такого значения находят так называемое ЦЕНТРАЛЬНОЕ ЗНАЧЕНИЕ ИНТЕРВАЛА (или середину интервала). Определяется оно путем сложение верхней и нижней границ интервала и делением на два.
Проведем необходимые расчеты и подставим данные в таблицу.
И так далее по всем интервалам рассчитываем центральное значение. В итоге получаем следующие результаты.
Дневной заработок рабочего, руб. х | Число рабочих, чел. f | х’ |
500-1000 | 15 | 750 |
1000-1500 | 30 | 1250 |
1500-2000 | 80 | 1750 |
2000-2500 | 60 | 2250 |
2500-3000 | 25 | 2750 |
Итого | 210 | — |
После того как мы рассчитали центральные значения далее проведем расчеты в таблицы и подставим итоговые данные в формулу, аналогично тому как мы уже рассматривали ранее.
Дневной заработок рабочего, руб. х | Число рабочих, чел. f | х’ | x’f |
500-1000 | 15 | 750 | 11250 |
1000-1500 | 30 | 1250 | 37500 |
1500-2000 | 80 | 1750 | 140000 |
2000-2500 | 60 | 2250 | 135000 |
2500-3000 | 25 | 2750 | 68750 |
Итого | ∑f = 210 | — | ∑ x’f = 392500 |
В итоге получаем, что среднедневная заработная плата одного рабочего составляет 1869 рублей.
Это пример решения, если интервальный ряд представлен со всеми закрытыми интервалами. Но достаточно часто бывает, когда два интервала открытые, первый и последний. В таких ситуациях прямой расчет центрального значения невозможен, но есть два варианта как это сделать.
Пример 2. Имеются данные о продолжительности производственного стажа персонала предприятия. Рассчитать среднюю продолжительность стада одного сотрудника.
Длительность производственного стажа, лет | Число сотрудников, человек |
до 3 | 19 |
3-6 | 21 |
6-9 | 15 |
9-12 | 10 |
12 и более | 5 |
Итого | 70 |
В данном случае принцип решения останется точно таким же. Единственно, что поменялось в этой задаче, так это первый и последний интервалы. До 3 лет и 12 лет и более это и есть те самые открытые интервалы. Именно тут возникнет вопрос, а как же найти центральное значение интервала для таких интервалов.
Поступить в этой ситуации можно двумя способами:
Средняя продолжительность стажа 5,83 года.
Средняя продолжительность стажа 6,13 года.
Домашнее задание
Теперь Вы умеете рассчитывать среднюю в интервальном вариационном ряду!
Решение задач по статистике и выводы к ним
Задача по статистике №1. Найти параметры интервального ряда распределения по данным таблицы, а именно: моду, медиану, среднюю арифметическую величину, среднюю взвешенную величину, коэффициент вариации, среднее квадратическое отклонение.
Группы компаний по основным производственным фондам, млн. руб. (х)
Середина интервала (Xi) = (начало интервала+конец интервала)/2
Мы сразу добавили столбец «середина интервала». Для первой группы компаний рассчитали следующим образом: (10+25)/2=17,5 млн. руб. Для 2-5 групп расчеты произведены аналогично.
Теперь рассчитаем среднюю арифметическую величину.
средняя арифметическая =
= (17,5+29+37,5+45,5+55,5)/5=37 млн. руб.
Далее рассчитаем среднюю взвешенную величину.
средняя взвешенная =
= (17,5*2+29*8+37,5*14+45,5*9+55,5*3)/36=38 млн. руб.
Значение средневзвешенной величины можно считать более корректным, чем значение средней арифметической величины, поэтому далее в расчетах будем использовать среднюю взвешенную.
Теперь добавим в таблицу столбцы, данные которых нам понадобятся для расчета дисперсии.
Середина интервала (Xi) = (начало интервала+конец интервала)/2
Конспект курса «Основы статистики»
1. Введение
Способы формирования репрезентативной выборки:
Простая случайная выборка (simple random sample)
Стратифицированная выборка (stratified sample)
Групповая выборка (cluster sample)
Типы переменных:
непрерывные (рост в мм)
дискретные (количество публикаций у учёного)
Ранговые (успеваемость студентов)
Гистограмма частот:
Позволяет сделать первое впечатление о форме распределения некоторого количественного признака.
Описательные статистики:
Меры центральной тенденции (узкий диапазон, высокие значения признака):
( используется для среднего значения из выборки, а для генеральной совокупности латинская буква
)
Свойства среднего:
Если к каждому значению выборки прибавить определённое число, то и среднее значение увеличится на это число.
Если к каждому значению выборки прибавить определённое число, то и среднее значение увеличится на это число.
Если для каждого значения выборки, рассчитать такой показатель как его отклонение от среднего арифметического, то сумма этих отклонений будет равняться нулю.
Меры изменчивости (широкий диапазон, вариативность признака):
При добавлении сильно отличающегося значения данные меняются сильно и могут быть некорректные.
Дисперсия генеральной совокупности:
(среднеквадратическое отклонение генеральной совокупности)
(среднеквадратическое отклонение выборки)
Свойства дисперсии:
Квартили распределения и график box-plot
Нормальное распределение
Отклонения наблюдений от среднего подчиняются определённому вероятностному закону.
Стандартизация
Правило «двух» и «трёх» сигм
Центральная предельная теорема
Есть признак, распределенный КАК УГОДНО* с некоторым средним и некоторым стандартным отклонением. Тогда, если выбирать из этой совокупности выборки объема n, то их средние тоже будут распределены нормально со средним равным среднему признака в ГС и стандартным отклонением .
30″ alt=»SE = \frac
Доверительные интервалы для среднего
Доверительный интервал является показателем точности измерений. Это также показатель того, насколько стабильна полученная величина, то есть насколько близкую величину (к первоначальной величине) вы получите при повторении измерений (эксперимента).
Идея статистического вывода
2. Сравнение средних
T-распределение
Если число наблюдений невелико и \sigma неизвестно (почти всегда), используется распределение Стьюдента (t-distribution).
Унимодально и симметрично, но: наблюдения с большей вероятностью попадают за пределы от
«Форма» распределения определяется числом степеней свободы ().
С увеличением числа распределение стремится к нормальному.
t-распределение используется не потому что у нас маленькие выборки, а потому что мы не знаем стандартное отклонение в генеральной совокупности.
Сравнение двух средних; t-критерий Стьюдента
Критерий, который позволяет сравнивать средние значения двух выборок между собой, называется t-критерий Стьюдента.
Условия для корректности использования t-критерия Стьюдента:
Две независимые группы
Формула стандартной ошибки среднего:
Формула числа степеней свободы:
Формула t-критерия Стьюдента:
Переход к p-критерию:
Проверка распределения на нормальность, QQ-Plot
Однофакторный дисперсионный анализ
Часто в исследованиях необходимо сравнить несколько групп между собой. В таком случае применятся однофакторный дисперсионный анализ.
Группы:
Нулевая гипотеза:
Альтернативная гипотеза:
Среднее значение всех наблюдений:
Общая сумма квадратов (Total sum of sqares):
Показатель, который характеризует насколько высока изменчивость данных, без учёта разделения их на группы.
Число степеней свободы:
— Межгрупповая сумма квадратов (Sum of sqares between groups)
— Внутригрупповая сумма квадратов (Sum of sqares within groups)
F-значение (основной статистический показатель дисперсионного анализа):
При делении значения межгрупповой суммы квадратов на число степеней свободы, полученный показатель усредняется.
Поэтому формула F-значения часто записывается:
Множественные сравнения в ANOVA
Проблема множественных сравнений:
Поправка Бонферрони
Самый простой (и консервативный) метод: P-значения умножаются на число выполненных сравнений.
Критерий Тьюки
Критерий Тьюки используется для проверки нулевой гипотезы против альтернативной гипотезы
, где индексы
и
обозначают любые две сравниваемые группы.
Указанные сравнения выполняются при помощи критерия Тьюки, который представляет собой модифицированный критерий Стьюдента:
где — рассчитываемая в ходе дисперсионного анализа внутригрупповая дисперсия.
Многофакторный ANOVA
При применении двухфакторного дисперсионного анализа исследователь проверяет влияние двух независимых переменных (факторов) на зависимую переменную. Может быть изучен также эффект взаимодействия двух переменных.
Исследуемые группы называют эффектами обработки. Схема двухфакторного дисперсионного анализа имеет несколько нулевых гипотез: одна для каждой независимой переменной и одна для взаимодействия.
Условия применения двухмерного дисперсионного анализа:
Генеральные совокупности, из которых извлечены выборки, должны быть нормально распределены.
Выборки должны быть независимыми.
Дисперсии генеральных совокупностей, из которых извлекались выборки, должны быть равными.
Группы должны иметь одинаковый объем выборки.
АБ тесты и статистика
3. Корреляция и регрессия
Понятие корреляции
Коэффициент корреляции – это статистическая мера, которая вычисляет силу связи между относительными движениями двух переменных.
Принимает значения [-1, 1]
— показатель силы и направления взаимосвязи двух количественных переменных.
Знак коэффициента корреляции показывает направление взаимосвязи.
Коэффициент детерминации
— показывает, в какой степени дисперсия одной переменной обусловлена влиянием другой переменной.
Равен квадрату коэффициента корреляции.
Принимает значения [0, 1]
Условия применения коэффициента корреляции
Для применения коэффициента корреляции Пирсона, необходимо соблюдать следующие условия:
Сравниваемые переменные должны быть получены в интервальной шкале или шкале отношений.
Распределения переменных и
должны быть близки к нормальному.
Число варьирующих признаков в сравниваемых переменных и
должно быть одинаковым.
Коэффициент корреляции Спирмена
Регрессия с одной независимой переменной
Уравнение прямой:
— (intersept) отвечает за то, где прямая пересекает ось y.
— (slope) отвечает за направление и угол наклона, образованный с осью x.
Метод наименьших квадратов
Формула нахождения остатка:
— остаток
— реальное значение
— значение, которое предсказывает регрессионная прямая
Сумма квадратов всех остатков:
Параметры линейной регрессии:
Гипотеза о значимости взаимосвязи и коэффициент детерминации
Коэффициенты линейной регрессии
Коэффициенты регрессии (β) — это коэффициенты, которые рассчитываются в результате выполнения регрессионного анализа. Вычисляются величины для каждой независимой переменной, которые представляют силу и тип взаимосвязи независимой переменной по отношению к зависимой.
Коэффициент детерминации
— доля дисперсии зависимой переменной (Y), объясняем регрессионной моделью.
— сумма квадратов остатков
— сумма квадратов общая
Условия применения линейной регрессии с одним предиктором
Линейная взаимосвязь и
Нормальное распределение остатков
Регрессионный анализ с несколькими независимыми переменными
Множественная регрессия (Multiple Regression)
Множественная регрессия позволяет исследовать влияние сразу нескольких независимых переменных на одну зависимую.
Требования к данным
линейная зависимость переменных
нормальное распределение остатков
проверка на мультиколлинеарность
нормальное распределение переменных (желательно)