Что такое системный номер
Большая Энциклопедия Нефти и Газа
Системный номер
СХ) из файла, системный номер которого находится в регистре ВХ, в область памяти, адресуемую регистрами DS: DX. После ее выполнения в регистре АХ возвращается фактическое число считанных байт. [2]
Преобразователь адреса для каждого из файлов позволяет осуществить переход от системного номера записи к физическому адресу блока накопителя, в котором хранится эта запись. [4]
Допустимо не более 7 операндов, для которых в поле Р; задается системный номер операнда, а в поле S; задается смещение относительно года расчета. В сегментах ALGOR и ALGOR5 должны храниться алгоритмы расчетов, но для описываемой тематической подсистемы необходимости в этом нет, и данные сегменты базы данных Параметры созданы для последующего развития системы. [6]
С помощью клавиш параметр оператор набирает номер технологического параметра, который в данной технологической ситуации желательно включить в адаптивный обзорный фрагмент; набранный системный номер появляется на цифровых индикаторах поля параметра сопутствующей моторики. [8]
Следующий фрагмент показывает, как загрузить таблицу определений символов из файла, системный номер ( handle) которого находится в регистре ВХ. Предполагается, что регистры ES: DI адресуют нужную область банка 2 видеобуфера ( например, содержат A000: 0000h), а в регистре SI находится число байт в определении каждого символа. [13]
Идентификатор объекта в общем случае может состоять из нескольких символов и занимать несколько ячеек памяти. Будем называть внутрисистемный идентификатор системным номером ( СН), так как он представляет собой просто порядковый номер данного объекта ( детали, узла, прибора, материала) в своей группе с указанием номера группы. [15]
Системный номер раздела диска UUID / GUID / serial number
На чистом диске нет никаких разделов и соответственно нет никаких номеров раздела.
В чем отличие UUID от GUID
UUID (Universally unique identifier «универсальный уникальный идентификатор») — UUID представляет собой 16-байтный (128-битный) номер. В каноническом представлении UUID изображают в виде числа в шестнадцатеричной системе счисления, разделённого дефисами на пять групп в формате 8-4-4-4-12.
GUID (Globally Unique Identifier) — это так называется у Microsoft — фактически это последняя реализация UUID (да, там были свои предыдущие версии и свой зоопарк).
Именно по этому актуальная разметка диска от Microsoft называется GPT (GUID Partition Table), читаем статью
В целом используется как идентификатор (в составе также закодирована дата и время создания):
Почему такая загадочная запись?
Очень удобно переводить двоичные числа в шестнадцатеричный формат (а в десятичный формат — очень неудобно).
Помним, что для половинки байта (4 бита):
Bin | Hex | Dec |
0000 | 0 | 0 |
0001 | 1 | 1 |
0010 | 2 | 2 |
0011 | 3 | 3 |
0100 | 4 | 4 |
0101 | 5 | 5 |
0110 | 6 | 6 |
0111 | 7 | 7 |
1000 | 8 | 8 |
1001 | 9 | 9 |
1010 | A | 10 |
1011 | B | 11 |
1100 | C | 12 |
1101 | D | 13 |
1110 | E | 14 |
1111 | F | 15 |
Т.е. один байт (8 бит) вида 11111111 легко представляется в виде FF = т.е. каждая половинка байта — это F (15 в десятичной системе).
Поэтому 128 бит легко превращаются в номер из 32 цифр в шестнадцатеричной системе счисления, 128/4 = 32
В номере UUID <8e44ac32-40e2-11ea-93a4-bff4e4da2abb> каждые два разряда фактически кодируют один байт.
Посмотрим на структуру номера
xxxxxxxx-xxxx-Mxxx—Nxxx-xxxxxxxxxxxx
4 бита M обозначают версию («version») UUID, а 1-3 старших бита N обозначают вариант («variant») UUID.
Первые две цифры кодируют дату и время создания.
