Что такое система счисления в математике 5 класс
Системы счисления в математике
Не трудно догадаться, что выбрали её наши предки потому что количество палецев на обеих руках равно десяти. Но какие еще бывают системы счисления? Всегда ли использовали десятичную систему счисления или были и другие?
Системы счисления в истории
До изобретения нуля для записи чисел применялись специальные знаки. У каждого народа они были своими. В Древнем Риме, например, господствовала непозиционная система счисления.
Систему счисления называют непозиционной, если значение цифры не зависит от занимаемого ею места. Наиболее совершенными системами счисления считались системы счисления, которые использовались на Руси и в Древней Греции.
В них большие числа обозначали буквами, но с добавлением дополнительных значков ( 1 – ã, 100 –ĩ и т.д.). Другой непозиционной системой счисления являлась система, которая использовалась в Древнем Вавилоне. В своей системе жители Вавилона использовали запись в «два этажа» и всего три знака: — для единицы,
— для десятка и
— для нуля.
Позиционные системы счисления
Шагом вперед стали позиционные системы. Сейчас повсеместно победила десятичная, но есть и другие системы, часто используемые в прикладных науках. Примером такой системы счисления может служить двоичная система счисления.
Нас окружает множество различных систем счисления. Каждая из них полезна в своей области. И ответ на вопрос, какую и когда использовать, остается за нами.
Системы счисления в математике
Содержание:
Системы счисления в математике
Система счисления — это совокупность правил записи чисел посредством конечного набора символов (цифр). Системы счисления бывают: непозиционными (в этих системах значение цифры не зависит от ее позиции — положения в записи числа).
Непозиционные системы счисления
Непозиционными называются такие системы счисления, в которых каждая цифра сохраняет своё постоянное значение независимо от того места, которое она занимает в записи числа.
Примером непозиционной системы счисления, которая дошла до наших дней и иногда используется, является римская система счисления. В этой системе для записи чисел используется такие цифры: I, V, X, C, D, M и т.д., они обозначают числа один, пять, десять, пятьдесят, сто, тысяча и т.д. Запись любых других чисел производится на основе определённых правил: несколько одинаковых цифр, стоящих рядом, отображают число, равное сумме чисел, которые соответствуют этим цифрам, например III — три, XX — двадцать, пара цифр в которой младшая цифра (которая обозначает меньшее число) стоит слева от старшей (которая обозначает большее число), отображает разность соответствующих чисел, например IV — четыре, XL — сорок, пара цифр, в которой младшая цифра стоит справа от старшей, отображает сумму соответствующих чисел, например XI — одиннадцать, VI — шесть, и т.п.
Позиционные системы счисления
Позиционными называются такие системы счисления, в которых значение каждой цифры определяется не только самой цифрой, но и тем местом (позицией), которое она занимает в записи числа.
Основой позиционной системы счисления называется число , которое показывает, сколько необходимо единиц любого разряда для получения единицы старшего разряда. Систему счисления с основой
будем обозначать через
. Очевидно, что основой системы счисления определяется количество цифр, которые используются для записи чисел в данной системе счисления. Основой десятичной системы счисления является число десять, для записи любых чисел используется только десять разных чисел: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
В позиционной системе счисления с основой используются
разных целых чисел
, которые называются базой системы счисления. Различаются позиционные системы счисления с неотъемлемой и симметричной базой. В позиционных системах счисления с неотъемлемой базой цифры означают последовательные целые числа начиная с нуля; в позиционных системах счисления с симметричной базой цифры обозначают последовательные целые числа, симметрично расположенные относительно нуля и ноль. Как правило, цифры 0, 1 в позиционных системах счисления обозначают число ноль и единицу.
Числа в позиционной системе счисления с основой записывают как последовательность цифр системы
, разделённых запятой на целую и дробную части. Если буквы
обозначают цифры системы, то последовательность цифр
означает число
.
Арифметические действия над числами в любой позиции системы счисления выполняются по тем же правилам, что и в десятичной системе. Однако, при выполнении действий над числами системы, необходимо пользоваться таблицами сложения и умножения этой системы.
