Физические свойства воздуха: плотность, вязкость, удельная теплоемкость
Рассмотрены основные физические свойства воздуха: плотность воздуха, его динамическая и кинематическая вязкость, удельная теплоемкость, теплопроводность, температуропроводность, число Прандтля и энтропия. Свойства воздуха даны в таблицах в зависимости от температуры при нормальном атмосферном давлении.
Плотность воздуха в зависимости от температуры
Представлена подробная таблица значений плотности воздуха в сухом состоянии при различных температурах и нормальном атмосферном давлении. Чему равна плотность воздуха? Аналитически определить плотность воздуха можно, если разделить его массу на объем, который он занимает при заданных условиях (давление, температура и влажность). Также можно вычислить его плотность по формуле уравнения состояния идеального газа. Для этого необходимо знать абсолютное давление и температуру воздуха, а также его газовую постоянную и молярный объем. Это уравнение позволяет вычислить плотность воздуха в сухом состоянии.
На практике, чтобы узнать какова плотность воздуха при различных температурах, удобно воспользоваться готовыми таблицами. Например, приведенной таблицей значений плотности атмосферного воздуха в зависимости от его температуры. Плотность воздуха в таблице выражена в килограммах на кубический метр и дана в интервале температуры от минус 50 до 1200 градусов Цельсия при нормальном атмосферном давлении (101325 Па).
Плотность воздуха в зависимости от температуры — таблица
t, °С
ρ, кг/м 3
t, °С
ρ, кг/м 3
t, °С
ρ, кг/м 3
t, °С
ρ, кг/м 3
-50
1,584
20
1,205
150
0,835
600
0,404
-45
1,549
30
1,165
160
0,815
650
0,383
-40
1,515
40
1,128
170
0,797
700
0,362
-35
1,484
50
1,093
180
0,779
750
0,346
-30
1,453
60
1,06
190
0,763
800
0,329
-25
1,424
70
1,029
200
0,746
850
0,315
-20
1,395
80
1
250
0,674
900
0,301
-15
1,369
90
0,972
300
0,615
950
0,289
-10
1,342
100
0,946
350
0,566
1000
0,277
-5
1,318
110
0,922
400
0,524
1050
0,267
0
1,293
120
0,898
450
0,49
1100
0,257
10
1,247
130
0,876
500
0,456
1150
0,248
15
1,226
140
0,854
550
0,43
1200
0,239
Динамическая и кинематическая вязкость воздуха при различных температурах
При нагревании воздуха увеличиваются значения как кинематической, так и динамической вязкости. Эти две величины связаны между собой через величину плотности воздуха, значение которой уменьшается при нагревании этого газа. Увеличение кинематической и динамической вязкости воздуха (как и других газов) при нагреве связано с более интенсивным колебанием молекул воздуха вокруг их равновесного состояния (согласно МКТ).
Представлена таблица удельной теплоемкости воздуха при различных температурах. Теплоемкость в таблице дана при постоянном давлении (изобарная теплоемкость воздуха) в интервале температуры от минус 50 до 1200°С для воздуха в сухом состоянии. Чему равна удельная теплоемкость воздуха? Величина удельной теплоемкости определяет количество тепла, которое необходимо подвести к одному килограмму воздуха при постоянном давлении для увеличения его температуры на 1 градус. Например, при 20°С для нагревания 1 кг этого газа на 1°С в изобарном процессе, требуется подвести 1005 Дж тепла.
Следует отметить, что теплоемкость влажного воздуха выше, чем сухого. Если сравнить теплоемкость воды и воздуха, то очевидно, что вода обладает более высоким ее значением и содержание воды в воздухе приводит к увеличению удельной теплоемкости.