Такое разделение на группы основано на структуре UUID:
Название поля | Длина (в байтах) | Длина (число 16-ричных цифр) | Содержимое |
---|---|---|---|
time_low | 4 | 8 | целое число, обозначающее младшие 32 бита времени |
time_mid | 2 | 4 | целое число, обозначающее средние 16 бит времени |
time_hi_and_version | 2 | 4 | 4 старших бита обозначают версию UUID, младшие биты обозначают старшие 12 бит времени |
clock_seq_hi_and_res clock_seq_low | 2 | 4 | 1-3 старших бита обозначают вариант UUID, остальные 13-15 бит обозначают clock sequence |
node | 6 | 12 | 48-битный идентификатор узла |
Как вытащить дату и время из GUID?
bdb62d89-cede-11e4-b12b-d4ae52b5e909
дата содержится в первых символах, bdb62d89-cede-11e4 которые нужно переставить задом наперед: 11e4-cede-bdb62d89
первый символ отбрасываем, убираем «лишние» знаки «-«(тире)
интервал в десятых долях микросекунд (HEX) получается равным: интервал 16= 1E4CEDEBDB62D89
переводим его в десятичный интервал интервал 10 = HexToDec(интервал 16);в результате получаем: интервал 10 = 136 461 344 788 852 105
находим интервал в секундах: интервал Сек = интервал 10 / 10 000 000;
Делаем сдвиг даты от 15.10.1582 г. + 13 646 134 478 + сдвиг на часовой пояс (Московское время) от «мирового времени» (GMT) = 20.03.2015 16:54:38
Использование UUID / GUID как номера раздела (тома) на диске
В LInux изначально используется UUID как системный номер раздела.
В Windows свой зоопарк.
Для FAT 32 — серийный номер из 4 байт = 8 символов в шестнадцатеричной системе
Для NTFS — серийный номер из 8 байт = 16 символов в шестнадцатеричной системе
Системный номер раздела записан непосредственно на диске — создается при форматировании диска. В серийном номер также закодирована дата и время создания раздела.
ВАЖНО: каждый диск «помнит» дату и время создания на нем конкретного раздела, это фактически записано в номере созданного раздела (при форматировании). Нужна шапочка из фольги…
Этот номер мы можем увидеть в свойствах раздела, который показывают программы для управления разделами.
Номер 4610e64f 10e64611 — 16 цифр в шестнадцатеричной системе
Правую половинку номера тома мы также можем увидеть через команду DIR в режиме командной строки
10e6-4611
Он используется Windows уже для регистрации (например раздела) — как устройства, подключенного к системе, вот на фото ниже (как это красиво называется — «точка монтирования» — Mount point).
Этот номер уже записан в недрах реестра — в отличии от серийного номера раздела, записанного в заголовке тома на диске.
Этот же номер мы можем увидеть в bcdedit — как номер основного диска С для работы системы
Видно, что номер GUID используется также для идентификации текущей операционной системы (т.е. в загрузчике явно указано, какую операционную систему нужно загружать и на каком диске она находится).
Вы можете сохранить ссылку на эту страницу себе на компьютер в виде htm файла
Вы будете видеть наш сайт у себя в ленте
Нажмите «Нравится» или напишите сообщение
Эволюция системных вызовов архитектуры x86
Про системные вызовы уже много было сказано, например здесь или здесь. Наверняка вам уже известно, что системный вызов — это способ вызова функции ядра ОС. Мне же захотелось копнуть глубже и узнать, что особенного в этом системном вызове, какие существуют реализации и какова их производительность на примере архитектуры x86-64. Если вам также интересны ответы на данные вопросы, добро пожаловать под кат.
System call
Каждый раз, когда мы хотим что-то отобразить на мониторе, записать в устройство, считать с файла, нам приходится обращаться к ядру ОС. Именно ядро ОС отвечает за любое общение с железом, именно там происходит работа с прерываниями, режимами процессора, переключениями задач… Чтобы пользователь программой не смог завалить работу всей операционной системы, было решено разделить пространство памяти на пространство пользователя (область памяти, предназначенная для выполнения пользовательских программ) и пространство ядра, а также запретить пользователю доступ к памяти ядра ОС. Реализовано это разделение в x86-семействе аппаратно при помощи сегментной защиты памяти. Но пользовательской программе нужно каким-то образом общаться с ядром, для этого и была придумана концепция системных вызовов.
Системный вызов — способ обращения программы пользовательского пространства к пространству ядра. Со стороны это может выглядеть как вызов обычной функции со своим собственным calling convention, но на самом деле процессором выполняется чуть больше действий, чем при вызове функции инструкцией call. Например, в архитектуре x86 во время системного вызова как минимум происходит увеличение уровня привилегий, замена пользовательских сегментов на сегменты ядра и установка регистра IP на обработчик системного вызова.
Программист обычно не работает с системными вызовами напрямую, так как системные вызовы обернуты в функции и скрыты в различных библиотеках, например libc.so в Linux или же ntdll.dll в Windows, с которыми и взаимодействует прикладной разработчик.