Чтобы различать в какой системе счисления записано то или другое число, договоримся обозначать через число х, записанное в системе счисления
.
Рассмотрим наиболее внедрённые в ЭВМ системы счисления.
Двоичная система счисления
Эта система счисления использует две цифры 0, 1, которые обозначают числа ноль и единицу соответственно. Основой этой системы является число два.
Ниже дано изображения некоторых чисел в двоичной системе счисления:
При добавлении двух чисел, записанных в двоичной системе счисления, следует пользоваться таблицей сложения:
Таблица умножения в двоичной системе счисления также очень простая:
Примеры
Восьмеричная система счисления
Эта система счисления использует цифры 0, 1, 2, 3, 4, 5, 6, 7 для обозначения последовательных чисел от нуля до семи включительно. Основой этой системы является число 8. Запись произвольного числа в этой системе основывается на его разложении по степеням числа восемь с указанными выше коэффициентами.
Запишем некоторые числа в восьмеричной системе счисления:
Восьмеричные таблицы сложения и умножения имеют вид:
Примеры
Шестнадцатеричная система счисления
Эта система счисления использует шестнадцать цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F, которые обозначают последовательно целые числа, начиная с нуля заканчивая числом «пятнадцать». Основой этой системы счисления является число шестнадцать.
Запишем некоторые числа в шестнадцатеричной системе счисления:
Примеры
Переведение чисел из одной системы в другую
При решении задач на ЭВМ начальные данные, как правило, задаются в десятичной системе счисления, в той же системе необходимо получить результат. Однако почти все машины работают не в десятичной системе, а в какой-нибудь другой, например в двоичной. Поэтому возникает необходимость переведения чисел из одной системы в другую. При рассмотрении правил перевода чисел из одной системы счисления в другую ограничимся только системами счисления с неотъемлемой базой. Поскольку переведение отрицательных чисел сводится к переводу абсолютных величин и приписыванием им знака минус, то достаточно рассмотреть перевод положительных чисел.
Перевод чисел системы в систему
с помощью арифметики системы
.
Такой перевод будем обозначать символами .
Для того, чтобы число , записанное в системе
.
перевести в систему , пользуясь арифметикой системы
, необходимо:
а) записать число в виде:
б) заменить основу 10 и все цифры системы
их изображениями в системе
;
в) сделать вычисления, пользуясь арифметикой системы .
Примеры:
Проведя вычисления, пользуясь арифметикой десятичной системы счисления, получаем число 22,7510.
б) Перевести число 27,510 из десятичной системы счисления в двоичную
то, заменив основу 10 и цифры 2, 7, 5 их изображением в двоичной системе счисления, получаем:
Сделав вычисления, пользуясь арифметикой двоичной системы счисления, получим число .
Следовательно,
в) Перевести число 634,528 из восьмеричной системы счисления в десятичную (8 → 10(10)).
Подав это число в виде
и заменив основу 10 — числом 8 (цифры 6, 3, 4, 5, 2 имеют тот же вид в десятичной системе счисления) получаем:
Сделав вычисления, пользуясь арифметикой десятичной системы счисления, получаем число 412,9375010.
Следовательно, 634,528 = 412,9375010.
г) Перевести число 98,610 из десятичной системы счисления в восьмеричную (10 →8(8)).
Представив это число в виде
и заменив основу числа 10 и цифры 9, 8, 6 их видом в восьмеричной системе счисления, получим:
Сделав вычисления, руководствуясь арифметикой восьмеричной системы счисления получим число 142,48. Следовательно, 98,610 = 142,48.
Перевод чисел системы в систему с помощью арифметики системы
Перевод чисел системы в систему
с помощью арифметики системы
.
Такой перевод будем обозначать символами . Поскольку для перевода любого числа достаточно уметь переводить его дробную и целую части, то можно рассмотреть эти оба случая отдельно.
Перевод целых чисел
Пусть целое число , записанное в системе
, необходимо перевести в систему
. Поскольку
— целое число, то его вид в системе
будет таким:
где цифры системы
, которые необходимо определить, а 10 — основа системы
.