Удельная теплоемкость воздуха при различных температурах — таблица
t, °С
Cp, Дж/(кг·град)
t, °С
Cp, Дж/(кг·град)
t, °С
Cp, Дж/(кг·град)
t, °С
Cp, Дж/(кг·град)
-50
1013
20
1005
150
1015
600
1114
-45
1013
30
1005
160
1017
650
1125
-40
1013
40
1005
170
1020
700
1135
-35
1013
50
1005
180
1022
750
1146
-30
1013
60
1005
190
1024
800
1156
-25
1011
70
1009
200
1026
850
1164
-20
1009
80
1009
250
1037
900
1172
-15
1009
90
1009
300
1047
950
1179
-10
1009
100
1009
350
1058
1000
1185
-5
1007
110
1009
400
1068
1050
1191
0
1005
120
1009
450
1081
1100
1197
10
1005
130
1011
500
1093
1150
1204
15
1005
140
1013
550
1104
1200
1210
Теплопроводность, температуропроводность, число Прандтля воздуха
Теплопроводность воздуха λ при повышении температуры увеличивается во всем диапазоне, достигая при 1200°С величины 0,0915 Вт/(м·град). Другие теплофизические свойства воздуха такие, как его температуропроводность a и число Прандтля Pr, по-разному реагируют на изменение температуры. Температуропроводность, как и вязкость воздуха сильно зависит от температуры и при нагревании, например с 0 до 1200°С, ее значение увеличивается почти в 17 раз.
Число Прандтля воздуха слабо зависит от температуры и при нагревании этого газа его величина сначала снижается до величины 0,674, а затем начинает расти, и при температуре 1200°С достигает значения 0,724.
Нас окружает большое количество явлений, к которым мы давно привыкли. Причём настолько, что нередко не задаёмся вопросами, почему так, а не иначе, или что это означает. Например, всё знают, что тёплый воздух легче холодного и от этого поднимается вверх. Но что означает “легче”?
То есть простой вроде бы вопрос на самом деле таковым не является. И даже вызывает горячие споры.
Дело в объёме, а не в массе
На самом деле, конечно, говорить о том, что горячий воздух “легче” холодного, несколько некорректно. Дело в том, что по мере повышения температуры газа скорость молекул нарастает. Следовательно, расстояние между ними будет тоже увеличиваться. А это означает, что горячий воздух станет занимать больше пространства.
Таким образом, один и тот же объём газа в нагретом состоянии станет меньше давить на квадратный сантиметр или любую другую единицу поверхности. Этим и объясняется его “лёгкость”. Но за счёт чего такое стало возможным?
От температуры зависит плотность газа. Наверх постоянно будет стремиться тот, у которого плотность меньше. Или, если перефразировать, у кого при равной массе больше объём. Это касается всех тел и распространяется и на газы тоже.
Молярно-кинетическая теория газов
Вопрос с лёгким горячим воздухом хорошо объясняется этой теорией. Среднюю кинетическую энергию молекул определяет температура. Зависимость простая: чем выше температура, тем выше кинетическая энергия молекул газа. А это означает, что молекулы начинают двигаться быстрее. И в результате данного процесса расстояние между ними возрастает. За счёт этого плотность газа и уменьшается, поскольку увеличивается объём.
Однако земная гравитация мешает молекулам газа в процессе разогрева отправляться в путешествие в космос. То есть на воздух действует несколько сил. И в то время как одни “выталкивают” его при нагревании на поверхность, другие притягивают вниз.
Так ли всё очевидно?
Кажется, что для понимания процессов, которые происходят с тёплым и холодным воздухом, достаточно школьного курса знаний. Однако если начать разбираться в происходящем глубже, то возникает немало интересных вопросов. Например, выше говорилось о кинетической энергии у молекул. Но откуда она у них вообще берётся?
Движение молекул связано с энергией импульса, которая заставляет их стремиться за снарядами. Например, если посмотреть на пар, то на него воздействует краснофотонное излучение. Оно импульсами и задаёт движение. В итоге разреженный газ начинает стремиться в область, где давление не такое высокое, как внизу, а плотность меньше. И это движение будет сохраняться до тех пор, пока поток воздуха не встретит преграду или пока он не остынет.
Почему тёплый воздух движется наверх?
Воздух нагревается, расширяется, после чего устремляется наверх. В физике это носит название конвективных перемещений. В реальной жизни на движение воздушных масс влияет не один фактор, а целый ряд. В частности, это разница температур, показателей давления и гравитационная сила.
Допустим, если вы откроете форточку зимой, то оттуда к нам начнёт попадать холодный воздух. Его температура заметно ниже температуры тех масс, которые находятся в помещении. Так что зимой разницу между потоками воздуха можно даже наблюдать: холодный воздух буквально стелется по полу.
Молекулы воздуха обладают излучением. Оно возрастает по мере увеличения температур. В процессе активности молекулы как бы отстреливают импульсы, причём благоприятные условия для такой активности создаются в области сниженного давления. То есть наверху.
В итоге тёплые молекулы воздуха движутся наверх. А их место занимают более холодные. То есть благодаря гравитации холодный воздух будет опускаться вниз. Именно так и работает конвекция.