Теоретически, реализовать системный вызов можно при помощи любого исключения, хоть при помощи деления на 0. Главное — это передача управления ядру. Рассмотрим реальные примеры реализаций исключений.
Способы реализации системных вызовов
Выполнение неверной инструкции.
Ранее, ещё на 80386 это был самый быстрый способ сделать системный вызов. Для этого обычно применялась бессмысленная и неверная инструкция LOCK NOP, после исполнения которой процессором вызывался обработчик неверной инструкции. Это было больше 20 лет назад и, говорят, этим приёмом обрабатывались системные вызовы в корпорации Microsoft. Обработчик неверной инструкции в наши дни используется по назначению.
Call gates
Для того, чтобы иметь доступ к сегментам кода с различным уровнем привилегий, в Intel был разработан специальный набор дескрипторов, называемый gate descriptors. Существует 4 вида таких дескрипторов:
Нам интересны только call gates, так как именно через них планировалось реализовывать системные вызовы в x86.
Call gate реализован при помощи инструкции call far или jmp far и принимает в качестве параметра call gate-дескриптор, который настраивается ядром ОС. Является достаточно гибким механизмом, так как возможен переход и на любой уровень защитного кольца, и на 16-битный код. Считается, что call gates производительней прерываний. Этот способ использовался в OS/2 и Windows 95. Из-за неудобства использования в Linux механизм так и не был реализован. Со временем совсем перестал использоваться, так как появились более производительные и простые в обращении реализации системных вызовов (sysenter/sysexit).
Системные вызовы, реализованные в Linux
В архитектуре x86-64 ОС Linux существует несколько различных способов системных вызовов:
В реализации каждого системного вызова есть свои особенности, но в общем, обработчик в Linux имеет примерно одинаковую структуру:
Рассмотрим немного подробнее каждый системный вызов.
int 80h
Изначально, в архитектуре x86, Linux использовал программное прерывание 128 для совершения системного вызова. Для указания номера системного вызова, пользователь задаёт в eax номер системного вызова, а его параметры располагает по порядку в регистрах ebx, ecx, edx, esi, edi, ebp. Далее вызывается инструкция int 80h, которая программно вызывает прерывание. Процессором вызывается обработчик прерывания, установленный ядром Linux ещё во время инициализации ядра. В x86-64 вызов прерывания используется только во время эмуляции режима x32 для обратной совместимости.
В принципе, никто не запрещает пользоваться инструкцией в расширенном режиме. Но вы должны понимать, что используется 32-битная таблица вызовов и все используемые адреса должны помещаться в 32-битное адресное пространство. Согласно SYSTEM V ABI [4] §3.5.1, для программ, виртуальный адрес которых известен на этапе линковки и помещается в 2гб, по умолчанию используется малая модель памяти и все известные символы находятся в 32-битном адресном пространстве. Под это определение подходят статически скомпилированные программы, где и возможно использовать int 80h. Пошаговая работа прерывания подробно описана на stackoverflow.
В ядре обработчиком этого прерывания является функция entry_INT80_compat и находится в arch/x86/entry/entry_64_compat.S
Или в расширенном режиме (программа работает так как компилируется статически)
sysenter/sysexit
Спустя некоторое время, ещё когда не было x86-64, в Intel поняли, что можно ускорить системные вызовы, если создать специальную инструкцию системного вызова, тем самым минуя некоторые издержки прерывания. Так появилась пара инструкций sysenter/sysexit. Ускорение достигается за счёт того, что на аппаратном уровне при выполнении инструкции sysenter опускается множество проверок на валидность дескрипторов, а так же проверок, зависящих от уровня привилегий [3] §6.1. Также инструкция опирается на то, что вызывающая её программа использует плоскую модель памяти. В архитектуре Intel, инструкция валидна как для режима совместимости, так и для расширенного режима, но у AMD данная инструкция в расширенном режиме приводит к исключению неизвестного опкода [3]. Поэтому в настоящее время пара sysenter/sysexit используется только в режиме совместимости.
В ядре обработчиком этой инструкции является функция entry_SYSENTER_compat и находится в arch/x86/entry/entry_64_compat.S
Несмотря на то, что в реализации архитектуры от Intel инструкция валидна, в расширенном режиме скорее всего такой системный вызов никак не получится использовать. Это из-за того, что в регистре ebp сохраняется текущее значение стека, а адрес верхушки независимо от модели памяти находится вне 32-битного адресного пространства. Это всё потому, что Linux отображает стек на конец нижней половины каноничного адреса пространства.
Разработчики ядра Linux предостерегают пользователей от жесткого программирования sysenter из-за того, что ABI системного вызова может измениться. Из-за того, что Android не последовал этому совету, Linux пришлось откатить свой патч для сохранения обратной совместимости. Правильно реализовывать системный вызов нужно используя vDSO, речь о которой будет идти далее.
syscall/sysret
Так как именно AMD разработали x86-64 архитектуру, которая и называется AMD64, то они решили создать свой собственный системный вызов. Инструкция разрабатывалась AMD, как аналог sysenter/sysexit для архитектуры IA-32. В AMD позаботились о том, чтобы инструкция была реализована как в расширенном режиме, так и в режиме совместимости, но в Intel решили не поддерживать данную инструкцию в режиме совместимости. Несмотря на всё это, Linux имеет 2 обработчика для каждого из режимов: для x32 и x64. Обработчиками этой инструкции является функции entry_SYSCALL_64 для x64 и entry_SYSCALL_compat для x32 и находится в arch/x86/entry/entry_64.S и arch/x86/entry/entry_64_compat.S соответственно.
Кому интересно более подробно ознакомиться с инструкциями системных вызовов, в мануале Intel [0] (§4.3) приведён их псевдокод.
Для тестирования следующего примера потребуется ядро с конфигурацией CONFIG_IA32_EMULATION=y и компьютер AMD. Если же у вас компьютер фирмы Intel, то можно запустить пример на виртуалке. Linux может без предупреждения изменить ABI и этого системного вызова, поэтому в очередной раз напомню: системные вызовы в режиме совместимости правильнее исполнять через vDSO.
Непонятна причина, по которой AMD решили разработать свою инструкцию вместо того, чтобы расширить инструкцию Intel sysenter на архитектуру x86-64.
vsyscall
При переходе из пространства пользователя в пространство ядра происходит переключение контекста, что является не самой дешёвой операцией. Поэтому, для улучшения производительности системных вызовов, было решено их обрабатывать в пространстве пользователя. Для этого было зарезервировано 8 мб памяти для отображения пространства ядра в пространство пользователя. В эту память для архитектуры x86 поместили 3 реализации часто используемых read-only вызова: gettimeofday, time, getcpu.
Со временем стало понятно, что vsyscall имеет существенные недостатки. Фиксированное размещение в адресном пространстве является уязвимым местом с точки зрения безопасности, а отсутствие гибкости в размере выделяемой памяти может негативно сказаться на расширении отображаемой области ядра.
Для того, чтобы пример работал, необходимо, чтобы в ядре была включена поддержка vsyscall: CONFIG_X86_VSYSCALL_EMULATION=y
Linux не отображает vsyscall в режиме совместимости.
На данный момент, для сохранения обратной совместимости, ядро Linux предоставляет эмуляцию vsyscall. Эмуляция сделана для того, чтобы залатать дыры безопасности в ущерб производительности.
Эмуляция может быть реализована двумя способами.
Первый способ — при помощи замены адреса функции на системный вызов syscall. В таком случае виртуальный системный вызов функции gettimeofday на x86-64 выглядит следующим образом:
Где 0x60 — код системного вызова функции gettimeofday.
Второй же способ немного интереснее. При вызове функции vsyscall генерируется исключение Page fault, которое обрабатывается Linux. ОС видит, что ошибка произошла из-за исполнения инструкции по адресу vsyscall и передаёт управление обработчику виртуальных системных вызовов emulate_vsyscall (arch/x86/entry/vsyscall/vsyscall_64.c).
vDSO (Virtual Dynamic Shared Object)
Чтобы исправить основной недостаток vsyscall, было предложено реализовать системные вызовы в виде отображения динамически подключаемой библиотеки, к которой применяется технология ASLR. В «длинном» режиме библиотека называется linux-vdso.so.1, а в режиме совместимости — linux-gate.so.1. Библиотека автоматически подгружается для каждого процесса, даже статически скомпилированного. Увидеть зависимости приложения от неё можно при помощи утилиты ldd в случае динамической компоновки библиотеки libc.
Также vDSO используется в качестве выбора наиболее производительного способа системного вызова, например в режиме совместимости.
Список разделяемых функций можно посмотреть в руководстве.
Для режима совместимости:
Правильнее всего искать функции vDSO при помощи извлечения адреса библиотеки из вспомогательного вектора AT_SYSINFO_EHDR и последующего парсинга разделяемого объекта. Пример парсинга vDSO из вспомогательного вектора можно найти в исходном коде ядра: tools/testing/selftests/vDSO/parse_vdso.c
Или если интересно, то можно покопаться и посмотреть, как парсится vDSO в glibc:
Согласно System V ABI AMD64 [4] вызовы должны происходить при помощи инструкции syscall. На практике же к этой инструкции добавляются вызовы через vDSO. Поддержка системных вызовов в виде int 80h и vsyscall остались для обратной совместимости.
Сравнение производительности системных вызовов
С тестированием скорости системных вызовов всё неоднозначно. В архитектуре x86 на выполнение одной инструкции влияет множество факторов таких как наличие инструкции в кэше, загруженность конвейера, даже существует таблица задержек для данной архитектуры [2]. Поэтому достаточно сложно определить скорость выполнения участка кода. У Intel есть даже специальный гайд по замеру времени для участка кода [1]. Но проблема в том, что мы не можем замерить время согласно документу из-за того, что нам нужно вызывать объекты ядра из пользовательского пространства.
Поэтому было решено замерить время при помощи clock_gettime и тестировать производительность вызова gettimeofday, так как он есть во всех реализациях системных вызовов. На разных процессорах время может отличаться, но в целом, относительные результаты должны быть схожи.
Программа запускалась несколько раз и в итоге бралось минимальное время исполнения.
Тестирование int 80h, sysenter и vDSO-32 производилось в режиме совместимости.
Таблица Результатов
Реализация | время (нс) |
---|---|
int 80h | 498 |
sysenter | 338 |
syscall | 278 |
vsyscall emulate | 692 |
vsyscall native | 278 |
vDSO | 37 |
vDSO-32 | 51 |
Как можно увидеть, каждая новая реализация системного вызова является производительней предыдущей, не считая vsysvall, так как это эмуляция. Как вы наверное уже догадались, если бы vsyscall был таким, каким его задумывали, время вызова было бы аналогично vDSO.
Все текущие сравнения производительности были произведены с патчем KPTI, исправляющим уязвимость meltdown.
Бонус: Производительность системных вызовов без KPTI
Патч KPTI был разработан специально для исправления уязвимости meltdown. Как известно, данный патч замедляет производительность ОС. Проверим производительность с выключенным KPTI (pti=off).
Таблица результатов с выключенным патчем
Переход в режим ядра и обратно в среднем после патча стал занимать примерно на 180 нс. больше времени, видимо это и есть цена сброса TLB-кэша.
Производительность системного вызова через vDSO не ухудшилась по причине того, то в данном типе вызова нет перехода в режим ядра, и, следовательно, нет причин сбрасывать TLB-кэш.
Что такое системный номер
Системный телефон – необходимый элемент каждой мини АТС. Основное отличие от обычного телефона в том, что он не может быть подключен к городской телефонной линии, а работает только совместно с установленной у Вас мини АТС.
Большинство полезных функций телефонных станций сосредоточено именно здесь.
Системные телефоны подключаются:
Основное назначение системного телефона – это эффективная обработка входящих звонков и осуществление исходящей связи с максимальным удобством для пользователя.
Кроме этого, через системный телефон может программироваться АТС и осуществляться запись приветствия для платы автосекретаря.
Каждый производитель АТС предлагает свою линейку системных телефонов, которые работают только с определенными моделями телефонных станций.
Основные кнопки системных телефонов:
Производители АТС постоянно совершенствуют модели системных телефонов. Ведь в отличие от АТС это устройство постоянно находится на виду у сотрудников и гостей компании. Эргономика, дизайн устройства оказывает существенное влияние на имидж компании.
Модернизируя системные телефоны, производитель делают их максимально комфортными и удобными для пользователя. Расширяется возможности системных телефонов, например, появилась функция подключение беспроводной гарнитуры по технологии Bluetooth.
Благодаря возросшей популярности и доступным ценам системные телефоны становятся незаменимыми «помощниками» не только директора или секретаря, но и все большего числа рядовых сотрудников, особенно менеджеров, чья деятельность связана с интенсивной работой по приему, обработке входящих звонков, общением с множеством клиентов и с необходимостью находится на постоянной связи при нахождении вне рабочего места.
Добавить комментарий Отменить ответ
Для отправки комментария вам необходимо авторизоваться.