Заменим цифры и основу 10 системы
их видом в системе
. Пусть
является изображением цифры
изображением основы системы
в системе
.
Разделив обе части полученного равенства на , получим остаток
и частное
Если теперь частное разделить на
, то получим остаток
и частное
Повторяя этот процесс раз, мы последовательно найдём все числа
, причём последнее частное
Деление выполняем, пользуясь арифметикой системы
.
Таким образом, при последовательном делении числа и частных, которые получаем при делении, на основу системы, записанную в системе, то есть на , получим в виде остатков от деления цифры, необходимое для изображения числа
в системе
, записанные в системе
. Последовательное деление производится до тех пор, пока не одержим частное, меньше чем
. Это последнее частное даст нам цифру числа
, записанную в системе. При делении пользуются арифметикой системы
.
Примеры
а) Перевести число 6510 из десятичной системы счисления в двоичную (10 → 2(10)).
и десятичные цифры 0, 1 имеют тоже самое изображение в двоичной системе счисления, то 6510 = 10000012
б) Перевести число 32510 из десятичной системы счисления в восьмеричную (10 → 8(10)).
и десятичные цифры 5, 0 имеют тоже самое изображение в восьмеричной системе счисления, то 32510 = 5058.
в) Перевести число 306010 из десятичной системы в шестнадцатеричную (10→16(10)).
а десятичные цифры 15, 11 изображаются в шестнадцатеричной системе счисления как F и B, 306010 = BF416.
г) Перевести число 1110112 из двоичной системы счисления в десятичную (2→10(2)).
Пользуясь арифметикой двоичной системы счисления, получим:
Двоичные числа 101 и 1001 в десятичной системе счисления имеют изображение 5 и 9 соответственно, 1110112 = 5910.
Переведение правильных дробей
Пусть D — правильная дробь, записанная в системе P. Допустим, что необходимо перевести дробь в систему . Пусть изображение D в системе
найдём и она имеет изображение
Умножим две части полученного равенства на . Получим число, целая часть которого
и дробная часть
Умножим на
, получим число, целая часть которого
и дробная
Повторяя умножение необходимое нам количество раз, мы найдём одну за одной цифры, необходимые нам для изображения числа D в системе . При умножении пользуемся арифметикой системы P.
Таким образом, при последовательном умножении числа D и дробных частей произведения, которые получаются при умножении на основу , записанную в системе P, то есть на
, получим в виде целых частей произведений цифры, необходимые для изображения числа D в системе
. Умножение выполняем, пользуясь арифметикой системы P.
Примеры:
а) Перевести число 0,562510 из десятичной системы исчисления в восьмеричную (10→8(10)).
и десятичная цифра 4 имеет то же самое изображение в восьмеричной системе счисления, то 0,562510 = 0,448.
б) Перевести число 0,37510 из десятичной системы исчисления в двоичную (10→2(10)).
и десятичные цифры 0, 1 имеют то же самое изображение в двоичной системе счисления, то 0,37510 = 0,0012.
в) Перевести число 0,5B416 из шестнадцатеричной системы исчисления в десятичную (16→10(16)).
и шестнадцатеричные цифры 5, 5, 5, 6, 0, 1, 2 имеют то же самое изображение в десятичной системе счисления, то 0,5B416 = 0,356901562510.
Замечание: Удобнее всего, при переводе чисел из системы счисления P в систему , пользоваться арифметикой системы P, если
Перевод чисел системы в систему
и наоборот, если
.
Пусть , где
целые положительные числа. В этом случае общие правила перевода значительно упрощаются.
Для того, чтобы перевести число системы в систему
при
, достаточно каждую цифру этого числа заменить соответствующим
-разрядным числом в системе
.
Для того, чтобы перевести число системы в систему
при
, достаточно, двигаясь от запятой влево и вправо, разбить все цифры числа на группы по
цифр в каждой (крайние группы дополняются нулями, если это необходимо) и каждую группу заменить соответствующей цифрой системы
.
Примеры:
Трёхразрядное двоичное число, которое соответствует определённой восьмеричной цифре, называется триадой. Соответствие между восьмеричными цифрами и триадами такое:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.