Зачем эти знания нужны на практике?
Понимание конвекции позволяет создавать системы отопления. Разобраться с микроклиматом в доме без подобных знаний в противном случае бы не получилось. Главное – вспомнить физику.
Как изменяется плотность воздуха в зависимости от температуры: формулы, графики, таблицы
Чем выше температура воздуха, тем более разреженным является воздух, и тем ниже его плотность. Это напрямую следует из формулы плотности ρ =p ·M / (R ·T). Так как температура находится в знаменателе, то зависимость обратно пропорциональная.
Как плотность воздуха зависит от температуры: формула
Напомним, что, согласно закону Менделеева-Клапейрона, плотность воздуха определяется по формуле:
ρ =p ·M / (R ·T)
Чем теплее воздух, тем ниже его плотность.
Чем холоднее воздух, тем выше плотность.
Важно помнить, что температура должна быть выражена в Кельвинах, а не Цельсиях:
То есть в формулу надо поставлять не 0°С, а 273К; не 10°С, а 283К, и т.д.
Онлайн калькулятор плотности при разной температуре
Калькулятор позволяет рассчитать плотность воздуха при различной температуре прямо на сайте онлайн. В расчете учитывается только температура. Давление – нормальное атмосферное (760 мм рт. ст. или 101 325 Па). Получить более сложный и точный расчет в зависимости от температуры, влажности и давления одновременно можно на этой странице.
Как меняется плотность с ростом и понижением температуры
Из формулы плотности следует, что зависимость плотности от температуры обратно пропорциональная:
Каждые 3 градуса – это 1% плотности
При изменении температуры на 1°С плотность воздуха меняется примерно на 0,35%, то есть на 0,0042 кг/м³
Приведем два примера, как можно рассчитать плотность самостоятельно в уме без использования сложных таблиц и графиков:
Как видно из примеров, в системах отопления, вентиляции и кондиционирования плотность воздуха изменяется в диапазоне от 1,16 до 1,44 кг/м³, то есть почти на 24%.
Каждые 3 градуса – это 1% плотности
Это значит, что при одном и том же объемном расходе воздуха (например, 300 м³/ч) массовый расход может разниться на 25%, и на нагрев холодного воздуха потребуется на 25% больше энергии (на самом деле чуть меньше, так как в процессе нагрева плотность возрастает и погрешность снижается).
Тем не менее, в точных расчетах изменение плотности следует обязательно учитывать. Но не стоит забывать, что при изменении температуры меняется не только плотность, но и теплоемкость и другие параметры воздуха.
Плотность воздуха при 0°С, 4°С, 5°С, 7°С, 10°С, 20°С
Чаще всего в расчетах нужна плотность воздуха при следующих температурах:
Плотность воздуха при разных температурах: таблицы
Рис. 1. Условно показана молекула кислорода на рычажных весах (детские качели) при разных температурах окружающей атмосферы. a – из наблюдений; b – по Эйнштейну.
Зададимся вопросом в стиле Якова Перельмана: какой воздух тяжелее холодный или теплый? После этого посмотрим ответы на форуме в интернете (ответы обозначены цифрами): 1) теплый;2) холодный;3) холодный конечно; 4) тёплый воздух поднимается вверх, он легче; 5) холодный, поэтому он внизу всегда; 6) конечно теплый!; 7) тяжелей холодный, он опускается вниз, а теплый поднимается, значит легче; 8) тяжелее влажный воздух!; 9) холодный, вспомни, когда зимой открываешь форточку; 10) это и в садике знают, что тёплый легче, поэтому вверх стремится.
На тяжесть холодного воздуха ставок гораздо больше.
Мы народ северный и нас на таком вопросе не проведешь, открывая зимой форточку, наблюдаем, как холодный воздух буквально врывается в комнату, падает вниз к нашим ногам и расстилается по полу комнаты. А может он хочет нам поклониться за широкое гостеприимство? Не знаю, но это подтверждается визуально, когда холодный воздух, увлекая частицы пара, превращает их в видимый шлейф при конденсации. После чего выносится вердикт: холодный воздух тяжелее теплого, поэтому он устремляется вниз. Очередная зима, подкрепляет наши наблюдения и укрепляет правоту сказанного. Объясняем мы это плотностью – холодный воздух более плотный, теплый более разреженный.
