Фазоинвертор в двери авто

Фазоинвертор в дверях

Толк будет если это полноценный «фазик»,

Ребята вопрос такой, будет ли толк, и какие либо изменения, если в двери сделать хотя бы маленький фозоинвертор. Просто у меня даже после шумки обшивко ходуном ходит) Машина мазда 3. И думаю это на звук должно повлиять в лучшую сторону) В домашней же акустике везде есть фазики)

Ребята вопрос такой, будет ли толк, и какие либо изменения, если в двери сделать хотя бы маленький фозоинвертор. Просто у меня даже после шумки обшивко ходуном ходит) Машина мазда 3. И думаю это на звук должно повлиять в лучшую сторону) В домашней же акустике везде есть фазики)

Сузуки Свифт 2001 г в. дверь маленькая (как и сама машина) ездит сын.

а ему хочется большего (на меня насмотрелся) ну в общем обычными путями мы не ходим.

ничего не покупаем а пользуемся тем, что есть в загашниках.

А в них оказались вч CS1035М, 3,5″ серединки с непрессованной целлюлозы и бывшие браксы 3.1 и мидбасы от Wavecor VF182BD-04

Вч в стойки, сч в штатные места на отражение и работают от одной пары каналов усилителя ГУ

(ГУ пришлось таки покупать)

До саба дело явно не скоро дойдет а потому захотелось сделать чтото необычное, например фазик в дверях.

небольшой но бас явно усиливается.

Вот замер импеданса этого безобразия

Фазоинвертор в двери авто. Смотреть фото Фазоинвертор в двери авто. Смотреть картинку Фазоинвертор в двери авто. Картинка про Фазоинвертор в двери авто. Фото Фазоинвертор в двери авто

Сделал трапециевидный (воронка) порт с уже нормальными площадями собрал двери замерил:

Фазоинвертор в двери авто. Смотреть фото Фазоинвертор в двери авто. Смотреть картинку Фазоинвертор в двери авто. Картинка про Фазоинвертор в двери авто. Фото Фазоинвертор в двери авто

. До саба дело явно не скоро дойдет а потому захотелось сделать чтото необычное, например фазик в дверях.

небольшой но бас явно усиливается.

Что, прям тупо дыру сделал в полость двери?

Clarion HX-D1 / TarLab ⇒ последовательный фильтр ⇒ Scan-Speak 18W/8531

, с/ч TangBand-W4-1879, в/ч Scanspeak_d2904/710003 / TarLab ⇒ Scan-Speak_Discovery_26w-4558t00

Что, прям тупо дыру сделал в полость двери?

Источник

Фазоинвертор. Немного теории

Фазоинвертор в двери авто. Смотреть фото Фазоинвертор в двери авто. Смотреть картинку Фазоинвертор в двери авто. Картинка про Фазоинвертор в двери авто. Фото Фазоинвертор в двери авто

Понимание, доработка и настройка акустического оформления типа «Фазоинвертор».

Все просто! Не нужно иметь степень по физике, не нужно высшей математики, лишь логика и здравый смысл – ведь это все, что Вам нужно, чтобы получить достойный звук. В этом разделе постараемся разложить все «по полочкам», доступно и понятно описать работу и настройку корпуса типа «Фазоинвертор». Обладая знанием – исследуйте и творите свои уникальные системы!

Фазоинвертор — тип акустического оформления, объединяющий высокое качество звучания, внушительную громкость, простоту в построении и дальнейшей настройке, так же, ФИ сравнительно мал в плане вытесняемого в багажнике пространства.

Мы рекомендуем использовать оформление такого типа всем нашим пользователям в качестве первого корпуса, так же, мы тестируем и рекомендуем начальные, наиболее универсальные в реальной работе, параметры корпуса типа ФИ. Но, как всем Вам известно, из каждого правила есть исключения. И если рекомендованные нами решения удовлетворяют большинству Ваших требований, то всегда найдутся такие, кому нужно что то свое – это и участники различных соревнований, и любители «ветра», и любители «прокачивать площадки»… Эта статья посвящается как раз таким людям, построившим стандартный корпус и желающим получить больше – больше качества, или больше давления, или глубже бас, или…или…

Для начала давайте разберемся, как работает ФИ.

Если закрытый ящик(ЗЯ) попросту устраняет волны, созданные обратной стороной диффузора, то ФИ преобразует эти волны в «полезные», за счет чего происходит существенный рост эффективности и звукового давления. Несомненным плюсом ФИ, в сравнении с ЗЯ, является значительно более высокая эффективность и громкость, минус ФИ — высокий уровень групповых задержек, выраженный в «размытости» и более низкой точности баса.

Порт передает энергию в значительно более узком диапазоне, чем фронтальная часть диффузора. Потому изменения затрагивают лишь часть общего диапазона работы сабвуфера. Впрочем, для большинства значительный выигрыш в громкости или эффективной ширине диапазона куда более важен, чем не такой значительный проигрыш в качестве, от того ФИ — это, пожалуй, самый популярный корпус сегодня.

Схематическое изображение принципиальной конструкции корпуса ФИ изображено на рисунке ниже.

Фазоинвертор в двери авто. Смотреть фото Фазоинвертор в двери авто. Смотреть картинку Фазоинвертор в двери авто. Картинка про Фазоинвертор в двери авто. Фото Фазоинвертор в двери авто

ФИ имеет 2 составляющие — объем(как передаточная среда) и порт(как дополнительный излучатель). Принцип работы оформления типа «фазоинвертор» — корпус инвертирует по фазе энергию обратной стороны диффузора и при помощи порта передает ее в среду, тем самым усиливая акустическую отдачу. Проще говоря, корпус делает из «отрицательных» волн «положительные», эти «положительные» волны и усиливают итоговую отдачу.

В случае с ФИ, мы настоятельно рекомендуем использование фильтра инфранизких частот.

Раздел 2. Углубляемся.

С принципом работы разобрались, теперь перейдем к практике.

Мы уже много лет проводим тестирование корпусов типа ФИ и за годы работы выявили наиболее востребованные параметры корпуса, которые удовлетворят большинство наших пользователей. Но если есть желание получить действительно что то особенное от баса — придется поработать и настроить ФИ индивидуально.

При правильном подключении, диффузор движется сначала вверх, создавая разряжение в корпусе, за тем вниз, создавая сжатие. И это нормально, но в частных случаях лучше работает в обратном порядке. Потому, первое что мы попробуем изменить – заставим диффузор перемещаться сначала вниз, затем вверх. Для этого достаточно лишь поменять полярность подключения динамика – «перепутаем» плюс с минусом, теперь диффузор сперва переместится вниз и это серьезно изменит звучание. Не путайте акустические клеммы с питанием, подключив питающие провода к усилителю не верно, Вы гарантированно его сожжете.

Размяли динамик, отслушали наш стандартный корпус, поигрались с настройками магнитолы и частотами срезов, покрутили эквалайзеры и прочие «улучшайзеры»… что то все равно не устраивает? Так перейдем к существу вопроса и изменим корпус так, чтобы устраивало все!

Настройка. Давайте сразу договоримся, во многих источниках под «настройкой» ФИ принято понимать некую единственную частоту. Мы якобы можем включить какую нибудь программу, в которую нужно внести какие то параметры и которая сразу же нам скажет и нарисует нужный ящик. Все это в корне не верно. Настройка — это осознанный и практический процесс, итогом которого является нужный результат, не зависимо от того, будет это качество звука или какое то сверх-естественное давление или особенно широкий диапазон.

Объем служит для того, чтобы изменить полярность обратной волны с «-» на «+», порт же является своего рода передатчиком энергии. Проще говоря, объем нужен тем больше, чем ниже и глубже нужен бас, порт же нужен строго определенный, тк от порта зависит то, на сколько и какая именно частота будет усилена. Еще проще говоря, объем устанавливает рамки рабочего диапазона, порт усиливает нужную часть диапазона или расширяет его вверх или вниз.

Далее рассмотрим то, как на практике происходит процесс настройки корпуса. И для начала определим основные параметры, которые мы сможем измерить, ощутить, услышать и изменить. Не будем углубляться в физику, оно и не нужно, будем размышлять проще…

Громкость – все знают что это такое, измеряется в Децибеллах (Дб). Громкость бывает пиковая (большинство соревнований SPL), измеряется максимальный результат на одной частоте, и усредненная (формат LoudGames) – измеряется ряд частот, среднее значение принимается за конечный результат. Разницу в 3Дб мы уже можем услышать, разница в 10Дб очень хорошо ощутима на слух любому.

Эффективность – этот параметр описывает то, сколько фактической громкости мы получаем с одинаковой подводимой мощности. Пример: имея 500Вт, менее эффективный корпус даст 110Дб в среднем, более эффективный – 120Дб. Нашей задачей является получить максимум эффективности на всех воспроизводимых частотах.

Диапазон воспроизводимых частот – применительно к сабвуферу это диапазон частот от 20 до 100Гц. В идеале сабвуфер должен воспроизводить все эти частоты и с одинаковой громкостью, но в реальности этого конечно нет, сабвуфер отрабатывает часть диапазона и имеет спад громкости ближе к граничным частотам своих возможностей. Наша задача – заставить сабвуфер фактически воспроизводить частоты от 20 до 100Гц, но современные автомобильные мидбасовые динамики способны работать в диапазоне уже от 70-80Гц, а многие и от 50-60Гц, что существенно облегчает задачу.

Групповое время задержек(ГВЗ) – измеряется в миллисекундах, и чем оно выше, тем менее «содержательным» наш бас будет. На практике большое ГВЗ выражается в явном «запаздывании» баса, в отсутствии множества деталей, в «обмякшем», не эмоциональном и «гудящем» басе. Почему «групповое время» — если задержка одинакова на каждой воспроизводимой частоте во всем слышимом диапазоне от 20 до 20000Гц, то бас будет идеален и точен не зависимо от того, на сколько велика эта задержка. Более того, наличие задержки естественно, и чем ниже частота, тем выше задержка. Но в реальности разница между временем задержки на разных частотах гораздо выше идеала и куда менее постоянно, и ввиду этой непостоянной разницы звук превращается в кашу – одна частота играет раньше, другая позже. Наша задача – снизить ГВЗ до естественного уровня.

Максимум эффективности в полном диапазоне воспроизводимых частот при минимуме ГВЗ – наш рецепт идеального корпуса. В реальности же, как обычно, все не так просто, выигрывая в одном, жертвуем чем то другим…

Имея корпус типа «Фазоинвертор», мы оперируем тремя взаимосвязанными переменными – объем, площадь порта и длина порта. Изменяя их, мы имеем возможность добиваться нужного результата по каждому из вышеперечисленных параметров. Разберемся, за что отвечает каждая из этих переменных и как изменения повлияют на параметры звучания, а так же, как повлияет изменение на здоровье нашего динамика и надежность системы в целом.

Объем. Увеличивая объем, мы увеличиваем эффективность, но увеличиваем и ГВЗ, перемещаем нижнюю границу диапазона вниз, но так же, вниз перемещаем и верхнюю границу. И наоборот.

Объемом мы задаем границы диапазона воспроизводимых частот. Все знают о том, что с понижением частоты растет длина волны, а это значит, что чем больше объем, тем больше будет время задержки тыловой волны и тем более эффективным будет преобразование тыловой волны с «-» на «+» на нижних частотах, но тем менее эффективным будет преобразование на верхних частотах.

С увеличением объема, увеличивается уровень и ГВЗ внизу и вверху, но если внизу диапазона увеличение ГВЗ воспринимается как естественное, то вверху это совсем не так. Изменения эффективности так же происходят, с увеличением объема растет эффективность внизу, но падает вверху.

Безусловно, объем оказывает влияние и на ГВЗ, и на эффективность, но это влияние не велико и находится вблизи естественных пределов. Главная задача объема — получение нужного эффективного диапазона воспроизводимых частот.

Динамик и объем связаны между собой. Чем больше используемый объем, тем эффективнее динамик должен быть. Простой пример: 8″ динамик запускаем в объеме 150 литров, звука практически не будет, но 18″ динамик в том же объеме легко даст полноценный бас. Все дело в том, что с увеличением линейного хода, или с увеличением размера, или с увеличением эффективности, или с увеличением сразу всех трех этих характеристик, динамик способен эффективно воздействовать на бОльшую массу воздуха.

В результате наших собственных тестов мы уже определили для вас наиболее эффективный объем для каждого нашего сабвуфера, иными словами, мы определили диапазон, в котором сабвуфер будет работать так, чтобы было возможно получить наиболее качественный звук благодаря отсутствию «провала» между мидбасом и сабвуфером, при этом мы измерили множество различных мидбасов в различных реальных условиях, определив, что нижняя воспроизводимого ими диапазона — 69-84Гц. Если Ваш мидбас реально и эффективно работает ниже обозначенных рамок, то мы рекомендуем увеличивать объем, в следствии чего сабвуфер будет работать ниже, а жертва верхней границей окажется безболезненной для системы.

С объемом разобрались, с его помощью задаем начальные границы диапазона, теперь рассмотрим порт. Порт имеет 2 параметра — площадь сечения и длина, и изменяя эти параметры, мы определяем, какой ширины диапазон будет усилен портом, в какой части рабочего диапазона будет располагаться это усиление, на сколько эффективным будет усиление, как это повлияет на ГВЗ.

Длина порта. Увеличивая длину порта, тем самым мы увеличиваем массу воздуха в порте, то есть, увеличиваем нагрузку на динамик, заставляя его «толкать» бОльшую массу воздуха. Больше воздуха — выше эффективность, но выше и уровень ГВЗ.

Длина порта на прямую влияет на динамик, повышая или, наоборот, понижая нагрузку на диффузор. В условиях оптимальной нагрузки динамик работает наиболее эффективно, создается и приличный уровень звукового давления и организуются условия для обеспечения достаточно хода диффузора, а значит, и охлаждение звуковой катушки будет достаточным и звук будет приятно глубоким и точным. Увеличивая длину порта, мы конечно увеличиваем эффективность, но увеличиваем и нагрузку на диффузор, ход будет меньше, охлаждение хуже, ГВЗ выше.

Наша рекомендация, указанная к каждому динамику — это своеобразная золотая середина между высокой эффективностью и уровнем ГВЗ, что называется «динамик нагружен оптимально».

Необходимо иметь ввиду, нагрузка на динамик создается как корпусом ФИ сзади, так и салоном автомобиля спереди. Все наши тесты мы проводим для среднего багажника автомобиля средних размеров. Предположим нагрузка на динамик спереди снижается (слушаем с открытыми дверями или автомобиль слишком большой, типа микроавтобуса), в этом случае длину порта необходимо увеличить, тем самым мы компенсируем падение фронтальной нагрузки повышением тыловой нагрузки. Обратный случай — замкнутое пространство багажника седана ввиду своего ограниченного объема существенно «сдерживает» ход сабвуфера, нагрузку в этом случае так же необходимо компенсировать, но уже путем уменьшения длины порта.

Изменяя длину порта, мы так же можем достигнуть и другой цели — расширить диапазон воспроизводимых частот или вверх или вниз, но в этом случае неизбежно выведем систему из равновесия. Увеличивая длину порта, мы, как и в случае с объемом, но в гораздо меньшей степени, увеличиваем и время задержки «тыловой» волны, тем самым повысим эффективность работы сабвуфера в нижней части диапазона. Однако, как уже было сказано выше, сделав это, мы жертвуем «здоровьем» динамика, заставляя его работать выше своих возможностей. Оптимальная же длина порта усиливает весь диапазон воспроизводимых частот, усиливая центральную его часть с плавным падением к краю.

Наша рекомендация длины порта — это золотая середина между высокой эффективностью и ГВЗ в условиях установки сабвуфера в багажнике средних размеров для обслуживания объема салона среднего автомобиля.

Итак, что мы имеем. Отталкиваясь от наших рекомендаций, увеличиваем длину порта в случае, если необходимо компенсировать нагрузку на динамик. Увеличиваем длину порта чтобы увеличить отдачу внизу рабочего диапазона, увеличить нагрузку на динамик и принести в жертву эффективность и увеличить ГВЗ. И наоборот.

Площадь порта. Изменяя площадь порта, мы сужаем или расширяем диапазон воспроизводимых частот сабвуфера, так же, изменяем как эффективность, так и ГВЗ.

Площадь, как и длина порта, разгружают или нагружают динамик, изменяя массу воздуха в порте. Чем больше площадь, тем выше ГВЗ и выше эффективность и наоборот.

Порт имеет определенную пропускную способность. Чем больше площадь порта, тем выше его пропускная способность, тем лучше порт работает на низких частотах, но тем более узким будет диапазон. Однако, слишком большая площадь порта сильно перегрузит динамик до такой степени, что его эффективность упадет до нуля. И наоборот, слишком малая площадь порта, и о прибавке громкости, свойственной ФИ, можно забыть.

Наш порт — это разумный компромисс между шириной диапазона, эффективностью и ГВЗ. В итоге, опять же отталкиваясь от наших рекомендаций, увеличиваем площадь порта в случае, если есть необходимость получить повышенную эффективность в суженном диапазоне частот, или же уменьшаем площадь порта в случае, когда нужно расширить диапазон или снизить ГВЗ, но есть возможность и жертвовать эффективностью.

Комплексные изменения. Как мы видим, и объем, и порт отвечают за одни и те же параметры, но в реальности их влияние не одинаково ни по степени, ни по силе воздействия на конечный результат. Изменяя объем, мы настраиваем диапазон воспроизводимых частот, изменяя порт, мы настраиваем сабвуфер на работу в конкретных условиях. Однако, как Вы уже поняли, существует множество вариантов изменений сразу нескольких параметров, в результате чего есть возможность настроить сабвуфер так, чтобы он работал индивидуально. Это означает, что Вы добровольно жертвуете каким то менее значимым параметром звучания, но получаете возможность выделить гораздо более значимый.

Пределы изменений. Изменение объема всегда будет оказывать менее существенное влияние на характер звучания, чем порт, но пределы изменения объема значительно более широкие. Полезные изменения объема находятся в пределах +-60% от исходного. Изменения площади и длины порта следует делать с особой осторожностью, и в пределах не более 35%. Все изменения, выходящие за эти пределы, повлекут серьезные негативные последствия, перекрывающие все видимые плюсы. Это и существенные изменения звучания в негативную сторону, равно как возможно и очень значительное повышение нагрузки на динамик.

Так же, при комплексных переменах остерегайтесь «двойного действия». К примеру, увеличили объем и увеличили длину порта — оба эти действия не просто сильно понизят диапазон воспроизводимых частот, но и крайне серьезно перегрузят динамик. Необходимо проявить максимум осторожности и внимания к внесению изменений подобного характера.

Вполне возможно, внося одно изменение, компенсировать его другим. Например, увеличивая объем, уменьшить длину порта и т.п. Такие изменения способны как привести к нужному результату, так и компенсировать нежелательные последствия.

Помните, любые изменения полезны до того момента, пока не вносят более существенный вред. Нет таких изменений, которые дают только плюсы и не имеют минусов. При изменении нами рекомендованного корпуса, перед Вами стоит конкретный вопрос – чем, в какой степени и ради чего Вы готовы жертвовать.

Программы для компьютерного моделирования. В природе существует ряд программ, способных смоделировать результат работы сабвуфера на базе некоторых параметров. Мы рекомендуем ознакомиться с такими программами, по одной единственной причине — они способствуют пониманию изложенного материала. Однако, результат моделирования ни в коем случае не должен являться для Вас руководством к действию ввиду того, что ни одна программа на сегодняшний день не учитывает и половины тех нюансов, которые в реальности влияют на работу сабвуфера. Невозможно с помощью программы построить сабвуфер с нуля, однако возможно понять, как то или иное изменение корпуса повлияет на характер звучания в целом. Иными словами, программа поможет только тогда, когда уже есть от чего отталкиваться и нужно внести какие то изменения в уже существующий и рабочий корпус.

Начальное руководство мы получили, давайте теперь рассмотрим на реальных примерах применение полученных знаний…

Пример 1. Мидбас поставили в ящик или в хорошо подготовленную дверь, теперь он работает значительно ниже и эффективнее чем раньше, а естественная величина задержки на нижней границе мидбасового диапазона возросла. Получается, что нам уже не нужен диапазон работы от 20 до 80Гц, а нужен лишь от 20 до 60Гц. Мы знаем, что DD исследует и создает корпуса так, чтобы они эффективно воспроизводили частоты «сверху вниз», то есть, DD жертвует самым низом, чтобы правильно состыковать мидбас и сабвуфер и получать «цельный» звук. Увеличиваем объем и смотрим что получилось – сабвуфер теперь работает более эффективно и глубоко, а возросшая задержка на верхней границе не оказала влияния на звук, т.к. разница между нижней задержкой мидбаса и сабвуфером не изменилась.

Пример 2. Низкокачественный мидбас поставили в штатное место… При таких условиях возникает существенный провал между сабвуфером и мидбасом, в результате ряд частот мы просто не слышим, а сабвуфер играет «отдельно от музыки». Чтобы получить естественный звук, лучше всего будет не перекладывать проблему «с больной головы на здоровую» и поработать с мидбасом. Но если это невозможно (а оно часто невозможно по целому ряду причин), существует ряд решений:

— уменьшаем объем корпуса. Жертвуя нижними частотами, мы все же получаем «цельное» звучание.

— уменьшаем площадь порта и уменьшаем длину порта. Жертвуя эффективностью, получаем более широкий диапазон воспроизводимых частот.

— уменьшаем объем и увеличиваем длину порта. Жертвуя «здоровьем» динамика, расширяем диапазон…

Пример 3. Нужен более глубокий, более «мягкий» бас…

— уменьшаем площадь порта. Жертвуя эффективностью, мы расширяем диапазон и уменьшаем разницу в громкости между частотами в центре диапазона, уменьшаем ГВЗ, получаем точный, низкий, приятный бас, но менее громкий…

— уменьшаем объем, увеличиваем длину порта, уменьшаем площадь порта, в итоге изменений уровень ГВЗ падает вместе с эффективностью, а диапазон существенно расширяется с плавным спадом за пределами…

Пример 4. Хочется «надавить» на соревнованиях…

— в этом случае уменьшаем объем, увеличиваем площадь и длину порта, получаем рост эффективности в центре диапазона и резкий спад по краям, сам же диапазон смещается вверх ближе к резонансной частоте кузова. Для музыки не подойдет, но «надавить» уже куда веселее.

Пример 5. Хочется много «инфры» c «ветерком»…

— увеличиваем объем, увеличиваем площадь порта. Сдвигаем диапазон в «нужное» место и площадью порта увеличиваем эффективность, бинго, жертвуем всем в пользу эффективности на самых низких частотах.

— увеличиваем объем, увеличиваем площадь порта, увеличиваем длину порта. Тот же самый результат, но в условиях, когда мощности недостаточно и есть некоторый «запас» в системе охлаждения.

Пример 6. Нужно получить максимально качественный бас…

— уменьшаем площадь порта. Теряем в эффективности, но получаем более широкий диапазон и уменьшаем ГВЗ.

— уменьшаем площадь порта и уменьшаем объем. Теряем в эффективности еще больше, расширяем диапазон вверх и серьезно уменьшаем ГВЗ…

Пробуем! Полученный звук нестандартен и с помощью простых манипуляций с объемом корпуса или параметрами порта уже соответствует Вашей системе! Для персонализации большинства систем и этих знаний более чем достаточно. Однако профессиональный подход подразумевает более детальные и более точные изменения.

Понимание того, за что отвечает изменение, мы уже дали, профессионалу же нужно нечто большее — это измеренные и предельно точные режимы работы, в которых возможно «выжать» максимум пользы из сабвуфера, предельно качественный звук, предельно высокий уровень громкости, предельно точный диапазон работы…

Источник

Фазоинвертор. Откройте дверь! Журнал «Автозвук»

Сохранить и прочитать потом —

Несколько выпусков серии подряд были посвящены самому (на первый взгляд) простому и одному из двух наиболее популярных видов акустического оформления для сабвуфера — закрытому ящику. И наряду с прочим было сказано: ЗЯ — единственный вид оформления, потенциально способный создать в машине ровную АЧХ на низких частотах. Казалось бы, вопрос закрыт и никакого другого оформления не требуется. Однако статистика, так любимая специалистами нашего тестового департамента, демонстрирует: в реально построенных аудиосистемах ЗЯ и ФИ представлены примерно поровну и вместе составляют больше 80 процентов парка сабвуферов. Естественный вопрос: если дырку в сабвуфере вырезают, значит, это кому-нибудь нужно? Вопрос, как и его поэтический прототип — риторический, не нужно было бы — не дырявили бы закрытые ящики.

Переключим клавиатуру из риторической раскладки в практическую, спросив, кому и зачем. И окажется, что на эти два вопроса нельзя дать общий ответ. Разным — для разного. И, чтобы этим основательно проникнуться, предлагаю, в который уже раз, для начала погрузиться в пучины прошлого.

Фазоинвертор в двери авто. Смотреть фото Фазоинвертор в двери авто. Смотреть картинку Фазоинвертор в двери авто. Картинка про Фазоинвертор в двери авто. Фото Фазоинвертор в двери авто

Факсимиле оригинального патента на фазоинвертор. Автор считал, что надо тоннель поместить как можно ближе к диффузору, по кругу, эта идея испытания временем не выдержала. А остальное ещё как выдержало.

Кто, где, когда

Всякое такое погружение чревато парадоксальными находками. В начале этого года, в №2, я предлагал вам отметить полувековой юбилей закрытого ящика, согласно бумаге, выданной патентным ведомством США. Надеюсь, вы воспользовались поводом. Когда был изобретён фазоинвертор? За двадцать четыре года до этого, согласно тому же источнику. В июле 1932-го, всего через три года после появления первого динамического громкоговорителя, которым мы практически в неизменном виде пользуемся по сей день и будем пользоваться до дня, назначенного нам судьбой, сотрудник лабораторий телефонной компании Bell Альберт Турас получил охранную грамоту на устройство, скромно и формально названное им «звуковоспроизводящий прибор». Цели, которые преследовал изобретатель, были сформулированы уже в первом абзаце документа. Целью было улучшить воспроизведение низких частот, добившись, по собственному выражению изобретателя, «более естественного воспроизведения низких нот в речи и музыке, находящегося в более правильной пропорции с высокими нотами, чем было возможно прежде».

Такова была цель. В качестве средства мистер Турас предлагал так обустроить громкоговоритель, чтобы использовать излучение не одной, а обеих сторон диффузора. Механизм такого использования Турас понимал правильно, расписав, что трубы, соединяющие объём ящика с окружающим пространством, будут действовать как механический фильтр, внося на определённых частотах фазовый сдвиг в 180 градусов между акустической волной на их входе (внутри ящика) и на выходе (снаружи). В этом случае, как совершенно справедливо рассудил изобретатель, терявшаяся прежде энергия выйдет наружу, а находясь в фазе с уже излучённой лицевой стороной диффузора, увеличит создаваемое всем ансамблем звуковое давление. И, как было отмечено уже тогда, семьдесят с лишним лет назад, происходить это будет только в узкой полосе частот, на которую предлагавшиеся им трубы настроены.

Забавно, что во всём документе понятие резонансной частоты динамика в явной форме не встречается, автор великого изобретения говорит лишь о частотах, где излучение начинает ослабевать, мы-то, здесь и сейчас, знаем, что это как раз ниже резонансной частоты.

На фоне этих, абсолютно обоснованных рассуждений довольно трогательно выглядят заблуждения изобретателя, касающиеся практического устройства «звуковоспроизводящего прибора». Турасу казалось, что всё произойдёт по его рецепту, только если выход труб или кольцевого канала (в общем, того, что мы нынешние называем тоннелем или портом ФИ) будут находиться как можно ближе к диффузору, окружая его тесным кольцом. Сегодня мы знаем, что на практике не очень важно, где будет выход тоннеля, синфазность излучения на низких частотах на пострадает. Но всё равно мистеру Турасу от всех нас спасибо большущее.

Откройте дверь, закройте дверь

Давайте всё же вспомним (за этим и собрались, в конце концов), что происходит в корпусе сабвуфера, если, помимо самого корпуса и динамика, в нём проделали дыру и закрепили в ней отрезок трубы. Начнём двигаться по шкале частот сверху, так удобнее. Пока частота сигнала, подаваемого на динамик, достаточно высока, наличие прорехи в ящике ни на чём особо не сказывается. Почему? Да потому, что действует тот самый механический фильтр, о котором писал изобретатель фазоинвертора. В простых же словах дело происходит так: когда колебания давления внутри ящика происходят с большой частотой, масса воздуха в тоннеле не успевает прийти в движение, дверь вроде бы есть, но если её часто-часто трясти за ручку, она так и останется закрытой. Одновременно смотрим на то, на что Альберт Турас не смотрел, тогда ещё не было принято — на кривую импеданса нашего громкоговорителя (на самом деле понимаем, не просто громкоговорителя, а сабвуфера). В качестве примера взята реальная кривая импеданса корпусного сабвуфера-фазоинвертора характерной двугорбой формы. Почему двугорбой и что означают горбы, выяснится очень скоро, а пока мы находимся там, где отмечено красной точкой, импеданс (проще говоря — сопротивление) громкоговорителя невелик, поскольку невелика амплитуда колебаний диффузора.

Забыли, как связана амплитуда с сопротивлением? Вот велика беда, сейчас вспомним. Смотрите: сопротивление динамика оказывается тем больше, чем меньше ток, проходящий по звуковой катушке при одном и том же подведенном напряжении, верно? Когда диффузор колеблется, он создаёт противо-ЭДС, ток при этом уменьшается. А это то же самое, что возрастание сопротивления. Если диффузор заклинить (это иногда происходит по естественным причинам у особо ретивых эспиэльщиков и примкнувших к ним в результате перегрева и расклеивания звуковой катушки), его сопротивление будет на низких частотах практически неизменным, а на более высоких — расти в силу индуктивности, и только. Когда частота приближается к резонансной, амплитуда колебаний диффузора возрастает (на то он и резонанс), растёт и противо-ЭДС, ток в катушке уменьшается, это равносильно росту её сопротивления.

Фазоинвертор в двери авто. Смотреть фото Фазоинвертор в двери авто. Смотреть картинку Фазоинвертор в двери авто. Картинка про Фазоинвертор в двери авто. Фото Фазоинвертор в двери авто Фазоинвертор в двери авто. Смотреть фото Фазоинвертор в двери авто. Смотреть картинку Фазоинвертор в двери авто. Картинка про Фазоинвертор в двери авто. Фото Фазоинвертор в двери авто

Пока частота достаточно высока, существенно больше частоты настройки Fb, амплитуда колебаний диффузора растёт, а тоннель, хоть и выглядит открытой дверью, на самом деле заперт на «инерционный замок».

Фазоинвертор в двери авто. Смотреть фото Фазоинвертор в двери авто. Смотреть картинку Фазоинвертор в двери авто. Картинка про Фазоинвертор в двери авто. Фото Фазоинвертор в двери авто Фазоинвертор в двери авто. Смотреть фото Фазоинвертор в двери авто. Смотреть картинку Фазоинвертор в двери авто. Картинка про Фазоинвертор в двери авто. Фото Фазоинвертор в двери авто

На частоте настройки давление воздуха в ящике «хлопает дверью» ровно в противофазе с собой, а значит — в фазе с диффузором.

Фазоинвертор в двери авто. Смотреть фото Фазоинвертор в двери авто. Смотреть картинку Фазоинвертор в двери авто. Картинка про Фазоинвертор в двери авто. Фото Фазоинвертор в двери авто Фазоинвертор в двери авто. Смотреть фото Фазоинвертор в двери авто. Смотреть картинку Фазоинвертор в двери авто. Картинка про Фазоинвертор в двери авто. Фото Фазоинвертор в двери авто

Когда частота уходит ниже настройки, тоннель начинает работать в противофазе с диффузором. Диффузор, получается, работает, а тоннель всё сводит насмарку.

Начнём снижать частоту подведенного сигнала. Мы приближаемся к частоте резонанса динамика в ящике, как если бы он был закрытым (как её определить, зная параметры динамика и объём ящика, уж теперь-то вы знаете назубок). Импеданс растёт, это означает: динамик приближается к резонансу, растёт амплитуда колебаний диффузора, а «дверь» в ящик пока остаётся закрытой. До сих пор поведение динамика в корпусе с тоннелем идентично (не считая мелких факторов, которые сейчас проигнорируем, чтобы не запутаться) его поведению в корпусе, закрытом со всех сторон, то есть — в ЗЯ.

Кстати: если заткнуть тоннель фазоинвертора, на импедансной характеристике останется только один, верхний горб, это приходилось видеть не раз, когда в соседнем журнале «Салон AV» тестировались домашние колонки, к которым прилагались затычки для тоннелей. А мы идём ниже по частоте. Ниже резонанса диффузор должен был бы бесполезно сжимать воздух в корпусе, но теперь дверь наружу перестаёт быть закрытой, колебания давления внутри начинают выходить на волю. Выходят они сдвинутыми по фазе относительно того, что было внутри ящика. Почему? Есть два объяснения: корректное и простое, выберите по своему вкусу. Корректное: такова фазочастотная характеристика механического фильтра, которым является сочетание упругости воздуха в ящике и массы воздуха в тоннеле. Не берёте? Тогда простое: за ручку «акустической двери» теперь дёргают медленнее, она начинает приоткрываться, но дверь тяжёлая и поэтому запаздывает. Вот он и фазовый сдвиг. Наконец, на какой-то частоте фазовый сдвиг достигает ровно 180 градусов. Это значит: диффузор, например, идёт вперёд, создавая волну давления перед собой и волну разрежения — позади, то есть — внутри ящика. Эта волна хочет попасть наружу через тоннель, но запаздывает, и когда наконец выбирается наружу, диффузор уже движется назад, создавая волну разрежения и впереди себя. Две волны складываются в фазе, звуковое давление достигает максимума.

Что там у нас на импедансной кривой? Сопротивление падает, достигая минимума как раз на той частоте, где фазовый сдвиг оказывается равным 180 градусам и которая называется частотой настройки фазоинвертора. Что означает минимум импеданса? Совершенно верно: амплитуда колебаний диффузора здесь наименьшая. Парадокс, казалось бы, именно там, где звуковое давление наибольшее, амплитуда колебаний диффузора — наименьшая. Нет тут парадокса, всё по закону. Именно здесь, на этой частоте, с диффузора снимается максимум энергии, среда сопротивляется его движению и с передней стороны, и (ещё больше) с тыльной, а сопротивляясь, преобразует колебания диффузора в звук.

Ещё одно «кстати»: есть расхожий штамп в популярной (иногда чересчур) литературе, где описывается принцип работы фазоинвертора. Там говорится, что на частоте настройки, мол, диффузор вообще неподвижен, а весь звук излучается тоннелем. Позвольте поинтересоваться у невидимых авторов этой мудрости: если диффузор действительно будет неподвижен, с какого перепуга будет двигаться воздух в тоннеле? От сквозняков, что ли? Нет, здесь дело в другом: диффузор движется мало, но эффективно передаёт энергию в окружающую среду, оттого и результат (в децибелах) изрядный. Это как производительность труда: если человек работает полдня, но тяжко, он сделает то же, что другой спустя рукава за день. А со стороны видно только, что поработал полдня — и домой.

Ну ладно, насладились слаженной работой диффузора и тоннеля на частоте настройки, давайте двигаться дальше. В прежнем направлении, вниз по частоте. Когда частота сигнала снижается, запаздывание в открывании-закрывании двери становится всё меньше и в какой-то момент пропадает совсем. Как, скажем, было бы с реальной дверью, пусть даже и тяжёлой, если бы её требовалось открывать-закрывать раз в полчаса. На такой частоте кто не успеет вовремя? Для сабвуфера же это означает, что воздух из тоннеля выходит в фазе с колебаниями давления внутри ящика и в противофазе — с колебаниями, создаваемыми снаружи корпуса диффузором. Результат? Плачевный, а вы какого ждали. Ниже частоты настройки излучение тоннеля начинает отъедать то, что излучает диффузор, складываясь с прямым излучением в противофазе. Именно этим объясняется (если просто, а не корректно) главная особенность АЧХ фазоинвертора по сравнению с АЧХ закрытого ящика. У ЗЯ, как мы знаем, в свободном пространстве звуковое давление ниже частоты резонанса падает со скоростью 12 дБ/окт., а у фазоинвертора ниже частоты настройки тоннеля — вдвое быстрее, в темпе 24 дБ/окт. Это — прямой результат контрпродуктивной на этих частотах, подлой, можно сказать, деятельности тоннеля.

Вернёмся к импедансной кривой. Это самый могучий инструмент в электроакустике, который может рассказать об очень многом. Ниже частоты настройки тоннеля на кривой начинает расти второй горб. Мы уже уяснили: где горб на кривой сопротивления — там рост амплитуды колебаний диффузора. Но только здесь он оказывается совершенно бесполезным: диффузор азартно трясётся, не замечая, что дверь в ящик открыта настежь и звуковые волны в противофазе, которые в закрытом ящике умерли бы внутри, беспрепятственно выходят наружу, сводя на нет все старания бедного динамика.

Реально бедного: одним из недостатков фазоинвертора как акустического оформления считается то, что ниже частоты настройки диффузор ничем не ограничен в своём движении, значит, если на динамик попадет сигнал очень низкой (как правило — инфразвуковой) частоты, амплитуда колебаний может выйти за безопасные пределы. Во имя недопущения подобных трагедий и придуманы фильтры-сабсоники в усилителях.

Кому и зачем?

Было же сказано: разным и для разного. То, для чего был придуман фазоинвертор изначально, лучше других сформулировал тот, кто его придумал. В течение всех последовавших за этим заявлением десятилетий конструкторы акустики делали именно это — ставили динамик в ФИ, когда требовалось улучшить воспроизведение низких частот. Улучшить? А что это означает? В домашней акустике, из которой, придётся признать, мы все выросли, как из гоголевской «Шинели», это означало расширить полосу воспроизводимых частот вниз. Применением ФИ это достигается настолько эффективно, что сегодня, если вы взглянете на ассортимент домашней акустики, найти что-то в закрытом ящике будет трудно на грани возможного. Почти сплошь «скворечники» всех мастей и габаритов. Причину такой популярности легко проиллюстрировать: вот три АЧХ динамика с довольно типичными параметрами в трёх вариантах акустического оформления. Оптимальный ФИ, оптимальный же (то есть настроенный на баттервортовскую добротность Qtc = 0,707) закрытый ящик и закрытый ящик того же объёма, что и ФИ. В фазоинверторе нижняя граничная частота получается 32 Гц, в таком же по объёму закрытом ящике — 59, в закрытом ящике оптимального объёма — 57. Почувствуйте разницу. Производители и потребители «домашки» давно почувствовали, вот и не слезают с фазоинверторов, хоть палкой гони.

А на то, что ниже граничной частоты звуковое давление у ФИ падает гораздо быстрее, чем у ЗЯ, в этой, домашней постановке задачи, наплевать. А нам, мобильным и моторизованным? Отнюдь нет. Помните про передаточную функцию салона? Конечно, помните, такое не забывается. Она ведёт звуковое давление вверх (начиная с некоторой частоты) с наклоном 12 дБ/окт. У закрытого ящика ниже частоты резонанса звуковое давление падает ровно с такой же скоростью. Значит, при надлежащем выборе параметров сабвуфера одно на одно наложится и произведёт на свет идеально ровную АЧХ, какая в «домашке» и не снилась. А фазоинвертор заваливает свою характеристику со скоростью 24 дБ/окт., такое салон компенсировать не может, значит, с этим оформлением мы всегда (подчеркну: всегда) будем иметь завал АЧХ с наклоном 12 дБ/окт. уже в салоне начиная опять же с некоторой, но уже другой частоты. Вот давайте взглянем: затащим по очереди три ящика из предыдущего примера в машину. Оптимальный ЗЯ: ну что тут скажешь, оптимальный он и есть. ЗЯ увеличенного размера из-за более низкой резонансной частоты показал более высокую отдачу на инфранизах, но и только. Но если к нему пристроить тоннель, настроив «выходную дверь» на 30 Гц или около того, завал АЧХ с этой частоты начнётся, но с какой высоты, взгляните! Обрезок недорогой сантехники привёл к росту звукового давления в полосе частот 25 — 40 Гц (для «домашников» такие частоты — вообще или мечта, или разорение) в среднем на 7 дБ (минимум 6, максимум — 9). Уже минимум означает: при том же уровне звукового давления к сабвуферу надо будет подвести мощность вчетверо (!) ниже, чем к динамику в идеальном, аудиофильском закрытом ящике. Или примерно втрое ниже, чем в закрытом ящике равного объёма (для данного примера). Вот вам и вторая часть ответа на связку вопросов «кому — зачем». В машине — для получения лишнего звукового давления, как раз наиболее широкую полосу частот у нас обеспечивает ЗЯ. В этом отношении автомобильная басовая акустика прямо противоположна домашней.

Возникает вопрос, а нужна ли нам такая АЧХ? В принципе, ответ уже был в одном из прошлых выпусков «ВВ». Но если к следующему разу не сможете найти, с этого и начнём. Подсказка: бас народа — бас божий.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *