Пластический обмен у человека в чем сущность
Пластический обмен у человека в чем сущность
Установите соответствие между признаком и видом обмена веществ, для которого этот признак характерен. Для этого к каждому элементу первого столбца подберите позицию из второго столбца. Впишите в таблицу цифры выбранных ответов.
                            ПРИЗНАК                        | ВИД ОБМЕНА ВЕЩЕСТВ |
A) совокупность реакций синтеза органических веществ     | 1) пластический |
Б) в процессе реакций энергия поглощается     | 2) энергетический |
В) в процессе реакций энергия освобождается | |
Г) участвуют рибосомы | |
Д) реакции осуществляются в митохондриях | |
E) энергия запасается в молекулах АТФ |
Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:
Обмен веществ (метаболизм) — это совокупность всех химических реакций, которые происходят в организме.
Пластический обмен (биосинтез) — это когда из простых веществ с затратой энергии образуются (синтезируются) более сложные. Пример: при фотосинтезе из углекислого газа и воды синтезируется глюкоза; при биосинтезе белка из аминокислот образуются белки.
Энергетический обмен (распад, дыхание) — это когда сложные вещества распадаются (окисляются) до более простых, и при этом выделяется энергия, необходимая для жизнедеятельности. Пример:в митохондриях глюкоза, аминокислоты и жирные кислоты окисляются кислородом до углекислого газа и воды, при этом образуется энергия (клеточное дыхание).
Взаимосвязь пластического и энергетического обмена. Пластический обмен обеспечивает клетку сложными органическими веществами (белками, жирами, углеводами, нуклеиновыми кислотами), в том числе белками-ферментами для энергетического обмена. Энергетический обмен обеспечивает клетку энергией. При выполнении работы (умственной, мышечной и т. п.) энергетический обмен усиливается.
Энергетический обмен
Обмен веществ
Энергетический обмен
Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).
Подготовительный этап осуществляется ферментами в ЖКТ. В результате действия ферментов сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.
Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.
Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).
Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.
Пластический обмен
АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.
В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Пластический обмен у человека в чем сущность
Пластический обмен в клетке это совокупность реакций ассимиляции, т. е. превращение определенных веществ внутри клетки с момента их поступления до образования конечных продуктов – белков, глюкозы, жиров и пр. Для каждой группы живых организмов характерен особый, генетически закрепленный тип пластического обмена.
Пластический обмен у животных. Животные являются гетеротрофными организмами, т. е. они питаются пищей содержащей готовые органические вещества. В кишечном тракте или кишечной полости они расщепляются: белки до аминокислот, углеводы до моносахаридов, жиры до жирных кислот и глицерина. Продукты расщепления проникают в кровь и непосредственно в клетки тела. В первом случае продукты расщепления опять-таки оказываются в клетках организма. В клетках происходит синтез веществ характерный уже для данной клетки, т. е. формируется специфический набор веществ. Из реакций пластического обмена простейшими являются реакции обеспечивающие синтез белков. Синтез белка происходит на рибосомах, согласно информации о структуре белка содержащийся в ДНК, из аминокислот поступивших в клетку. Синтез ди-, полисахаридов идет из моносахаридов в аппарате Гольджи. Из глицерина и жирных кислот синтезируются жиры. Все реакции синтеза идут с участием ферментов и нуждаются в затрате энергии, энергию для реакций ассимиляции дает АТФ.
Пластический обмен в клетках растений имеет много общего с пластическим обменом в клетках животных, но обладает определенной специфичной связанной со способом питания растений. Растения это аутотрофные организмы. Растительные клетки, содержащие хлоропласты, способны синтезировать органические вещества из простых неорганических соединений с использованием энергии света. Этот процесс известный под названием фотосинтеза позволяет растениям с участием хлорофила из шести молекул углекислого газа и шести молекул воды получать одну молекулу глюкозы и шесть молекул кислорода. В дальнейшем преобразование глюкозы идет по известному нам пути.
Метаболиты возникающие у растений в процессе обмена веществ дают начало составным элементам белков – аминокислотам и жиров – глицерину и жирным кислотам. Синтез белка у растений идет как и у животных на рибосомах, а синтез жиров на цитоплазме. Все реакции пластического обмена у растений идут с участием ферментов и АТФ. В результате пластического обмена образуются вещества обеспечивающие рост и развитие клетки.
Пластический обмен (анаболизм)
Вы будете перенаправлены на Автор24
Пластический обмен (анаболизм) – это совокупность химических реакций в живом организме, которая представляет собой одну сторону системы обмена веществ. Результатом такого процесса является образование высокомолекулярных соединений.
Сущность понятия пластический обмен (анаболизм)
Для любого живого организма характерен такой фундаментальный процесс как обмен веществ. Он состоит из двух сторон: синтеза (анаболизма) и распада высокомолекулярных соединений (который называется катаболизм). Процессы анаболизма, которые происходят в зеленых растениях с поглощением энергии (фотосинтез) имеют фундаментальное значение для поддержания жизни на планете. Эти химические реакции включают в себя системы синтеза аминокислот, моносахаридов, нуклеотидов, жирных кислот, АТФ, нуклеиновых кислот и макромолекул.