Иногда для объяснения притягивают влажность воздуха. Поскольку, в зимний период на улице влаги больше, то влажный воздух должен весить якобы больше. Воздух – это смесь газов, состоящая на три четверти из азота и почти на четверть из кислорода и некоторого количества водяного пара. Количество остальных газов пренебрежимо мало, их не учитываем. Средняя молекулярная масса воздуха 29, молекулярная масса водяного пара 18. Об этом говорит и, упомянутый выше, Я. Перельман: «При одинаковом давлении и температуре кубометр влажного воздуха не тяжелее, а легче, чем кубометр сухого воздуха» [1].
Для выяснения сути данного явления в бытовых условиях можно пойти в баню, и пока не вспотели, понаблюдать за движением пара. Кто в баню не ходит пусть поставит эксперимент на своей кухне и нагреет кастрюлю с водой. Как только кастрюля закипит, пар с завихрениями устремится вверх, под купол вытяжной вентиляции. В бане этот процесс выражен еще более контрастно, первый ковш воды, брошенный на раскаленные камни, выбрасывает вверх белый шлейф пара. Мы видим восходящий паровой поток, который буквально вонзается в потолок, растекается по нему, стараясь его приподнять, и, постепенно охлаждаясь, начинает оседать, а затем конденсироваться на холодных металлических трубах.
По сравнению с окружающим воздухом пар перегрет, поэтому его молекулы более энергонасыщены.
Можно ли доверять нашим органолептическим органам? Для начала необходимо разобраться, почему холодный воздух уплотняется?
2. Почему плотность холодного воздуха больше чем теплого?
На самом ли деле теплый воздух легче холодного. Давайте проверим это утверждение и взвесим две молекулы кислорода теплую, при температуре +20º С и холодную, при температуре 0º С. Но как это сделать, на каких весах измерить разницу веса между молекулами? Судя по рисунку, автору удалось это сделать с помощью рычажных весов (детской качели).
Трудность заключается еще и в том, что мы не сможем в земных условиях точно оценить вес даже, заключенных в оболочку, достаточно больших одинаковых объемов воздуха. Оценке мешает эффект плавучести (статья «Гравитационная температура»). Остается одно, разобраться с этим явлением с энергетической точки зрения. Если мы возьмем молекулы одного и того же газа, но при разных температурах, то понятно, что молекула, имеющая более высокую температуру, будет более энергонасыщена и будет иметь более высокую скорость перемещения.
А за счет какой энергии вообще молекулы перемещаются? Классическая молекулярно-кинетическая теория на этот вопрос не дает вразумительного ответа. Этот физический процесс был основательно исследован в главе «Броуновское движение». Молекулы двигаются благодаря энергии импульсов придачи «вперед за снарядом». Под действием этих импульсов электромагнитного крафонного (краснофотонного) излучения, молекулы пара стремительно разлетаются в разные стороны, но в большей степени вверх (область пониженного давления), тем самым, разреживая и освобождая пространство, в которое устремляется новые молекулы. Те, в свою очередь, поступают как первые. Тем самым мы видим восходящий поток пара. Этот процесс в динамике идет по нормали до первой преграды – потолка.
Попутно еще один вопрос: за счет чего уплотняется холодный воздух?
Конвективные перемещения осуществляются за счет разности давлений, разности температур и гравитации. Холодный воздух из открытой форточки непрерывным потоком падает на пол нашей комнаты. Да, температура холодного воздуха ниже, чем теплого и что из этого следует? Ранее было выяснено, что гравитация квантуется, т.е. передается импульсами. Количество этих импульсов гравитационного излучения земли и нашего пола распределяется по всей поверхности примерно одинаково. Тогда остается излучение самих молекул воздуха. Молекулы имеют маленькую массу и охотно отзываются на собственный импульс придачи, после чего устремляются в том же направлении отстрела этого импульса. Статистически у теплых молекул частота излучения выше, чем у холодных. Они чаще отстреливают свои импульсы в пространство, где меньше давление, поэтому теплые молекулы летят в сторону потолка, освобождая место холодным. Получается, за счет этого электромагнитное, гравитационное излучение земли подтягивает к полу в большей степени холодный воздух, соответственно, теплый выталкивается вверх. Холодные молекулы имеют меньшую скорость, поэтому находятся в более плотном состоянии. Вот по такой технологии идет конвекция в любой газовой среде.
Теплый воздух в комнате выходит из температурного равновесия и постепенно внедряется в ряды холодного, отдавая часть своей теплоты.
3. Эйнштейн против Клапейрона и Менделеева
Рис. 2. На рисунке условно показано равное количество молекул азота (1) и молекул кислорода (2), находящихся при разных температуре и занимающих не равные объемы.a – при высокой температуре; b – при низкой температуре.
Обычно объясняют, что холодный воздух выталкивает теплый и тот поднимается вверх. На самом деле никто никого не толкает и не выталкивает. Весь воздух подвержен притяжению Земли и эта энергия его подпитывает. В зависимости от энергонасыщенности происходит температурная сегрегация по высоте расположения. Молекулы теплого воздуха имеют большую скорость перемещения, они разлетаются на большие расстояния, происходит больше столкновений между ними и они занимают больший объем (рис. 2а).
А теперь для доказательства равенства масс молекул, находящихся под разным тепловым потенциалом, я призвал на помощь два уравнения из классической физики.
1) уравнение состояния для идеального газа Клапейрона-Менделеева.
Где, m – масса газа, P – давление, V – объем, M – молярная масса, R – универсальная газовая постоянная, Т – температура.
Замечание, сейчас принято обозначать температуру греческой буквой Θ (Тэта). Чтобы не нарушать написание известной формулы оставим символ Т.
Из (2) видно, что при повышении температуры, увеличивается V (при постоянном давлении P). При этом масса газа (воздуха) остается постоянной.
2) Уравнение Эйнштейна. Энергия излучения связана с его массой.
Подставив в формулы (3, 4) реальные значения, можно убедиться без лишних доказательств, что кубовый объем газа, имеющий меньшую энергию Е (температуру и скорость молекул) будет иметь и меньшую массу.
Тогда можно заключить, что холодный воздух легче теплого, и должен подниматься вверх, а он падает вниз. Вот где нелогичная конвекция и Эйнштейн против Клапейрона и Менделеева.
В чем же дело? А дело в серьезном разбирательстве, связанном со знаменитой формулой. Если в расчете использовать формулу (3), то килограммовый куб воздуха будет иметь энергию 9·10 16 Дж. Данная величина приблизительно равна электрической энергии 3∙10 10 кВт∙ч! Такое количество электроэнергии потребляют США за один день! Невероятно, но где энергия? А ее, увы, не видно.
Этому разбирательству посвящена отдельная статья под названием: «Энергия покоя». А сейчас, чтобы выбраться из создавшейся коллизии введем в данное уравнение энергетический коэффициент GE.
T – температура тела в Кельвинах
Tmax – максимально возможная температура вещества в природе.
Используя в расчетах уравнение (7) можно убедиться, что при прочих равных условиях, массы холодного и теплого воздуха будут равны. Такой же расчет дает по формуле (2) Клапейрона-Менделеева и противостояние с Эйнштейном прекращается. И что самое главное, энергия газового куба снижается до удобоваримого значения, на десять порядков! Все расчеты привели меня к заключению, что уравнение Эйнштейна не общее, а частное, для максимального значения температуры при GE=1.
Электромагнитное, крафонное излучение Земли постоянно мониторит пространство и подтягивает атмосферу с паром вниз, но теплый воздух всегда оказываются наверху. Это происходит потому, что холодные молекулы реже отстреливают свои крафоны придачи в окружающее пространство из-за их меньшей энергонасыщенности.
Теплый воздух в комнате находится в термодинамическом равновесии, поэтому его молекулы продолжают хаотично двигаться, постепенно внедряясь в ряды холодного, отдавая часть своей теплоты.
Несмотря на то, что холодный воздух находится всегда внизу, масса теплых и холодных молекул остается одинаковой.
Конвективные перемещения в жидкости можно объяснить аналогичным способом.
Объемная плотность газа существенно зависит от температуры газа.
Как было указано выше, более горячий газ устремляется вверх не из-за его легкости, а по причине поднятия молекул за счет крафонного излучения. По сути, о какой легкости или тяжести мы говорим, каждая молекула находится во взвешенном состоянии, но не в какой-то среде, а фактически, в вакууме. Равные по массе и одинаковой температуре молекулы будут иметь одинаковый объемный вес. Известно, если охладить кубометр воздуха, то получим 1,2 литра в жидком состоянии. Отсюда вопрос: какое вещество занимает 998,8 литра этого объема воздуха, если мы уберем энергию расширения, то есть теплоту?!