Что такое симбиотические фиксаторы азота
Значение процесса симбиотической азотфиксации в земледелии
Повышение урожайности сельскохозяйственных культур во многих случаях зависит от обеспечения их элементами минерального питания. Большинство почв характеризуется нехваткой доступных для растений минеральных азотных соединений. Поэтому вопрос повышения плодородия почв в первую очередь связан с обеспечением их азотом.
Основными источниками азотного питания растений являются: минеральный азот соединений, образованных в почве в результате микробиологических процессов; азот вносимых минеральных удобрений; азот органических удобрений; азотные соединения, образующиеся при фиксации молекулярного азота микроорганизмов; азотные соединения, поступающие в грунт с атмосферными осадками, поливной водой и семенами. Эти источники позволяют составить баланс азота в почвах Украины и определить пути эффективного повышения производительности сельскохозяйственного производства.
Удовлетворение потребностей растений в азоте – задание более трудное, чем обеспечение каким-нибудь другим минеральным элементом. На протяжении всего периода жизни они проявляют относительно высокую потребность в азоте. Высшие растения не способны использовать в роли источника азотного питания молекулярный азот (исключение составляют бобовые и некоторые другие культуры), так как они не могут преодолеть силы сцепления атомов у молекулы азота. В результате вся огромная масса атмосферного азота растениям недоступна. Кроме того, большое количество азота помещается в горных породах – 95–97% от всего азота Земли (на атмосферный азот приходится лишь 3–5%). Тем не менее, по мнению многих исследователей, преобладающее количество связанного азота, который поглощается растениями из почвы в естественных условиях, было накоплено из атмосферы; это не азот первичных пород, а составляющая органических веществ.
В большинстве стран повышение продуктивности полей обеспечивается главным образом за счет широкого использования минеральных удобрений. Внедрение в практику сельского хозяйства интенсивных, высокоурожайных сортов растений призвано создать в корнеобитаемом слое почвы высокую концентрацию легкодоступных элементов питания, в частности, соединений азота. Однако вопрос дальнейшего увеличения выпуска азотных минеральных удобрений и их эффективного использования связан с решением широкого круга проблем, среди которых наиболее важными являются экологическая и энергетическая (экономическая). Д. М. Прянишников отмечал, что с ростом норм минеральных удобрений их относительная эффективность и экономическая рентабельность снижаются.
Экологическая проблема широкого использования все более высоких норм азотных удобрений обусловлена в первую очередь низким (не более 50%) коэффициентом использования их растениями и, как следствие, массовым сбросом легкорастворимых азотнокислых и аммонийных солей в водоемы, накоплением их в почве и растениях, поступлением газообразных соединений в атмосферу.
Экономическая проблема связана с тем, что энергозатраты на производство, транспортировку, хранение и внесение удобрений растут значительно быстрее по сравнению с увеличением урожаев, причем основная часть приходится на синтез азотных удобрений – 30% и больше от общего объема энергопотребления в сельском хозяйстве. Столь высокий уровень энергозатрат обусловлен большой энергоемкостью используемых в данное время промышленностью способов производства азотных удобрений и необходимостью многократно вносить их в почву в течение вегетационного периода. Ограниченные запасы углеводородных энергоносителей (нефть, газ, уголь), на использовании которых базируется почти 90% мирового производства энергии, и все возрастающие трудности с их добычей вызывают быстрый рост стоимости азотных удобрений. По подсчетам ученых, на планете осталось запасов нефти на 50 лет, природного газа – на 60 лет и угля – на 300 лет.
«Биологический» азот, который усваивается микроорганизмами, позволяет наиболее экономно решить проблему повышения плодородия почвы. Микробиологическая фиксация атмосферного азота – единственный экологически чистый путь снабжения растений связанным азотом, при котором невозможно загрязнение почвы, водоемов и атмосферы. Кроме того, симбиотическая азотфиксация осуществляется за счет энергии Солнца и позволяет предотвратить огромные расходы энергетического сырья. Некоторые ученые полагают, что полное освоение процесса микробиологической фиксации молекулярного азота позволит решить проблему питания в условиях быстрого роста населения планеты.
При наличии в почве клубеньковых бактерий уже спустя 7–10 дней после появления всходов на корнях сои начинают формироваться клубеньки, что обусловлено внедрением клубеньковых бактерий Bradyrhizobium japonicum через корневые волоски. В месте проникновения бактерий образуются клубеньки, в которых фиксируется азот. Каждый вид бобовых растений образует клубеньки при инокуляции определенным видом клубеньковых бактерий. Бактерии проникают в корневой волосок, где образуется инфекционная нить, стенки которой формируются растительной клеткой, а внутреннее содержимое представляет бактериальный полисахарид, в который погружены клетки ризобий. Находящиеся в инфекционной нити бактерии делятся и по мере роста нити продвигаются в зону меристемы корня. Затем они проникают из инфекционной нити в цитоплазму растительных клеток, перестают делиться и превращаются в бактероиды, где синтезируется нитрогеназа – фермент, восстанавливающий азот до аммиака. Процесс инокуляции подробно освещен в работах Е. Н. Мишустина и В. К. Шильниковой.
Интенсивное использование сельскохозяйственных угодий без внесения удобрений и без внедрения бобовых культур в севооборотах приводит к сильному истощению почвы, снижению естественного плодородия. Так, в опытах на полях Крымской государственной сельскохозяйственной опытной станции при бессменном выращивании кукурузы на протяжении 28 лет наблюдалось значительное уменьшение запасов азота и снижалась урожайность.
Пахотный слой большинства окультуренных почв содержит от 0,02 до 0,4% азота и испытывает количественные колебания в каждом годовом цикле, если определенная часть органического азота минерализуется, а минерального – иммобилизуется. Часть азота, поглощенного растениями, выносится с урожаем, часть возвращается в почву в виде растительных остатков, а незначительное количество поступает в атмосферу, а потом фиксируется из нее. Азот вносится и с минеральными удобрениями, а теряется также вследствие эрозии: вымывания, выдувания и т. п. В то же время в мире количество фиксируемого азота в год достигло к концу ХХ века почти 200 млн т, в том числе 25 млн т – за счет увеличения симбиотической азотфиксации.
По данным Е. Н. Мишустина, в биологических системах ежегодно фиксируется 176 млн т атмосферного азота, что, например, в три раза превышает производство аммиака для получения удобрений в 1980 г.
Ориентация на промышленную (химическую) фиксацию азота в условиях нарастающего энергетического кризиса с опережающим ростом цен на минеральные удобрения и средства их внесения, по нашему убеждению, не позволяет полностью решить проблему обеспечения потребностей сельскохозяйственного производства.
В настоящее время достаточно изучены механизмы биологической фиксации азота, определены виды растений, накапливающих азот в почве, штаммы азотофиксирующих микроорганизмов и взаимодействие между выращиваемыми растениями и средой. Установлено, что если бы не существовало естественных процессов, позволяющих повысить содержимое связанного азота в почве за счет атмосферного азота, на многих почвах выращивание сельскохозяйственных культур было бы невозможным.
В практике земледелия известны 4 способа получения почвами связанного азота: симбиотическая фиксация, ассоциативная азотфиксация, поступление с осадками или поливной водой и внесение удобрений. Основной задачей научных исследований на данном этапе является изучение механизма этого естественного процесса, повышение его эффективности и разработка новых систем.
Украинскими и зарубежными учеными установлено, что бобовые культуры в симбиозе с клубеньковыми бактериями Rhizobium способны фиксировать большое количество азота: клевер – 180–670 кг/га, люцерна – 200–460 кг/га, бобы – 100–550 кг/га, соя – 90–240 кг/га, горох – 70–160 кг/га, люпин – 150–450 кг/га, пастбища с бобовыми – 100–260 кг/га. В Великобритании пастбища с клевером усваивают до 460 кг/га азота.
В настоящее время дефицит азота в большинстве почв Украины покрывается за счет внесения минеральных и органических удобрений. Но при использовании низких доз удобрений невозможно компенсировать снижение естественного плодородия почвы в посевах. Рассчитывать же на резкое увеличение объемов применения минерального азота нет оснований: с одной стороны, из-за дороговизны самих удобрений, а с другой – вследствие значительных затрат на их внесение.
Одним из реальных источников пополнения азота в данной ситуации может стать его биологическая фиксация из воздуха в результате симбиотической деятельности азотфиксирующих микроорганизмов. Микробиологическая фиксация атмосферного азота и фотосинтез относятся к важнейшим биохимическим процессам, обеспечивающим жизнь на Земле.
При нынешней структуре посевных площадей в Украине азотфиксирующие бактерии бобовых культур усваивают в посевах ориентировочно 320 тыс. т азота из воздуха, на естественных культурных покосных лугах и пастбищах – 290 тыс. т, при этом без больших материальных затрат. В настоящее время, в период энергетического кризиса, вызвавшего удорожание минеральных удобрений, эти вопросы привлекают все большее внимание земледельцев.
Как видим, бобово-ризобиальная система увеличивает азотный баланс почвы. Проведенные исследования дают основание утверждать, что одним из основных резервов повышения симбиотической азотфиксации является взаимодействие макро- и микроорганизмов. Именно за счет улучшения соответствия партнеров симбиоза можно надеяться на практическое использование биологического азота для повышения урожайности культурных растений. Таким образом, используя инокуляцию растений активными отвечающими виду и сорту растений штаммами азотфиксаторов, можно значительно компенсировать дефицит азота и повысить производительность бобовых культур.
По прогнозу Ф. Ф. Адаменя, к 2025 г. обеспечение растений азотом за счет биологических источников может стать основным и преобладать над химической фиксацией. Теоретически «прирастить» биологический азот можно на такое же количество, сколько его в настоящее время вырабатывает промышленность.
За годы исследований, которые проводили Ф. Ф. Адамень, Н. И. Нестерчук и Е. В. Ремесло, доказано, что урожайность сои с обработкой семян ризоторфином (штамм 646) постоянно была выше, чем без инокуляции, и в среднем годовой прирост за 25 лет исследований составил 5,5 ц/га, или 28,4%.
За последние годы практика нитрагинизации обнаружила важное свойство в характеристике штаммов клубеньковых бактерий: специфичность взаимодействия разных штаммов клубеньковых бактерий с растениями выращиваемых сортов сои. Долгое время бобово-ризобиальный симбиоз рассматривали как проявление активности клубеньковых бактерий – их вирулентности, способности проникать в корни растений, создавать клубеньки и улучшать развитие растения-хозяина за счет симбиотической азотфиксации.
Однако на сегодняшний день доказано, что в процессе формирования и функционирования клубеньково-ризобиального симбиоза растение-хозяин играет не менее активную роль, чем клетки бактерий. Такие же данные были получены при изучении хозяйственной специфичности клубеньковых бактерий, то есть их зависимости от симбиотической активности вида или сорта растения. Итак, бобово-ризобиальный симбиоз следует рассматривать как результат соответствия генотипов макросимбионта и микросимбионта.
В симбиотических системах успех может быть достигнут в значительной степени при использовании свойств конкурентоспособности бактерий. Раньше предпосевную обработку семени нитрагином рекомендовали лишь под бобовые культуры при освоении новых земель или при севе новых для данного севооборота бобовых культур.
Тем не менее, результаты проведенных исследований дают право утверждать, что даже в том случае, если естественное заражение бобовой культуры клубеньковыми бактериями полностью обеспечено, нитрагинизация семян активной расой клубеньковых бактерий может быть оправданной. Дело в том, что нанесенные на семена высокоактивные клубеньковые бактерии раньше других проникают в корни растения-хозяина и тем самым препятствуют проникновению в корень менее активных бактерий, присутствующих в почве. В результате может быть значительно повышена активность усвоения атмосферного азота. Эффективность производственной инокуляции в конкретных случаях может различаться, если бобовая культура часто или бессменно выращивается на одном и том же поле. Единственный практический способ определения эффективности клубеньковых бактерий в почве – это выращивание в отдельности каждого сорта культуры и сравнение образования клубеньков, а также повышения фиксации азота с такими же показателями у других бобовых растений, семена которых обрабатывались штаммами клубеньковых бактерий, причем эффективность этих опытов была доказана. Непосредственное выделение клубеньковых бактерий из почвы и определение их эффективности, по мнению многих исследователей, – трудное и ненадежное дело.
Ф. Ф. Адамень и Н. И. Нестерчук исследовали влияние разных штаммов ризоторфина на полях, где в севообороте неоднократно выращивали бобовые культуры. Результаты исследований подтвердили, что на участках без инокуляции семян свободно живущие в почве бактерии обеспечивали инфекционный материал и вступали в симбиоз, однако количество и масса клубеньков на корнях одного растения были меньше на 35–40%. Практически все исследуемые штаммы клубеньковых бактерий, используемые для инокуляции семян, образовывали больше клубеньков. Растения имели большую площадь листовой поверхности в период вегетации. Вероятно, производственные штаммы клубеньковых бактерий, которыми обрабатывали семена, были более конкурентоспособными по сравнению с аборигенными ризобиями и активнее вступали в симбиоз. Таким образом, в симбиозе сои с клубеньковыми бактериями максимальной эффективности нитрагинизации можно достичь только при полном соответствии генотипов растений и клубеньковых бактерий.
Ряд приведенных примеров показывает одно из направлений обеспечения бобовых растений азотом, а именно: за счет симбиотической азотфиксации его из воздуха и подтверждает, что эта проблема решается уже на сегодняшний день. Дальнейшее развитие науки об азотфиксации предусматривает направленную селекцию высших растений и соответствующих им азотфиксирующих организмов.
Таким образом, можно сделать вывод, что в повышении уровня эффективности азотфиксирующей системы бобовых важную роль играет не только растение-хозяин, его сортовые особенности и физиологическое состояние, но и генотип микросимбионта и его вклад в общий эффект симбиотического соединения азота атмосферы. Пластичность отдельного сорта бобовых и генотипа бактерий дает основание для выявления оптимальной связи в симбиозе и открывает возможности для проведения генетико-селекционной работы по повышению симбиотической азотфиксации.
Е. Н. Турин, канд. с.-х. наук, ст. науч. сотр.
Симбиотические азотфиксаторы
Общие сведения
Азотфиксация
Материалы и оборудование
Питательная среда Гильтая или заменяющая ее среда, прибор для постановки опыта, свежая почва, фарфоровая пластинка с лунками, чайная алюминиевая ложка или шпатель (фарфоровый или металлический), пипетки Мора на 1 мл, дифениламин в концентрированной серной кислоте, цинк-иод-крахмал (или реактив Грисса), 20%-ная H2SO4, реактив Несслера, микроскопы и все необходимое для микроскопирования и приготовления окрашенных препаратов.
Процесс фиксации атмосферного азота бактериями имеет большое значение для общего баланса азота в почве. Он входит в число приоритетных научных проблем, определяя в значительной степени достаточность обеспечения растений доступными формами азота.
Ассимиляцию молекулярного азота, имеющую значение для земледелия, осуществляют прокариоты, которых в зависимости от их взаимоотношений с растением делят на 3 группы.
1. Живущие в симбиозе с растением — симбиотические
азотфиксаторы.
2. Ризосферные (корневые) и филлосферные (листовые)
бактерии, формирующие ассоциации с различными видами
небобовых растений, — ассоциативные азотфиксаторы.
3. Свободноживущие почвенные азотфиксаторы — живут
независимо от присутствия растения: вне ризосферы, в почве
пара, даже в почве дорог.
Вводные пояснения. Симбиотическая азотфиксация —
это способность бактерий связывать молекулярный азот, находясь в симбиозе с высшими растениями. Более чем 1300 видов бобовых растений и более 200 видов небобовых древесных и кустарниковых пород (ольха, облепиха, мох и другие) имеют клубеньки на корнях. Некоторые (например, тропическое растение сесбания) образуют клубеньки на корнях и стеблях.
Клубеньковые бактерии относятся к родам Rhizobium (преимущественно), Bradyrhizobium, Azorhizobium и другим.
Внедрившись в ткань корня, эти бактерии распространяются обычно в виде инфекционных нитей — колоний размножившихся клеток бактерий.
В зрелой клубеньковой ткани бактериальные клетки превращаются в бактероиды. В отличие от бактериальной клетки, имеющей форму палочки, бактероиды — грушевидные, сферические или ветвистые образования в 3—4 раза более крупных размеров. Зона клубенька с клетками как бактериальной, так и бактероидной формы получила название бактероидной.
Форма и размеры клубеньков разных бобовых растений неодинаковы (рис. 25). У клевера они продолговатые и мелкие, у гороха и вики — округлые и крупные. У фасоли и сои диаметр клубеньков достигает 1 см, а у люпина иногда — величины грецкого ореха. Разрушение клубеньков сопровождается деградацией элементов растительной клетки и лизисом части
бактероидов, тогда как остальная их часть образует мелкие кокковидные клетки — своеобразные артроспоры, выполняющие функцию размножения и сохранения в природе.
При изучении клубеньковых бактерий в световом микроскопе артроспоры не видны. Их можно обнаружить лишь с помощью электронного микроскопа при большом увеличении.
На питательных средах клетки ризобий — подвижные, не образующие спор грамотрицательные палочки. Среди них встречаются и кокковидные клетки. В старых культурах клетки крупнее, палочковидные, неподвижные, изредка встречаются Т-образные бактероидные формы.
По скорости роста клубеньковые бактерии делят на медленнорастущие, например Bradyrhizobium japonicum у люпина, сои, и быстрорастущие — у гороха, клевера и др.
Знакомство с клубеньковыми бактериями. Строение клубеньков бобовых изучают на срезах, которые делают острой ботанической бритвой или готовят на микротоме. Тонкий срез, продольный или поперечный, помещают на предметное стекло и просматривают в раздавленной капле при разных увеличениях. В сухой системе просматривают структуру клубенька, обнаруживают бактероидную ткань, а затем при достаточной тонкости среза препарат исследуют с иммерсионной системой, где хорошо видна бактероидная зона клубенька.
Для знакомства с формами разных видов клубеньковых бактерий готовят фиксированные и окрашенные препараты из бактероидной ткани клеток клубенька. Если клубенек достаточно крупный, его разрезают бритвой на две части и поверхность среза многократно прокалывают стерильной иглой, вызывая возможно большее механическое разрушение клеток. Затем из него отжимают каплю на предметное стекло и готовят фиксированный и окрашенный препарат.
Мелкие клубеньки (2—3) помешают на предметное стекло, добавляют каплю воды, и прижимают другим предметным стеклом. Выдавленное содержимое размазывают по стеклу, мазок сушат, фиксируют и красят карболовым эритрозином, фуксином или генцианом фиолетовым.
Хорошая окраска получается при использовании смеси равных частей фуксина и метиленового синего, растворенных в 1%-ном растворе уксусной кислоты. В смеси красок препарат выдерживают 3—5 мин. Ткань клубенька окрашивается в синий цвет, а бактерии — в красный. Форму клубеньковых бактерий, в том числе и бактероидов, у разных бобовых растений следует зарисовать и подписать названия.
Культуру клубеньковых бактерий готовят так. Кусочек корня с клубеньком тщательно промывают в стерильной воде, стерилизуют поверхность клубенька в растворе спирта, затем вновь промывают стерильной водой, раздавливают клубенек в капле стерильной воды и суспензию высевают на бобовый агар или среду Фреда (см. 12.5.1).
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Сельское хозяйство | UniversityAgro.ru
Агрономия, земледелие, сельское хозяйство
Популярные статьи
Азотфиксация
Азотфиксация, или микробиологическая фиксация атмосферного азота — процесс поглощения микроорганизмами почвы азота атмосферы и трансформация его в органические и минеральные вещества.
Изучением азотфиксации занимались Ж. Буссенго, М. Бейерник, Г. Гельригель, Г. Вильфорт, М.С. Воронин, С.Н. Виноградский, В.Л. Омелянский, Д.Н. Прянишников, Д.И. Менделеев, К.А. Тимирязев.
«Немного найдется явлений, где бы так ясно определилась взаимная роль теории и практики, как в тех исследованиях, в которых научные вопросы о происхождении азота у растений неразрывно сливались с чисто практическими вопросами о пользе возделывания клевера и вообще бобовых».
Отечественная сельскохозяйственная наука уделяла большое внимание изучению явления азотфиксации: создана коллекция наиболее эффективных штаммов микроорганизмов, с конца 50-х годов ведутся генетические и генетико-селекционные исследования, которые впервые в отечественной литературе освещены в монографии «Генетика симбиотической азотфиксации с основами селекции» под редакцией И.А. Тихоновича и Н.А. Проворова в 1998 г.
Навигация
Значение азотфиксации
На долю азота в атмосферном воздухе приходится 78,09%. Над 1 гектаром суши или водной поверхности Земли содержится около 80 тыс. т азота, который недоступен большинству высших растений.
Атомы азота в молекуле N2 соединены очень прочной тройной связью N≡N, поэтому разрыв этой связи сопряжен с большими затратами энергии. В промышленности этот процесс с образованием аамиака происходит при высоких температурах и давлении, тогда как в биологических системах — при нормальном атмосферном давлении и температуре.
В зависимости от источников энергии азотфиксирующие микроорганизмы относят к: автотрофам и гетеротрофам.
По оценкам, суммарный объем азотфиксации в год в наземных экосистемах составляет 175-190 млн т азота, 90-110 млн т из которых приходятся на почвы сельскохозяйственных угодий (Мишустин, 1983). При этом ежегодный вынос азота из почвы с сельскохозяйственной продукцией составляет 110 млн т.
Интенсивность азотфиксации
Опыт, проведенный Б.А. Ягодиным совместно с Ю.Я. Мазелем и Ю.Г. Сазоновым в 1981 г. показал зависимость симбиотической азотфиксации от обеспеченности растений азотом и интенсивности фотосинтеза. В этом опыте, люпин сорта Быстрорастущий 4 выращивали при разных уровнях обеспеченности азота и 1-, 3- и 6-суточном затенении. Освещенность изменялась в 1000 раз. Затенение приводило к снижению азотфиксации, в большей степени — при высоком содержании минерального азота. После 6-суточного затенения азотфиксация в варианте без азота снизилась в 40 раз, в варианте с половинной дозой — полностью прекратилась, при двукратных дозах — азотфиксация остановилась уже после 3-суточного затенения.
Максимум интенсивности азотфиксации отмечался в фазе цветения в вариантах без азота и половинной дозой. В фазе бутонизации при половинной дозе она была больше, чем в варианте без азота. Это объясняется тем, что небольшая стартовая доза азота способствует лучшему развитию клубеньков на ранних этапах развития. В фазе цветения в варианте без азота этот показатель был выше, чем в вариантах с азотом.
В фазе бутонизации максимум азотфиксации в дневном цикле приходился на утренние часы (8 ч), причем в варианте с половинной дозой фиксация проходила быстрее, чем в варианте без азота. В фазе цветения максимум приходился на полдень. В этом случае она была наибольшей в варианте без азота. При повышенной дозе азота этот показатель уменьшался во все фазы развития.
Более интенсивное поступление продуктов, меченных 14 С, отмечалось в варианте без азота. При двойной дозе оно было на 20% меньше. Через 30 мин после экспозиции метка обнаруживалась в клубеньках обоих вариантов (0,37 и 0,07 соответственно, от общей активности). За 2,5 ч в варианте без азота в клубеньки поступило в 7 раз больше продуктов, чем в варианте с азотом, в корни — в 5 раз, в стебли — в 2 раза больше.
Неодинаковая скорость поступления продуктов фотосинтеза в корневые клубеньки при разных уровнях азотного питания повлияла на интенсивность азотфиксации. Вследствие накопления продуктов фотосинтеза в варианте с азотом затенение в течение 3 суток подавило азотфиксацию клубеньков.
Таким образом, затенение люпина приводит к снижению фиксации азота, но в варианте на фоне минерального азота это снижение больше, чем без азота.
Коэффициент азотфиксации составляет от 0,3 до 0,85.
Интенсивность азотфиксации свободноживущими бактериями зависит от запасом легкодоступных органических веществ, служащих источником энергии. Например, активность азотфиксации в прикорневой зоне растений за счет ассоциативной азотфиксации в 3-200 раз больше, чем в почвах междурядий. Поэтому растения является главным фактором деятельности диазотрофных бактерий в ризосфере благодаря корневой экссудации и корнеопада, объем которых составляет от 25 до 50% продукции фотосинтеза.
Интенсивность фиксации азота диазотрофов определяется выделительной деятельностью корневых систем растений, то есть, в конечном счете от фотосинтетической активности.
Высокая активность в ризосфере многих тропических растений связана со способность использовать при фотосинтезе путь С-4-дикарбоновых кислот. Растениям этого типа требуют интенсивного освещения, а максимальная скорость фотосинтеза у них значительно выше, чем у растений, использующих цикл Кальвина (С-3-тип). Так как растениями с С-4-типом расходуется меньшее количество углеводов на фотодыхание, их часть используется для роста корней и корневой экссудации.
Несимбиотическая азотфиксация изучалась многими исследователями, однако о ее масштабах в различных почвенно-климатических зонах информации мало, в связи с тем, что в природных условиях этот процесс зависит от ряда динамичных факторов среды.
Так, согласно ряду исследований плодородных почв рисовых полей показано, что в результате несимбиотической фиксации под рисом накапливаться 60-70 кг/га азота в год. Причем в затопляемых почвах фиксируется 57-63 кг/га азота, а в незатопляемых — 3-7 кг/га, без растений в затопленных почвах — 23-28 кг/га азота.
За 3 месяца вегетации азотфиксация в почвах рисовых полей Краснодарского края составляла 9-27 кг. Внесение соломы в почву способствует размножению различные группы азотфиксирующих бактерий и росту азотфиксации до 20-40 кг/га в месяц. Влажность также способствует усилению активности при разложении соломы и целлюлозы. В интразональных почвах избыточного увлажнения, то есть пойменных, болотных почвах и рисовых плантациях, активность наиболее высока — от 16,5 до 67,5 кг/га в месяц. В почвах тропической зоны несимбиотическая азотфиксация в среднем составляет 200 кг/га в год, достигая иногда 600 кг/га в год.
Активность несимбиотической азотфиксации зависит также: влажности, температуры, гранулометрического состава почвы, степени аэрированности корнеобитаемого слоя, содержания углекислого газа, наличия макро- и микроэлементов. Минеральные удобрения, известкование, воздушный режим также влияют на интенсивность, но, высокая эффективность отмечается, когда влажность, температура и органическое вещество не лимитируют азотфиксацию. Внесение в дерново-подзолистые почвы растительных остатков позволяет увеличить азотфиксирующую активность в 2-5 раз при условии достаточного увлажнения.