Результатом пластического обмена можно признать тот факт, что он дает организму возможность построить свойственные ему белки, жиры и углеводы, регулируя процесс создания новых клеток, межклеточного вещества и всевозможных органелл.
Значение пластического обмена заключается в следующем:
Существуют различия в системе пластического обмена между гетеротрофами и автотрофами. Последние строят все необходимые вещества на основе органики, получаемой из неорганического углерода CO2. Это происходит в результате фото и хемосинтеза. Они не нуждаются в поступлении органических веществ, так как создают их сами. Гетеротрофные организмы, напротив, испытывают постоянную потребность в поступлении органических веществ из внешней среды, но такая необходимость сильно варьирует у разных организмов.
Например, некоторые бактерии обладают способностью создавать комплекс необходимых веществ из простого органического предшественника ацетата или серы, фосфора. Люди, в свою, очередь не могут обходится без ряда незаменимых аминокислот и других элементов.
Готовые работы на аналогичную тему
Для того, чтобы полностью представить сущность пластического обмена, как фундаментального физиологического процесса необходимо описать систему образования органических молекул.
Синтез белка
Этот процесс происходит в цитоплазме клетки. Белки состоят из аминокислот (всего их 20). Синтез белка подчинен матричному принципу.
Матричный синтез – это процесс анаболизма, при котором вещество создается на основе уникальной матричной молекулы, которая кодирует последовательность аминокислот в белке. Примером такой матрицы является информационная или матричная РНК (рибонуклеиновая кислота).
Этот процесс протекает в несколько этапов:
Данный процесс требует колоссальных энергетических затрат, а именно:
В итоге каждая аминокислота, которая находится в белковой молекуле, состоит из четырёх макроэргических связей. Такие энергетические «потребности» компенсируются точностью и необратимостью образования цепи полипептидов.
Синтез углеводов
Синтез углеводов (глюконеогенез) – это процесс создания молекулы глюкозы из негулеводных соединений (пирувата и др.).
Реакции происходят в таких органах, как печень, эпителий тонкого кишечника и почки. По сути, все эти реакции представляют собой гликолиз, осуществляемый в цитоплазме. Но при этом ряд реакций протекает в митохондриях и эндоплазматической сети.
Уравнение глюконеогенеза выглядит следующим образом:
В свою очередь реакции синтеза гликогена из глюкозы происходят в цитоплазме мышечных тканей, а также клеток печени.
Что касается синтеза жирных кислот происходит в ПЖК. Этот процесс имеет много ступеней. Для его протекания в обязательном порядке необходим катализатор в виде единого полиферментного комплекса, представленного рядом белковых субъединиц. В ходе каждого цикла процесса синтеза жирных кислот молекула делится на 2 атома углерода.
Наконец, синтез нуклеотидов происходит в цитоплазме и реализуется любой активной клеткой организма. Этот процесс также имеет много сложных этапов, в ходе которых из нециклических молекул и ионов (аминокислоты, гидрокарбонат-ион) образуются гетероциклические азотистые основания.
Таким образом, анаболизм включает в себя систему создания всех жизненно важных веществ для любой клетки организма. При этом целесообразно отслеживать возможные нарушения анаболизма, чтобы сохранить клеточную систему здоровой и способной полноценно поддерживать собственный гомеостаз. Нарушения обмена веществ не только подрывают здоровье человека, но и делают невозможным существование любой живой системы.
Пластический обмен у человека в чем сущность
Видео YouTube
СТАДИИ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА
Энергетический обмен (катаболизм, диссимиляция) — это процессы расщепления ве ществ с высвобождением энергии. Высвобожденная энергия преобразуется в энергию АТФ. Наиболее важными процессами энергетического обмена являются дыхание и брожение.
Энергетический обмен – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Синтезированная АТФ становится универсальным источником энергии для жизнедеятельности организмов. Она образуется в результате реакции фосфорилирования – присоединения остатков фосфорной кислоты к молекуле АДФ. На эту реакцию расходуется энергия, которая затем накапливается в макроэргических связях молекулы АТФ, при распаде молекулы АТФ или при ее гидролизе до АДФ клетка получает около 40 кДж энергии.
АТФ – постоянный источник энергии для клетки, она мобильно может доставлять химическую энергию в любую часть клетки. Когда клетке необходима энергия – достаточно гидролизовать молекулу АТФ. Энергия выделяется в результате реакции диссимиляции (расщепления органических веществ), в зависимости от специфики организма и условий его обитания энергетический обмен проходит в два или три этапа. Большинство живых организмов относятся к аэробам, использующим для обмена веществ кислород, который поступает из окружающей среды. Для аэробов энергетический обмен проходит в три этапа:
В организмах, которые обитают в бескислородной среде и не нуждаются в кислороде для энергетического обмена – анаэробах и аэробах, при недостатке кислорода проходят энергетический обмен в два этапа:
Количество энергии, которое выделяется при двухэтапном варианте намного меньше, чем в трехэтапном.
