Что такое световое микроскопирование
Методы световой микроскопии
Для изучения микрообразцов используются разные методы исследований и разные микроскопы. Выделяют два направления микроскопии: световую и электронную. Каждое из них использует свои методы, отличается собственными минусами и плюсами. Световая (оптическая) микроскопия ограничена по разрешению и увеличению получаемой картинки, но более проста в использовании и не требует дорогого оборудования. Электронная микроскопия требует серьезных профессиональных знаний и умений, нуждается в сложном и дорогостоящем оборудовании, но зато обеспечивает непревзойденную детализацию и высочайшее увеличение изображения. Важный момент – электронная микроскопия не позволяет наблюдать живые клетки.
Чтобы показать, насколько велика разница в разрешении, отметим, что метод световой микроскопии используют для изучения объектов размером максимум до 400 нм, а метод электронной микроскопии – до 1 нм (1 нм = 10−9 м = 10−6 мм). Для любительского или базового профессионального уровня возможностей световых методов вполне достаточно, а вот серьезные исследования проводятся уже при помощи электронных.
Виды световой микроскопии
Световая микроскопия использует следующие методы: светлого поля, темного поля, фазового контраста, люминесценции (флуоресценции), интерференции, поляризации и некоторые другие. Наиболее популярный метод – светлого поля. Методы могут применяться для изучения образцов в проходящем или отраженном свете или с использованием косого освещения. Выбор метода зависит от наблюдаемого образца и целей, которые ставит перед собой исследователь.
С помощью световой микроскопии можно различить структуры твердых металлов и кристаллов, рассмотреть биологические образцы, определить размеры зерен, провести анализ порошков и суспензий, изучить шлифы и руды. Световая микроскопия идеальна для изучения живых организмов, многие методы позволяют наблюдать их движение и даже рост. Даже при помощи простого детского светового микроскопа можно наблюдать за ростом морского рачка (артемии) или простейших. Световой микроскоп – это и возможность детально изучить клетку. Используя методы световой микроскопии в растительной клетке можно различить вакуоль и клеточную стенку.
В нашем интернет-магазине представлено множество микроскопов для световой микроскопии. У нас вы найдете любительскую модель для дома, продвинутый микроскоп для учебы и профессиональный оптический инструмент для работы. Мы работаем с разными брендами и всегда готовы помочь с выбором. Наши менеджеры консультируют по телефону или электронной почте.
Использование материала полностью для общедоступной публикации на носителях информации и любых форматов запрещено. Разрешено упоминание статьи с активной ссылкой на сайт www.4glaza.ru.
Производитель оставляет за собой право вносить любые изменения в стоимость, модельный ряд и технические характеристики или прекращать производство изделия без предварительного уведомления.
Презентация на тему: «Световая Микроскопия»
Описание презентации по отдельным слайдам:
Презентация на тему: «Световая микроскопия». Выполнила: студентка 1 курса группы МПБО-18-1 Свитова Дарья Ульяновск– 2019
Определение: Световая микроскопия – это система методов, которые используют различные оптические эффекты для достоверного отображения результатов. http://fb.ru/article/271869/mikroskopiya—eto-chto-takoe
1.Комплект окуляров 2. Бинокулярная насадка. 3.Револьверное устройство 4.Комплект объективов 5.Штатив 6.Предметный столик 7.Конденсор 8.Основание. Рисунок 2 – Составные части светового микроскопа. Примечание: (http://qwerty96.ru/optics/microscopes/bresser_national_geographic_40_640x_s_adapterom_dlya_smartfona/?viewmode=list&page=3)
Функции: Световая микроскопия обеспечивает: увеличение до 2-3 тысяч раз цветное и подвижное изображение живого объекта возможность микрокиносъемки и длительного наблюдения одного и того же объекта и оценку его динамики и химизма.
Метод светлого поля и его разновидности: Метод светлого поля в проходящем свете. Метод косого освещения. Метод светлого поля в отражённом свете. Рисунок 3 – Пенициллин, исследования методом светлого поля. (https://opticalmarket.com.ua/mikroskop_konus_infinity_3.html)
Применение: В лабораторных биологических и медицинских исследованиях, на различных производствах для получения увеличенных изображений объектов во время проведения рабочих операций, в научных и промышленных лабораториях и т.д.
Достоинства и недостатки: Достоинства: получение цветного и подвижного изображения движущегося объекта; возможность делать микрокиносъёмку; долгое наблюдение за одним и тем же объектом; возможность оценивать динамику и химизм элементов. Недостатки: Высокая разрешающая способность электронного микроскопа позволяет наблюдать объекты, размеры которых лежат за пределами разрешающей способности светового микроскопа.
Источники: http://fb.ru/article/271869/mikroskopiya—eto-chto-takoe https://micromed.pro/articles/klassifikatciya-svetovih-mikrosk.html http://www.studmed.ru/docs/document1462/content http://mirznanii.com/a/9747/svetovaya-mikroskopiya http://elektronnaia-mikroskopia-spermatozoidov.ru/preimushhestvo-svetovoj-mikroskopii-pered-elektronnoj.html
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Современные педтехнологии в деятельности учителя
Курс повышения квалификации
Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС
Ищем педагогов в команду «Инфоурок»
Световая микроскопия обеспечивает увеличение до 2-3 тысяч раз, цветное и подвижное изображение живого объекта, возможность микрокиносъемки и длительного наблюдения одного и того же объекта, оценку его динамики и химизма.
Увеличение микроскопа определяется как произведение увеличения объектива на увеличение окуляра. У типичных исследовательских микроскопов увеличение окуляра равно 10, а увеличение объективов – 10, 45 и 100. Соответственно, увеличение такого микроскопа составляет от 100 до 1000. Некоторые из микроскопов имеют увеличение до 2000. Еще более высокое увеличение не имеет смысла, так как при этом разрешающая способность не улучшается. Напротив, качество изображения ухудшается.
Методы световой микроскопии
Методы световой микроскопии (освещения и наблюдения). Методы микроскопии выбираются (и обеспечиваются конструктивно) в зависимости от характера и свойств изучаемых объектов, так как последние, как отмечалось выше, влияют на контрастность изображения.
Светлопольная (световая) микроскопия
Современная микроскопия имеет большое количество методов, на основании которых функционируют самые различные микроскопы, сферы применения которых весьма различны. И часто возникают споры и дилеммы о том, что же лучше: световой или, как его еще называют, оптический микроскоп, либо же электронный.
Стоит сразу отметить некоторый момент – это частая путаница в понятиях таких, как электронный микроскоп и микроскоп цифровой. Именно эти понятия так часто можно увидеть, когда их употребляют в неуместном варианте.
Строение светового микроскопа
В зависимости от комплектации световые микроскопы могут быть как самыми примитивными (например, которые используются в кабинетах физики в школе), так и состоять из сложных систем современного образца.
Из чего же состоит световой микроскоп? По структуре световой микроскоп имеет такие основные части:
Объект исследования получается увеличенным именно благодаря совместному воздействию таких структур микроскопа как: окуляр, объектив и зеркало. Технические аспекты обеспечивают все остальные составляющие микроскопа.
Благодаря окуляру, который находится в верхней части микроскопа, человеческий глаз наблюдает объект. В состав окуляра входят несколько увеличительных линз, заключенных в оправу. Нижняя линза окуляра отвечает за фокусировку объекта исследования, а верхняя линза обеспечивает процесс наблюдения. Окуляры обладают сравнительно малой степенью увеличения.
Важным параметром в выборе окуляра микроскопа является вынос зрачка, расстояние между глазом и отверстием окуляра. Если специалист будет работать с микроскопом в очках, то стоит выбирать микроскоп с большим выносом, равным 10-20 мм.
Трубка в форме цилиндра, к которой крепится окуляр, называют тубусом. В верхней части тубуса расположен окуляр, а в нижней части – устройство для крепления объективов. Движение тубуса обеспечивается винтами на штативе микроскопа. Такое движение тубуса определяет возможность контролировать расстояние до объекта исследования на предметном столике.
Сравнение электронного и светового микроскопа
Цифровые микроскопы – это лишь оборудование, которое выводит получаемое изображение из оптического микроскопа на экран монитора компьютера, при помощи чего исследователь может детально рассмотреть нюансы объекта. А электронный микроскоп имеет совершенно иной метод получения изображения: через объект проходят не световые лучи, а электроны, которые, ударяясь о поверхность объекта, формируют нюансы его поверхности и структурных особенностей. Они строят геометрический образ изучаемого объекта.
Конечно же, у оптического микроскопа есть свои преимущества, а также недостатки. Однако, каждый покупатель, выбирая такое оборудование, должен отталкиваться от его потребностей, а также сферы, в которой будет работать микроскоп, от направленности лаборатории.
Если речь идет о базовых задачах микроскопа, как, например, его использование в лаборатории школы института, которое обусловливает обучающие цели, тогда, конечно же, выбор падает на оптический (световой) микроскоп. В световой микроскоп можно увидеть все, чего требует базовая школьная программа по биологии.
Естественно, что покупка для таких целей какого-либо другого типа и класса оборудования просто необоснованно. Если же речь идет о какой-либо исследовательской лаборатории, где необходимы нюансы микроскопического строения объекта, как, например, в области вирусологии, криобиологии, томографии, либо нейрохирургии или же других узкоспециализированных областей, тогда, естественно, световой микроскоп будет неуместен для использования в таких направлениях деятельности.
Что это означает: преимущества светового микроскопа? Это означает лишь одно – о преимуществах либо недостатках конкретного вида микроскопа можно говорить только опираясь на сферу, в которой он будет использоваться. Так как. Например, в школьном кабинете биологии просто нецелесообразно использование дорогого, практически недоступного электронного микроскопа, когда можно использовать дешевый световой прибор, а в научно-исследовательском институте просто недопустимо и бесполезно будет использование оптического простого микроскопа, который попросту не даст никаких результатов в конкретной научной деятельности, так как его увеличения и разрешения просто не будет хватать для такой работы.
Преимущество светового микроскопа перед электронным
Если попросить работника лаборатории «определи преимущество использования световой микроскопии перед электронной», то даже начинающий исследователь сможет назвать основные плюсы работы с таким видом оборудования.
Световая микроскопия это: краткое описание метода
Световая микроскопия
В основе световой микроскопии лежат различные свойства света. Световая микроскопия обеспечивает увеличение до 2-3 тысяч раз, цветное и подвижное изображение живого объекта, возможность микрокиносъемки и длительного наблюдения одного и того же объекта, оценку его динамики и химизма.
Современные световые микроскопы представляют собой довольно сложные приборы, совершенствующиеся в течение 400 лет с момента создания первого прототипа микроскопа.
Освещение при микроскопии играет весьма существенную роль.
Неправильное или недостаточное освещение не позволит использовать полностью все возможности микроскопа.
Закрыв диафрагму осветителя, открывают диафрагму конденсора и, перемещая конденсор, добиваются резкого изображения диафрагмы осветителя в поле зрения микроскопа. Чтобы яркий свет не слепил глаза, предварительно уменьшают с помощью реостата накал нити лампы.
И, наконец, с помощью зеркала изображение отверстия диафрагмы устанавливают в центре поля зрения, а диафрагму осветителя открывают так, чтобы было освещено все видимое поле зрения. Раскрывать больше диафрагму не нужно, так как это не усилит освещенности, а лишь уменьшит контрастность за счет рассеянного света.
Виды световой микроскопии
Люминесцентная микроскопия
Люминесцентная микроскопия — метод наблюдения под микроскопом люминесцентного свечения микрообъектов при освещении их сине-фиолетовым светом или ультрафиолетовыми лучами
Метод основан на способности некоторых веществ светиться под действием коротковолновых лучей света.
При этом длина волны излучаемого при люминесценции света всегда будет больше, чем длина волны света, возбуждаемого люминесценцию. Так, если освещать объект синим светом, он будет испускать лучи красного, оранжевого, желтого и зеленого цвета.
Препараты для люминесцентной микроскопии окрашивают специальными светящимися люминесцентными красителями – флуохромами (акридиновый оранжевый, изотиоционат флуоресцеина и др.).
Лучи света от сильного источника (обычно ртутной лампы сверхвысокого давления) пропускают через сине-фиолетовый светофильтр. Под действием этого коротковолнового излучения окрашенные флуохромом клетки или бактерии начинают светиться красным или зеленым светом.
Для того, чтобы синий свет, вызвавший люминесценцию, не мешал наблюдению, над окуляром ставят запирающий желтый светофильтр, задерживающий синие, но пропускающий желтые, красные и зеленые лучи.
В результате при наблюдении в люминесцентном микроскопе на темном фоне видны будут клетки или бактерии, светящиеся желтым, зеленым или красным цветом. Например, при окраске акридиновым оранжевым ДНК клетки (ядерное вещество) будет светиться ярко-зеленым цветом.
Метод люминесцентной микроскопии позволяет изучать живые нефиксированные бактерии, окрашенные сильно разведенными флуохромами, не причиняющими вреда миробным клеткам.
По характеру свечения могут быть дифференцированы отдельные химические вещества, входящие в состав микробной клетки.
Темнопольная микроскопия
При микроскопии по методу темного поля препарат освещается сбоку косыми пучками лучей, не попадающими в объектив.
В обектив попадают лишь лучи, которые отклоняются частицами препарата в результате отражения, преломления или дифракции. В силу этого микробные клетки и другие частицы представляются ярко светящимися на черном фоне (картина напоминает мерцающее звездное небо).
Для микроскопии в темном поле используют специальный конденсор (параболоид-конденсор или кардиоид-конденсор) и обычные объективы.
Так как аппаратура иммерсионного объектива больше, чем апертура конденсора темного поля, внутрь иммерсионного объектива вставляется специальная трубчатая диафрагма, снижающая его апертуру.
Этот метод микроскопии удобен при изучении живых бактерий, спирохет и их подвижности.
Фазово-контрастная микроскопия
Обыкновенные окрашенные препараты поглощают часть проходящего через них света, в результате чего амплитуда световых волн снижается, и частицы препарата выглядят темнее фона.
При прохождении света через неокрашенный препарат амплитуда световых волн не меняется, происходит лишь изменение фазы световых волн, прошедших через частицы препарата. Однако человеческий глаз улавливать это изменение фазы света не способен, поэтому неокрашенный препарат при правильной установке освещения в микроскопе будет невидим.
Фазово-контрастное устройство позволяет превратить изменение фазы лучей, прошедших через частицы неокрашенного препарата, в изменения амплитуды, воспринимаемые человеческим глазом, и, таким образом, позволяет сделать неокрашенные препараты отчетливо видимыми.
Приспособление для фазово-контрастной микроскопии включает в себя конденсор с набором кольцевых диафрагм, обеспечивающих освещение препарата полным конусом света, и фазово-контрастные объективы, которые отличаются от обычных тем, что в их главном фокусе располагается полупрозрачная фазовая пластинка в виде кольца, вызывающая сдвиг фазы проходящего через нее света.
Установку освещения проводят так, чтобы весь свет, прошедший через кольцевидную диафрагму конденсора, в дальнейшем прошел через расположенное в объективе фазовое кольцо.
При рассмотрении препарата весь свет, прошедший через участки препарата в которых нет каких-либо объектов, пройдет через фазовое кольцо и даст светлое изображение фона. Свет, прошедший через имеющиеся в препарате частицы, например, бактериальные клетки, получит некоторое изменение фазы и, кроме того, разделится на два луча – недифрагированный и дифрагированный.
Недифрагированные лучи, пройдя в дальнейшем через кольцевидную фазовую пластинку в объективе, получат дополнительный сдвиг фазы.
Дифрагированные лучи пройдут мимо фазовой пластинки, и их фаза не изменится. В плоскости полевой диафрагмы окуляра произойдет интерференция (наложение) дифрагированного и недифрагированного лучей, а так как эти лучи идут в разных фазах, произойдет их взаимное частичное гашение и уменьшение амплитуды.
Благодаря этому микробные клетки будут выглядеть темными на светлом фоне.
Существенными недостатками фазово-контрастной микроскопии являются слабая контрастность получаемых изображений и наличие светящихся ореолов вокруг объектов.
Фазово-контрастная микроскопия не увеличивает разрешающей способности микроскопа, но помогает выявить детали структуры живых бактерий, стадии их развития, изменения в них под действием различных агентов (антибиотики, химические вещества и т.д.).
Электронная микроскопия
Для изучения структуры клеток на субклеточном и молекулярном уровнях, а также для изучения вирусов используют электронную микроскопию.
Ценность электронной микроскопии заключается в ее способности разрешать объекты, не разрешаемые оптическом микроскопом в видимом или ультрафиолетовом свете.
Малая длина волны электронов, которая уменьшается в прямой зависимости от подаваемого ускоряющего напряжения, позволяет разрешать, т.е. различать как отдельные объекты, отстоящие друг от друга всего на 2А (0,2 нм или 0,0002 мкм) или даже меньше, в то время как предел разрешения световой оптики лежит вблизи 0,2 мкм (он зависит от длины волны используемого света).
Электронная микроскопия, при которой изображение получают благодаря прохождению (просвечиванию) электронов через образец, называется просвечивающей (трансмиссивной).
При сканирующей (растровой), или туннельной электронной микроскопии пучок электронов быстро сканирует поверхность образца, вызывая излучение, которое посредством катодно-лучевой трубки формирует изображение на светящемся экране микроскопа по аналогии с формированием телевизионного изображения.
Принципиальная оптическая схема электронного микроскопа аналогична схеме светового, в котором все оптическое элементы заменены соответствующими электрическими: источник света – источником электронов, стеклянные линзы – линзами электромагнитными.
Электронные микроскопы: системы
В электронных микроскопах просвечивающего типа различают три системы: электронно-оптическую, вакуумную и электропитания.
Источником электронов является электронная пушка, состоящая из V-образного вольфрамового термокатода, который при нагревании до 2900°С при подаче постоянного напряжения до 100 кВ в результате термоэмиссии испускает свободные электроны, ускоряемые затем электростатическим полем, создаваемым между фокусирующим электродом и анодом.
Электронный пучок затем формируется с помощью конденсорных линз и направляется на исследуемый объект. Электроны, проходя сквозь объект, за счет его разной толщины и электроплотности отклоняются под различными углами и попадают в объективную линзу, которая формирует первое увеличение объекта.
После объективной линзы электроны попадают в промежуточную линзу, которая предназначена для плавного изменения увеличения микроскопа и получения дифракции с участков исследуемого образца.
Проекционная линза создает конечное увеличенное изображение объекта, которое направляется на флуоресцентный экран.
Благодаря взаимодействию быстрых электронов с люминофором экрана на нем возникает видимое изображение объекта. После наведения резкости сразу проводят фотографирование.
Увеличение конечного изображения на экране определяется как произведение увеличений, даваемых объективной, промежуточной и проекционной линзами.
Электронномикроскопическому исследованию могут быть подвергнуты как ультратонкие срезы различных тканей, клеток, микроорганизмов, так и целые бактериальные клетки, вирусы, фаги, а также субклеточные культуры, выделяемые при разрушении клеток различными способами.
Виды электронных микроскопов
1) Просвечивающий электронный микроскоп (ПЭМ) — это установка, в которой изображение от ультратонкого объекта (толщиной порядка 0,1 мкм) формируется в результате взаимодействия пучка электронов с веществом образца с последующим увеличением магнитными линзами (объектив) и регистрацией на флуоресцентном экране.
Для регистрации изображения возможно использование сенсоров, например, ПЗС-матрицы. Первый практический просвечивающий электронный микроскоп был построен Альбертом Пребусом и Дж. Хиллиером в университете Торонто (Канада) в 1938 году с использованием концепции, предложенной ранее Максом Кноллом и Эрнстом Руска.
2) Растровый электронный микроскоп (РЭМ, англ. Scanning Electron Microscope, SEM) — прибор, позволяющий получать изображения поверхности образца с большим разрешением (несколько нанометров).
Ряд дополнительных методов позволяет получать информацию о химическом составе приповерхностных слоёв;
3) Сканирующий туннельный микроскоп (СТМ, англ.STM — scanning tunneling microscope) — прибор, предназначенный для измерения рельефа проводящих поверхностей с высоким пространственным разрешением. В СТМ острая металлическая игла подводится к образцу на расстояние нескольких ангстрем.
При подаче на иглу относительно образца небольшого потенциала возникает туннельный ток. Величина этого тока экспоненциально зависит от расстояния образец-игла. Типичные значения 1-1000 пА при расстояниях около 1 Å.
Современные модели электронных микроскопов устроены так, что сочетают в себе возможности как просвечивающего, так и сканирующего микроскопов, и их легко можно переоборудовать с одного типа на другой.
Просвечивающая электронная микроскопия применяется для изучения ультратонких срезов микробов, тканей, а также строения мелких объектов (вирусов, жгутиков и др.), контрастированных фосфорно-вольфрамовой кислотой, уранилацетатом, напылением металлов в вакууме.
Сканирующая электронная микроскопия применяется для изучения поверхности объектов. При просвечивающей электронной микроскопии получают плоскостные изображения объекта, а при сканирующей – удается получить трехмерное объемное изображение. В бактериологии сканирование наиболее эффективно для выявления отростков и других поверхностных структур, для определения формы и топографических отношений как в колониях, так и на поверхности инфицированных тканей.
При сканирующей микроскопии образец фиксируют, высушивают на холоде и напыляют в вакууме золотом или другими тяжелыми металлами.
Таким образом получают реплику (отпечаток), повторяющую контуры образца, впоследствии сканируемую.
Недостатки электронного микроскопа
Световая микроскопия. В основе световой микроскопии лежат различные свойства света. Световая микроскопия обеспечивает увеличение до 2-3 тысяч раз, цветное и подвижное изображение живого объекта, возможность микрокиносъемки и длительного наблюдения одного и того же объекта, оценку его динамики и химизма.
Современные световые микроскопы представляют собой довольно сложные приборы, совершенствующиеся в течение 400 лет с момента создания первого прототипа микроскопа.
Освещение при микроскопии играет весьма существенную роль. Неправильное или недостаточное освещение не позволит использовать полностью все возможности микроскопа.
Хорошее освещение достигается при установке света по методу Келлера.
Закрыв диафрагму осветителя, открывают диафрагму конденсора и, перемещая конденсор, добиваются резкого изображения диафрагмы осветителя в поле зрения микроскопа.
Чтобы яркий свет не слепил глаза, предварительно уменьшают с помощью реостата накал нити лампы. И, наконец, с помощью зеркала изображение отверстия диафрагмы устанавливают в центре поля зрения, а диафрагму осветителя открывают так, чтобы было освещено все видимое поле зрения. Раскрывать больше диафрагму не нужно, так как это не усилит освещенности, а лишь уменьшит контрастность за счет рассеянного света.