Платформа x86 x64 что это
x86 это 32 или 64 битная Windows? — История CPU
Всем доброго времени суток дорогие посетители блога айтишнега… У меня довольно часто интересуются — x86 это 32 или 64 битная Windows? Поддаваясь логике — можно предположить что x86 явно больше чем x64, но на практике оказывается что x86 равно x32… но тогда почему так пишут и кому надо ударить по голове, чтобы такой путаницы не было?
А теперь давайте я просто взорву вам мозг — x86 равно x32, и внимание, равна x64 — вы были к такому готовы? — думаю нет… теперь давайте разбираться что, как и куда! Чтобы ответить на этот не самый простой вопрос нам нужно вернуться на несколько десятилетий назад, именно оттуда и идет вся эта заварушка.
По голове надо настучать авторам, которые пишут в требованиях к компьютеру x86 и x64 в связке. Писать такое — грубая ошибка, но этим грешат все… x86 — это архитектура процессора, которая отлично себя чувствует и на 64 битных процессорах и на 32 битных! Маркировка x86 пошла от названия первого процессора от компании Intel i8086 и более новых моделей. Потом первые цифры менялись и сокращенно их объединяли x86 на конце модели — этакая линейка процессоров. Конечно же это было очень давно и процессоры маркируются совершенно по другому, но x86 прочно засела в документации и частенько вводит людей в путаницу… которые особо то не интересовались архитектурой процессоров и не вникали в историю их создания
x86 это 32 или 64 битная Windows?
x86 — это не разрядность, а архитектура… но как показала практика — x86 приравняли к 32 битной операционной системе. Если пренебречь всеми правилами, то можно сказать да, x86 равна 32 битной системе в большинстве случаев.
Правильный вариант обозначения выглядел бы примерно так для 32 разрядной операционной системы (OS_WINDOWS_x86_32bit) или так для 64 битной (OS_WINDOWS_x86_64bit), но у нас все поперепутали!
Тут еще нюанс в том, что 32 битные процессоры уже очень и очень продолжительное время были единственными на рынке, и они были архитектуры x86… а когда вышли 64 разрядные — их стали обозначать x64, а для 32 биток оставили все как есть!
x32 или x64 — Что лучше?
В плане производительности конечно же 64 разрядная операционная система имеет явное преимущество, а вот 32 разрядная ОС очень ужата в ресурсах оперативной памяти. 32 битка не может адресовать более 4 гигабайт оперативной памяти, но по факту она видит не более 3,25 гигабайт из четырех! Однако некоторые приложения могут не запуститься на 64 битной WIndows — что и является сдерживающим фактором перехода но новую ОС.
x86 это 32 или 64 битная Windows? — теперь вы можете сами ответить на этот вопрос… главное знать что и куда, а применить знания можно уже в конкретном случае — тут правильность вашего видения может оказаться ошибочным…
ARM против x86: В чем разница между двумя архитектурами процессоров?
Вы наверняка знаете, что мир процессоров разбит на два лагеря. Если вы смотрите это видео со смартфона, то для вас работает процессор на архитектуре ARM, а если с ноутбука, для вас трудится чип на архитектуре x86.
А теперь еще и Apple объявила, что переводит свои Mac на собственные процессоры Apple Silicon на архитектуре ARM. Мы уже рассказывали, почему так происходит. А сегодня давайте подробно разберемся, в чем принципиальные отличия x86 и ARM. И зачем Apple в это все вписалась?
Итак, большинство мобильных устройств, iPhone и Android’ы работают на ARM’е. Qualcomm, HUAWEI Kirin, Samsung Exynos и Apple A13/A14 Bionic — это все ARM-процессоры.
А вот на компьютере не так — там доминирует x86 под крылом Intel и AMD. Именно поэтому на телефоне мы не можем запустить Word с компьютера.
x86 — так называется по последним цифрам семейства классических процессоров Intel 70-80х годов.
Чем же они отличаются?
Есть два ключевых отличия.
Первое — это набор инструкций, то есть язык который понимает процессор
Второе отличие — это микроархитектура. Что это такое?
От того на каком языке говорят процессоры, зависит и то, как они проектируются. Потому как для выполнения каждой инструкции на процессоре нужно расположить свой логический блок. Соответственно, разные инструкции — разный дизайн процессора. А дизайн — это и есть микроархитектура.
Но как так произошло, что процессоры стали говорить на разных языках?
История CISC
Памятка программиста, 1960-е годы. Цифровой (машинный) код «Минск-22».
Всё началось в 1960-х. Поначалу программисты работали с машинным кодом, то есть реально писали нолики и единички. Это быстро всех достало и появился Assembler. Низкоуровневый язык программирования, который позволял писать простые команды типа сложить, скопировать и прочее. Но программировать на Assembler’е тоже было несладко. Потому как приходилось буквально “за ручку” поэтапно описывать процессору каждое его действие.
Поэтому, если бы вы ужинали с процессором, и попросили передать его вам соль, это выглядело бы так:
Этот подход стал настоящим спасением как для разработчиков, так и для бизнеса. Захотел клиент новую инструкцию — не проблема, были бы деньги — мы сделаем. А деньги у клиентов были.
Недостатки CISC
Но был ли такой подход оптимальным. С точки зрения разработчиков — да. Но вот микроархитектура страдала.
Представьте, вы купили квартиру и теперь вам нужно обставить её мебелью. Площади мало, каждый квадратный метр на счету. И вот представьте, если бы CISC-процессор обставил мебелью вам гостиную, он бы с одной стороны позаботился о комфорте каждого потенциального гостя и выделил бы для него своё персональное место.
С другой стороны, он бы не щадил бюджет. Диван для одного человека, пуф для другого, кушетка для третьего, трон из Игры Престолов для вашей Дейенерис. В этом случае площадь комнаты бы очень быстро закончилась. Чтобы разместить всех вам бы пришлось увеличивать бюджет и расширять зал. Это не рационально. Но самое главное, CISC-архитектура существует очень давно и те инструкции, которые были написаны в 60-х годах сейчас уже вообще не актуальны. Поэтому часть мебели, а точнее исполнительных блоков, просто не будут использоваться. Но многие из них там остаются. Поэтому появился RISC…
Преимущества RISC
С одной стороны писать на Assembler’е под RISC процессоры не очень-то удобно. Если в лоб сравнивать код, написанный под CISC и RISC процессоры, очевидно преимущество первого.
Так выглядит код одной и той же операции для x86 и ARM.
Представьте, что вы проектируете процессор. Расположение блоков на х86 выглядело бы так.
Каждый цветной квадрат — это отдельные команды. Их много и они разные. Как вы поняли, здесь мы уже говорим про микроархитектуру, которая вытекает из набора команд. А вот ARM-процессор скорее выглядит так.
Ему не нужны блоки, созданные для функций, написанных 50 лет назад.
По сути, тут блоки только для самых востребованных команд. Зато таких блоков много. А это значит, что можно одновременно выполнять больше базовых команд. А раритетные не занимают место.
Еще один бонус сокращенного набора RISC: меньше места на чипе занимает блок по декодированию команд. Да, для этого тоже нужно место. Архитектура RISC проще и удобнее, загибайте пальцы:
Поэтому наши смартфоны, которые работают на ARM процессорах с архитектурой RISC, долго живут, не требуют активного охлаждения и такие быстрые.
Лицензирование
Но это все отличия технические. Есть отличия и организационные. Вы не задумывались почему для смартфонов так много производителей процессоров, а в мире ПК на x86 только AMD и Intel? Все просто — ARM это компания которая занимается лицензированием, а не производством.
Даже Apple приложила руку к развитию ARM. Вместе с Acorn Computers и VLSI Technology. Apple присоединился к альянсу из-за их грядущего устройства — Newton. Устройства, главной функцией которого было распознавание текста.
Даже вы можете начать производить свои процессоры, купив лицензию. А вот производить процессоры на x86 не может никто кроме синей и красной компании. А это значит что? Правильно, меньше конкуренции, медленнее развитие. Как же так произошло?
Ну окей. Допустим ARM прекрасно справляется со смартфонами и планшетами, но как насчет компьютеров и серверов, где вся поляна исторически поделена? И зачем Apple вообще ломанулась туда со своим Apple Silicon.
Что сейчас?
Допустим мы решили, что архитектура ARM более эффективная и универсальная. Что теперь? x86 похоронен?
На самом деле, в Intel и AMD не дураки сидят. И сейчас под капотом современные CISC-процессоры очень похожи на RISC. Постепенно разработчики CISC-процессоров все-таки пришли к этому и начали делать гибридные процессоры, но старый хвост так просто нельзя сбросить.
Но уже достаточно давно процессоры Intel и AMD разбивают входные инструкции на более мелкие микро инструкции (micro-ops), которые в дальнейшем — сейчас вы удивитесь — исполняются RISC ядром.
Да-да, ребята! Те самые 4-8 ядер в вашем ПК — это тоже RISC-ядра!
Надеюсь, тут вы окончательно запутались. Но суть в том, что разница между RISC и CISC-дизайнами уже сейчас минимальна.
А что остается важным — так это микроархитектура. То есть то, насколько эффективно все организовано на самом камне.
Ну вы уже наверное знаете, что Современные iPad практически не уступают 15-дюймовым MacBook Pro с процессорами Core i7 и Core i9.
А что с компьютерами?
Недавно компания Ampere представила свой 80-ядерный ARM процессор. По заявлению производителя в тестах процессор Ampere показывает результат на 4% лучше, чем самый быстрый процессор EPYC от AMD и потребляет на 14% меньше энергии.
Компания Ampere лезет в сегменты Cloud и Workstation, и показывает там отличные цифры. Самый быстрый суперкомпьютер в мире сегодня работает на ARM ISA. С обратной стороны, Intel пытается все таки влезть в сегмент low power и для этого выпускает новый интересный процессор на микроархитектуре lakefield.
И Apple та компания, которая способна мотивировать достаточное количество разработчиков пилить под свой ARM. Но суть этого перехода скорее не в противостоянии CISC и RISC. Поскольку оба подхода сближаются, акцент смещается на микроархитектуру, которую делает Apple для своих мобильных устройств. И судя по всему микроархитектура у них крута. И они хотели бы ее использовать в своих компьютерах.
И если бы Intel лицензировал x86 за деньги другим людям, то вероятно Apple просто адаптировали свою текущую микроархитектуру под x86. Но так как они не могут этого сделать, они решили просто перейти на ARM. Проблема для нас с микроархитектурой в том, что она коммерческая тайна. И мы про нее ничего не знаем.
Итоги
Спрос на ARM в итоге вырастет. Для индустрии это не просто важный шаг, а архиважный. Линус Торвальдс говорил, что пока рабочие станции не станут работать на ARM — на рынке серверов будут использовать x86.
И вот это случилось — в перспективе это миллионы долларов, вложенных в серверные решения. Что, конечно, хорошо и для потребителей. Нас ждет светлое будущее и Apple, действительно, совершила революцию!
Редактор материала: Антон Евстратенко. Этот материал помогли подготовить наши зрители Никита Куликов и Григорий Чирков. Спасибо ребята!
Десять имён для одной архитектуры
На пятничном семинаре учебного проекта лаборатории МФТИ-Интел один из студентов задал мне примерно такой вопрос: а почему 64-битный вариант архитектуры процессоров Intel называется x64, а 32-битный — x86? Я начал объяснять, что не всё так просто. Захотелось нарисовать более полную картину. Ведь на самом деле это не x64, и даже не x86.
386-ые, Пентиумы и Коры
На самом деле названий для этого феномена, около сорока лет присутствующего на сцене процессорных технологий, было придумано несколько. Даже больше, чем хотелось бы. Они появились из разных источников и используются в разных контекстах, разными компаниями и разными сообществами. Конечно же, это вносит некоторую неразбериху.
Я постарался здесь собрать все известные мне названия. Не хочу пытаться доказать, что одна группа имён лучше другой, — меньше использовать их не станут.
8086 и семейство
В 1978 году был выпущен 16-битный процессор Intel, который имел «имя» 8086. За ним были 8088, 80186, 80286, 80386 (плюс вариации), 80486 (плюс вариации). Легко заметить, что (почти) все эти числовые имена оканчиваются на две цифры 86, что дало название всей серии x86. Оно укрепилось, его продолжили использовать и после того, как процессорам перестали давать цифровые имена, а появились Intel Pentium, Celeron, Xeon, Core, Atom и т.д. Совместимые продукты других вендоров, таких как IBM, AMD, Cyrix, VIA и т.д., также описываются как x86.
По моим наблюдениям, x86 — самый популярный вариант для имени этой архитектуры в Интернете, статьях и прочей литературе, особенно, когда не стоит задачи точно специфицировать разрядность архитектуры или речь явным образом идёт о 32-битном варианте.
Используются также вариации этого названия для 32-битных вариантов, позволяющие более точно указать минимальный набор поддерживаемых инструкций: i386, i486, i586, i686, — например, для различения вариантов сборок бинарных пакетов дистрибутивов Linux.
Пришествие 64 бит
Своими стараниями Intel расширила машинное слово в описанной ранее серии процессоров с 16 до 32 бит. Достигнуть этой архитектуре 64 бит помогла компания AMD, в 2003 году представившая процессор, поддерживающий новые инструкции и регистры и реализующий AMD64.
Для того, чтобы явно указать повышенную битность процессора/кода/пакета, имя x86 стало получать новый суффикс «64». Вот только через какой знак его приписывать не договорились, и иногда видишь x86_64, а порой x86-64. Например, вывод команды uname в Linux использует подчерк. Наконец, у пакетов можно увидеть и суффикс amd64 строчными буквами.
Intel же обозначала это расширение архитектуры сперва IA-32e, затем EM64T. В настоящее время можно встретить оба варианта в различных именах пакетов, документации и прочем. Тем не менее, есть и третье введённое Intel название…
Как это называет Intel
В официальной документации 32-битная архитектура имеет имя IA-32; её 64-битный вариант получил довольно странное с моей точки зрения имя Intel 64. Почему странное — оно создаёт потенциал для путаницы, как мы увидим ближе к концу статьи.
Компании-поставщики софта
Всё вместе
Ложные имена
Как известно, за свою сорокалетнюю историю Intel выпускала (и выпускает сейчас) не только процессоры IA-32. Были и до сих пор присутствуют продукты других архитектур. Они тоже имеют свои имена, иногда несколько созвучные. При этом происходит путаница, от которой хотелось бы предостеречь.
Intel IA-64. Является полным синонимом термина «Intel Itanium». Используется для обозначения 64-битной архитектуры, несовместимой ни с IA-32, ни с 64-битным её вариантом ни по набору команд, ни по принципам работы. Да, существуют аппаратные и программные прослойки для запуска IA-32 приложений на Итаниуме, но это — тема для отдельного и интересного рассказа. Кстати, и для Itanium есть ещё одно обозначение — IPF, используемое изредка как суффикс.
К сожалению, линейки таких семейств процессоров Intel, как i432, i860, i960 или не дожили до наших дней, или же имеют крайне узкую нишу применения. А то глядишь — пришлось бы для каждого из них запоминать ещё по десятку имён.
64 бита
Статья раскрывает смысл термина «64 бита». В статье кратко рассмотрена история развития 64-битных систем, описаны наиболее распространенные на данный момент 64-битные процессоры архитектуры Intel 64 и 64-битная операционная система Windows.
Введение
В рамках архитектуры вычислительной техники под термином «64-битный» понимают 64-битные целые и другие типы данных, имеющих размер 64 бита. Под «64-битными» системами могут пониматься 64-битные архитектуры микропроцессоров (например, EM64T, IA-64) или 64-битные операционные системы (например, Windows XP Professional x64 Edition). Можно говорить о компиляторах, генерирующих 64-битный программный код.
В данной статье будут рассмотрены различные моменты, связанные с 64-битными технологиями. Статья предназначена для программистов, желающих начать разрабатывать 64-битные программы, и ориентирована на Windows-разработчиков, поскольку для них вопрос знакомства с 64-битными системами наиболее актуален.
История 64-битных систем
64-битность только недавно вошла в жизнь большинства пользователей и прикладных программистов. Однако работа с 64-битными данными имеет уже длинную историю.
1961: IBM выпускает суперкомпьютер IBM 7030 Stretch, в котором используются 64-битные слова данных, 32-битные или 64-битные машинные инструкции.
1974: Control Data Corporation запускает векторный суперкомпьютер CDC Star-100, в котором используется архитектура 64-битных слов (предыдущие системы CDC имели 60-битную архитектуру).
1976: Cray Research выпускает первый суперкомпьютер Cray-1, в котором реализована архитектура 64-битных слов и который послужит основой для всех последующих векторных суперкомпьютеров Cray.
1985: Cray выпускает UNICOS — первую 64-битную реализацию операционной системы Unix.
1991: MIPS Technologies производит первый 64-битный процессор, R4000, в котором реализована третья модификация разработанной в их компании архитектуры MIPS. Этот процессор используется в графических рабочих станциях SGI начиная с модели IRIS Crimson. Kendall Square Research выпускает свой первый суперкомпьютер KSR1, построенный на основе их собственной запатентованной 64-битной архитектуры RISC под операционной системой OSF/1.
1992: Digital Equipment Corporation (DEC) представляет полностью 64-битную архитектуру Alpha — детище проекта PRISM.
1993: DEC выпускает 64-битную Unix-подобную операционную систему DEC OSF/1 AXP (позже переименованную в Tru64 UNIX) для своих систем, построенных на архитектуре Alpha.
1994: Intel объявляет о своих планах по разработке 64-битной архитектуры IA-64 (совместно с компанией Hewlett-Packard) — преемника их 32-битных процессоров IA-32. Дата выпуска назначена на 1998-1999 годы. SGI выпускает IRIX 6.0 с 64-битной поддержкой чипсета R8000.
1995: Sun запускает 64-битный процессор семейства SPARC UltraSPARC. HAL Computer Systems, подчиненная Fujitsu, запускает рабочие станции, созданные на основе 64-битного процессора SPARC64 первого поколения, независимо разработанного компанией HAL. IBM выпускает микропроцессоры A10 и A30, а также 64-битные процессоры PowerPC AS. IBM также выпускает 64-битное обновление для системы AS/400, способное преобразовывать операционную систему, базы данных и приложения.
1996: Nintendo представляет игровую консоль Nintendo 64, созданную на основе более дешевого варианта MIPS R4000. HP выпускает реализацию 64-битной 2.0 версии собственной архитектуры PA-RISC PA-8000.
1997: IBM запускает линейку RS64 64-битных процессоров PowerPC/PowerPC AS.
1998: Sun выпускает Solaris 7 с полной 64-битной поддержкой UltraSPARC.
1999: Intel выпускает набор команд для архитектуры IA-64. AMD публично объявляет о своем наборе 64-битных расширений для IA-32, который был назван x86-64 (позже переименован в AMD64).
2000: IBM выпускает свой первый 64-битный мэйнфрейм zSeries z900, совместимый с ESA/390, а также новую операционную систему z/OS.
2001: Intel наконец запускает линейку 64-битных процессоров, которые теперь получают название Itanium и рассчитаны на высокопроизводительные серверы. Проект не соответствует ожиданиям из-за многочисленных задержек при выпуске IA-64 на рынок. NetBSD становится первой операционной системой, которая запускается на процессоре Intel Itanium после его выхода. Кроме того, Microsoft также выпускает Windows XP 64-Bit Edition для архитектуры IA-64 семейства Itanium, хотя в ней сохраняется возможность запускать 32-битные приложения при помощи прослойки WoW64.
2003: AMD представляет линейки процессоров Opteron и Athlon 64, созданные на основе архитектуры AMD64, которая является первой 64-битной процессорной архитектурой, основанной на архитектуре x86. Apple начинает использовать 64-битный процессор «G5» PowerPC 970 производства IBM. Intel утверждает, что процессорные чипы семейства Itanium останутся единственными 64-битными процессорами, разработанными в их компании.
2004: В ответ на коммерческий успех AMD, Intel признается, что они разрабатывали клон расширений AMD64, которому дали название IA-32e (позже переименован в EM64T, и затем еще раз в Intel 64). Intel также выпускает обновленные версии семейств процессоров Xeon и Pentium 4 с поддержкой новых команд.
2004: VIA Technologies представляет свой 64-битный процессор Isaiah.
2005: 31 января Sun выпускает Solaris 10 с поддержкой процессоров AMD64 / Intel 64. 30 апреля Microsoft выпускает Windows XP Professional x64 Edition для процессоров AMD64 / Intel 64.
2006: Sony, IBM и Toshiba начинают выпуск 64-битного процессора Cell для PlayStation 3, серверов, рабочих станций и других устройств. Microsoft выпускает Windows Vista с включенной 64-битной версией для процессоров AMD64 / Intel 64, которая поддерживает 32-битную совместимость. Все Windows-приложения и компоненты являются 64-битными, однако многие из них имеют 32-битные версии, включенные в систему в виде плагинов в целях совместимости.
2009: Как и Windows Vista, Windows 7 компании Microsoft включает полную 64-битную версию для процессоров AMD64 / Intel 64, и на большинство новых компьютеров по умолчанию устанавливается 64-битная версия. Выходит операционная система компании Apple Mac OS X 10.6, «Snow Leopard» которая имеет 64-битное ядро и предназначена для процессоров AMD64 / Intel 64, однако по умолчанию эта система устанавливается только на некоторые из последних моделей компьютеров компании Apple. Большинство приложений, поставляемых с Mac OS X 10.6, теперь также являются 64-битными.
Более подробно с историей развития 64-битных систем можно познакомиться в статье Джона Машей «Долгая дорога к 64 битам» [1] и в энциклопедической статье в Wikipedia «64-bit» [2].
Прикладное программирование и 64-битные системы
Архитектура Intel 64 (AMD64)
Рассматриваемая архитектура Intel 64 простое, но в то же время мощное обратно совместимое расширение устаревшей промышленной архитектуры x86. Она добавляет 64-битное адресное пространство и расширяет регистровые ресурсы для поддержки большей производительности перекомпилированных 64-битных программ. Архитектура обеспечивает поддержку устаревшего 16-битного и 32-битного кода приложений и операционных систем без их модификации или перекомпиляции.
Отличительной особенностью Intel 64 является поддержка шестнадцати 64-битных регистров общего назначения (в x86-32 имелось восемь 32-битных регистров). Поддерживаются 64-битные арифметические и логические операции над целыми числами. Поддерживаются 64-битные виртуальные адреса. Для адресации новых регистров для команд введены «префиксы расширения регистра», для которых был выбран диапазон кодов 40h-4Fh, использующихся для команд INC и DEC в 32- и 16-битных режимах. Команды INC и DEC в 64-битном режиме должны кодироваться в более общей, двухбайтовой форме.
16 целочисленных 64-битных регистра общего назначения (RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP, R8 — R15),
8 80-битных регистров с плавающей точкой (ST0 — ST7),
8 64-битных регистров Multimedia Extensions (MM0 — MM7, имеют общее пространство с регистрами ST0 — ST7),
16 128-битных регистров SSE (XMM0 — XMM15),
64-битный указатель RIP и 64-битный регистр флагов RFLAGS.
Необходимость 64-битной архитектуры определяется приложениями, которым необходимо большое адресное пространство. В первую очередь это высокопроизводительные серверы, системы управления базами данных, САПР и, конечно, игры. Такие приложения получат существенные преимущества от 64-битного адресного пространства и увеличения количества регистров. Малое количество регистров, доступное в устаревшей x86 архитектуре, ограничивает производительность в вычислительных задачах. Увеличенное количество регистров обеспечивает достаточную производительность для многих приложений.
64-битные операционные системы
Практически все современные операционные системы сейчас имеют версии для архитектуры Intel 64. Например, Microsoft предоставляет Windows XP x64. Крупнейшие разработчики UNIX систем также поставляют 64-битные версии, как например Linux Debian 3.5 x86-64. Однако это не означает, что весь код такой системы является полностью 64-битным. Часть кода ОС и многие приложения вполне могут оставаться 32-битными, так как Intel 64 обеспечивает обратную совместимость с 32-битными приложениями. Например, 64-битная версия Windows использует специальный режим WoW64 (Windows-on-Windows 64), который транслирует вызовы 32-битных приложений к ресурсам 64-битной операционной системы.
Далее в статье мы будем рассматривать только 64-битные операционные системы семейства Windows.
WoW64
Windows-on-Windows 64-bit (WoW64) — подсистема операционной системы Windows, позволяющая запускать 32-битные приложения на всех 64-битных версиях Windows.
WoW64 на архитектуре Intel 64 (AMD64 / x64) не требует эмуляции инструкций. Здесь подсистема WoW64 эмулирует только 32-битное окружение, за счет дополнительной прослойки между 32-битным приложением и 64-битным Windows API. Где-то эта прослойка тонкая, где-то не очень. Для средней программы потери в производительности из-за наличия такой прослойки составят около 2%. Для некоторых программ это значение может быть больше. Два процента это немного, но следует учитывать, что 32-битные приложения работают немного медленнее под управлением 64-битной операционной системы Windows, чем в 32-битной среде.
Компиляция 64-битного кода не только исключает необходимость в WoW64, но и дает дополнительный прирост производительности. Это связано с архитектурными изменениями в микропроцессоре, такими как увеличение количества регистров общего назначения. Для средней программы можно ожидать в пределах 5-15% прироста производительности от простой перекомпиляции.
Из-за наличия прослойки WoW64 32-битные программы работают менее эффективно в 64-битной среде, чем в 32-битной. Но все-таки, простые 32-битные приложения могут получить одно преимущество от их запуска в 64-битной среде. Вы, наверное, знаете, что программа, собранная с ключом /LARGEADDRESSAWARE:YES может выделять до 3-х гигабайт памяти, если 32-битная операционная система Windows запущена с ключом /3gb. Так вот, эта же 32-битная программа, запущенная на 64-битной системе, может выделить почти 4 GB памяти (на практике около 3.5 GB).
Подсистема WoW64 изолирует 32-разрядные программы от 64-разрядных путем перенаправления обращений к файлам и реестру. Это предотвращает случайный доступ 32-битных программ к данным 64-битных приложений. Например, 32-битное приложение, которое запускает файл DLL из каталога %systemroot%\System32, может случайно обратиться к 64-разрядному файлу DLL, который несовместим с 32-битной программой. Во избежание этого подсистема WoW64 перенаправляет доступ из папки %systemroot%\System32 в папку %systemroot%\SysWOW64. Это перенаправление позволяет предотвратить ошибки совместимости, поскольку при этом требуется файл DLL, созданный специально для работы с 32-разрядными приложениями.
Подробнее с механизмами перенаправления файловой системы и реестра можно познакомиться в разделе MSDN «Running 32-bit Applications».
Программная модель Win64
Также как и в Win32 размер страниц в Win64 составляет 4Кб. Первые 64Кб адресного пространства никогда не отображаются, то есть наименьший правильный адрес это 0x10000. В отличие от Win32, системные DLL загружаются выше 4Гб.
Разница в соглашениях о вызове приводит к тому, что в одной программе нельзя использовать и 64-битный, и 32-битный код. Другими словами, если приложение скомпилировано для 64-битного режима, то все используемые библиотеки (DLL) также должны быть 64-битными.
Передача параметров через регистры является одним из новшеств, делающих 64-битные программы более производительными, чем 32-битные. Дополнительный выигрыш в производительности можно получить, используя 64-битные типы данных.
Адресное пространство
Хотя 64-битный процессор теоретически может адресовать 16 экзабайт памяти (2^64), Win64 в настоящий момент поддерживает 16 терабайт (2^44). Этому есть несколько причин. Текущие процессоры могут обеспечивать доступ лишь к 1 терабайту (2^40) физической памяти. Архитектура (но не аппаратная часть) может расширить это пространство до 4 петабайт (2^52). Однако в этом случае необходимо огромное количество памяти для страничных таблиц, отображающих память.
Помимо перечисленных ограничений, объем памяти, который доступен в той или иной версии 64-битной операционной системе Windows зависит также от коммерческих соображений компании Microsoft. Ниже приведена информация по объему памяти, поддерживаемой различными версиями 64-биными версиями Windows:
Windows XP Professional — 128 Gbyte;
Windows Server 2003, Standard — 32 Gbyte;
Windows Server 2003, Enterprise — 1 Tbyte;
Windows Server 2003, Datacenter — 1 Tbyte;
Windows Server 2008, Datacenter — 2 Tbyte;
Windows Server 2008, Enterprise — 2 Tbyte;
Windows Server 2008, Standard — 32 Gbyte;
Windows Server 2008, Web Server — 32 Gbyte;
Vista Home Basic — 8 Gbyte;
Vista Home Premium — 16 Gbyte;
Vista Business — 128 Gbyte;
Vista Enterprise — 128 Gbyte;
Vista Ultimate — 128 Gbyte;
Windows 7 Home Basic — 8 Gbyte;
Windows 7 Home Premium — 16 Gbyte;
Windows 7 Professional — 192 Gbyte;
Windows 7 Enterprise — 192 Gbyte;
Windows 7 Ultimate — 192 Gbyte;
Разработка 64-битных приложений
Наиболее полно вопросы разработки 64-битных приложений рассмотрены в курсе «Уроки разработки 64-битных приложений на языке Си/Си++». Содержание:
Также рекомендую раздел с обзорами статей по тематике связанной с 64-битнми технологиями.