ЭТАПЫ ЭНЕРГЕТИЧЕСКОГО ОБМЕНА
Подготовительный этап – во время него крупные пищевые полимерные молекулы распадаются на более мелкие фрагменты. В желудочно-кишечном тракте многоклеточных организмов он осуществляется пищеварительными ферментами, у одноклеточных – ферментами лизосом. Полисахариды распадаются на ди- и моносахариды, белки – до аминокислот, жиры – до глицерина и жирных кислот. В ходе этих превращений энергии выделяется мало, она рассеивается в виде тепла, и АТФ не образуется. Образующиеся в ходе подготовительного этапа соединения-мономеры могут участвовать в реакциях пластического обмена (в дальнейшем из них синтезируются вещества, необходимые для клетки) или подвергаться дальнейшему расщеплению с целью получения энергии.
Большинство клеток в первую очередь используют углеводы, жиры остаются в первом резерве и используются по окончания запаса углеводов. Хотя есть и исключения: в клетках скелетных мышц при наличии жирных кислот и глюкозы предпочтение отдается жирным кислотам. Белки расходуются в последнюю очередь, когда запас углеводов и жиров будет исчерпан – при длительном голодании.
Бескислородный этап (гликолиз) – происходит в цитоплазме клеток. Главным источником энергии в клетке является глюкоза. Ее бескислородное расщепление называют анаэробным гликолизом. Он состоит из ряда последовательных реакций по превращению глюкозы в лактат. Его присутствие в мышцах хорошо известно уставшим спортсменам. Этот этап заключается в ферментативном расщеплении органических веществ, полученных в ходе первого этапа. Так как глюкоза является наиболее доступным субстратом для клетки как продукт расщепления полисахаридов, то второй этап можно рассмотреть на примере ее бескислородного расщепления – гликолиза (Рис. 1).
Рис. 1. Бескислородный этап
Гликолиз – многоступенчатый процесс бескислородного расщепления молекулы глюкозы, содержащей шесть атомов углерода, до двух молекул пировиноградной кислоты (пируват). Реакция гликолиза катализируется многими ферментами и протекает в цитоплазме клетки. В ходе гликолиза при расщеплении одного моля глюкозы выделяется около 200 кДж энергии, 60 % ее рассеивается в виде тепла, 40 % – для синтезирования двух молекул АТФ из двух молекул АДФ. При наличии кислорода в среде пировиноградная кислота из цитоплазмы переходит в митохондрии и участвует в третьем этапе энергетического обмена. Если кислорода в клетке нет, то пировиноградная кислота преобразуется в животных клетках или превращается в молочную кислоту.
В микроорганизмах, которые существуют без доступа кислорода – получают энергию в процессе брожения, начальный этап аналогичен гликолизу: распад глюкозы до двух молекул пировиноградной кислоты, и далее она зависит от ферментов, которые находятся в клетке – пировиноградная кислота может преобразовываться в спирт, уксусную кислоту, пропионовую и молочную кислоту. В отличие от того, что происходит в животных тканях, у микроорганизмов этот процесс носит название молочнокислого брожения. Все продукты брожения широко используются в практической деятельности человека: это вино, квас, пиво, спирт, кисломолочные продукты. При брожении, так же как и при гликолизе, выделяется всего две молекулы АТФ.
Кислородный этап стал возможен после накопления в атмосфере достаточного количества молекулярного кислорода, он происходит в митохондриях клеток. Он очень сложен по сравнению с гликолизом, это процесс многостадийный и идет при участии большого количества ферментов. В результате третьего этапа энергетического обмена из двух молекул пировиноградной кислоты формируется углекислый газ, вода и 36 молекул АТФ (Рис. 2).
Две молекулы АТФ запасаются в ходе бескислородного расщепления молекулами глюкозы, поэтому суммарный энергетический обмен в клетке в случае распада глюкозы можно представить как:
С 6 Н 12 О 6 + 6О 2 + 38АДФ + 38Н 3 РО 4 = 6СО 2 + 44Н 2 О + 38АТФ
В результате окисления одной молекулы глюкозы шестью молекулами кислорода образуется шесть молекул углекислого газа и выделяется тридцать восемь молекул АТФ.
Мы видим, что в трехэтапном варианте энергетического обмена выделяется гораздо больше энергии, чем в двухэтапном варианте – 38 молекул АТФ против 2.
В отсутствие кислорода или при его недостатке про исходит брожение. Брожение является эволюционно бо лее ранним способом получения энергии, чем дыхание, однако оно энергетически менее выгодно, поскольку ко нечными продуктами брожения являются органические вещества, богатые энергией. Существует несколько видов брожения, названия которых определяются конечными продуктами: молочнокислое, спиртовое, уксуснокислое и др. Так, в скелетных мышцах в отсутствие кислорода протекает молочнокислое брожение, в ходе которого пировиноградная кислота восстанавли вается до молочной кислоты. При этом восстановленные ранее коферменты НАДН расходу ются на восстановление пирувата: