По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ прямых

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых

НачнСм с Π³Π»Π°Π²Π½ΠΎΠ³ΠΎ β€” опрСдСлимся, ΠΊΠ°ΠΊΠΈΠ΅ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ согласно Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. ΠœΡ‹ Π½Π΅Π΄Π°Ρ€ΠΎΠΌ упомянули Π•Π²ΠΊΠ»ΠΈΠ΄Π°, вСдь ΠΈΠΌΠ΅Π½Π½ΠΎ Π² Π΅Π³ΠΎ Ρ‚Ρ€ΡƒΠ΄Π°Ρ…, написанных Π·Π° 300 Π»Π΅Ρ‚ Π΄ΠΎ Π½. э., Π΄ΠΎ нас дошли ΠΏΠ΅Ρ€Π²Ρ‹Π΅ упоминания ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ.

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ прямыС Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости, Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ Ρ‚ΠΎΡ‡Π΅ΠΊ пСрСсСчСния, Π΄Π°ΠΆΠ΅ Ссли ΠΈΡ… ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°Ρ‚ΡŒ бСсконСчно Π΄ΠΎΠ»Π³ΠΎ. ΠžΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ΡΡ ΠΎΠ½ΠΈ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ: a II b.

Казалось Π±Ρ‹, здСсь всС просто, Π½ΠΎ со Π²Ρ€Π΅ΠΌΠ΅Π½ Π•Π²ΠΊΠ»ΠΈΠ΄Π° Π½Π°Π΄ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых ΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых бились Π»ΡƒΡ‡ΡˆΠΈΠ΅ ΡƒΠΌΡ‹. ΠžΡΠΎΠ±Ρ‹ΠΉ интСрСс Π²Ρ‹Π·Ρ‹Π²Π°Π» 5-ΠΉ постулат дрСвнСгрСчСского ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ°: Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ, которая Π½Π΅ относится ΠΊ прямой, Π² Ρ‚ΠΎΠΉ ΠΆΠ΅ плоскости ΠΌΠΎΠΆΠ½ΠΎ провСсти Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Ρƒ ΠΏΡ€ΡΠΌΡƒΡŽ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΡƒΡŽ ΠΏΠ΅Ρ€Π²ΠΎΠΉ. Π’ XIX Π²Π΅ΠΊΠ΅ российский ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊ Н. ЛобачСвский смог ΠΎΠΏΡ€ΠΎΠ²Π΅Ρ€Π³Π½ΡƒΡ‚ΡŒ постулат ΠΈ ΡƒΠΊΠ°Π·Π°Ρ‚ΡŒ Π½Π° условия, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ провСсти ΠΊΠ°ΠΊ ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌ 2 ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС Ρ‡Π΅Ρ€Π΅Π· ΠΎΠ΄Π½Ρƒ Ρ‚ΠΎΡ‡ΠΊΡƒ.

Π’ΠΏΡ€ΠΎΡ‡Π΅ΠΌ, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ школьная ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ° ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π° Π΅Π²ΠΊΠ»ΠΈΠ΄ΠΎΠ²ΠΎΠΉ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠ΅ΠΉ, Π²Ρ‹ΡˆΠ΅ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠ΅ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ ΠΌΡ‹ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π΅ΠΌ ΠΊΠ°ΠΊ аксиому.

На плоскости Ρ‡Π΅Ρ€Π΅Π· Π»ΡŽΠ±ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ, Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΡƒΡŽ Π½Π΅ΠΊΠΎΠΉ прямой, ΠΌΠΎΠΆΠ½ΠΎ провСсти Π΅Π΄ΠΈΠ½ΡΡ‚Π²Π΅Π½Π½ΡƒΡŽ ΠΏΡ€ΡΠΌΡƒΡŽ, которая Π±Ρ‹Π»Π° Π±Ρ‹ Π΅ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°.

Бвойства ΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых

Π•ΡΡ‚ΡŒ ряд ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΎΠ², ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΎΠ΄Π½Π° прямая ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° Π΄Ρ€ΡƒΠ³ΠΎΠΉ. К ΡΡ‡Π°ΡΡ‚ΡŒΡŽ, свойства ΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых тСсно связаны, поэтому Π½Π΅ придСтся Π·Π°ΠΏΠΎΠΌΠΈΠ½Π°Ρ‚ΡŒ ΠΌΠ½ΠΎΠ³ΠΎ ΠΈΠ½Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ.

НачнСм со свойств. Для этого ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ Ρ‚Ρ€Π΅Ρ‚ΡŒΡŽ ΠΏΡ€ΡΠΌΡƒΡŽ, ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰ΡƒΡŽ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС β€” ΠΎΠ½Π° Π±ΡƒΠ΄Π΅Ρ‚ Π½Π°Π·Ρ‹Π²Π°Ρ‚ΡŒΡΡ сСкущСй. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ Ρƒ нас образуСтся 8 ΡƒΠ³Π»ΠΎΠ².

Если сСкущая ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ Ρ‡Π΅Ρ€Π΅Π· Π΄Π²Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС, Ρ‚ΠΎ:

∠4 + ∠6 = 180°; ∠3 + ∠5 = 180°.

∠1 = ∠5, ∠3 = ∠7, ∠4 = ∠8, ∠2 = ∠6.

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

Если сСкущая ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ пСрпСндикуляр с ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых, Ρ‚ΠΎ ΠΎΠ½Π° Π±ΡƒΠ΄Π΅Ρ‚ пСрпСндикулярна ΠΈ Π΄Ρ€ΡƒΠ³ΠΎΠΉ.

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

Π’Ρ‹ΡˆΠ΅ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ свойства ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌΠΈ, ΠΏΠΎ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π²Ρ‹Π²ΠΎΠ΄ ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых. ΠŸΡ€ΠΈΡ‡Π΅ΠΌ достаточно ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ лишь ΠΎΠ΄ΠΈΠ½ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ β€” ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ Π±ΡƒΠ΄ΡƒΡ‚ ΠΊ Π½Π΅ΠΌΡƒ ΠΏΡ€ΠΈΠ»Π°Π³Π°Ρ‚ΡŒΡΡ.

А сСйчас посмотрим, ΠΊΠ°ΠΊ всС это ΠΏΠΎΠΌΠΎΠ³Π°Π΅Ρ‚ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΈ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΎΠ²Π°Ρ‚ΡŒΡΡ Π² ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π΄Π²ΡƒΡ… прямых.

Π—Π°Π΄Π°Ρ‡Π° 1

ΠŸΡ€ΡΠΌΡ‹Π΅ MN ΠΈ KP ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ Π΄Π²Π΅ Π΄Ρ€ΡƒΠ³ΠΈΠ΅ прямыС, образуя нСсколько ΡƒΠ³Π»ΠΎΠ². Π˜Π·Π²Π΅ΡΡ‚Π½ΠΎ, Ρ‡Ρ‚ΠΎ ∠1 = 73Β°; ∠3 = 92Β°; ∠2 = 73Β°. ВрСбуСтся Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ∠4.

РСшСниС

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ∠1 ΠΈ ∠2 ΡΠ²Π»ΡΡŽΡ‚ΡΡ соотвСтствСнными, ΠΈΡ… равСнство Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ MN II KP. Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ∠3 = ∠MPK = 92Β°.

Богласно Π΄Ρ€ΡƒΠ³ΠΎΠΌΡƒ свойству ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых ∠4 + ∠MPK = 180Β°.

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

Π—Π°Π΄Π°Ρ‡Π° 2

Π”Π²Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС Π° ΠΈ b ΡƒΠ΄Π°Π»Π΅Π½Ρ‹ Π΄Ρ€ΡƒΠ³ ΠΎΡ‚ Π΄Ρ€ΡƒΠ³Π° Π½Π° расстояниС 27 см. БСкущая ΠΊ этим прямым ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ с ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π½ΠΈΡ… ΡƒΠ³ΠΎΠ» Π² 150Β°. ВрСбуСтся Π½Π°ΠΉΡ‚ΠΈ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρƒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° сСкущСй, располоТСнного ΠΌΠ΅ΠΆΠ΄Ρƒ Π° ΠΈ b.

РСшСниС

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π° II b, Π·Π½Π°Ρ‡ΠΈΡ‚ ∠MKD + ∠KDN = 180Β°.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ рассмотрим Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ KDM. ΠœΡ‹ Π·Π½Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ DM прСдставляСт собой расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ прямыми Π° ΠΈ b, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, DM β”΄ b ΠΈ наш Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ являСтся ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΌ.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΊΠ°Ρ‚Π΅Ρ‚, ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠ»Π΅ΠΆΠ°Ρ‰ΠΈΠΉ ΡƒΠ³Π»Ρƒ Π² 30Β°, Ρ€Π°Π²Π΅Π½ Β½ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Ρ‹, DM = 1/2DK.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС, ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΈ условия ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых

Π’ этой ΡΡ‚Π°Ρ‚ΡŒΠ΅ ΠΌΡ‹ расскаТСм ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых, Π΄Π°Π΄ΠΈΠΌ опрСдСлСния, ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΈ условия ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Для наглядности тСорСтичСского ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° Π±ΡƒΠ΄Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΠΈ ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Ρ‚ΠΈΠΏΠΎΠ²Ρ‹Ρ… ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ².

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС: основныС свСдСния

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС Π½Π° плоскости – Π΄Π²Π΅ прямыС Π½Π° плоскости, Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ ΠΎΠ±Ρ‰ΠΈΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ.

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС – Π΄Π²Π΅ прямыС Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС, Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости ΠΈ Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ ΠΎΠ±Ρ‰ΠΈΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ.

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

НСобходимо ΠΎΠ±Ρ€Π°Ρ‚ΠΈΡ‚ΡŒ Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅, Ρ‡Ρ‚ΠΎ для опрСдСлСния ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых Π² пространствС ΠΊΡ€Π°ΠΉΠ½Π΅ Π²Π°ΠΆΠ½ΠΎ ΡƒΡ‚ΠΎΡ‡Π½Π΅Π½ΠΈΠ΅ Β«Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости»: Π΄Π²Π΅ прямыС Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС, Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΠ΅ ΠΎΠ±Ρ‰ΠΈΡ… Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΈ Π½Π΅ Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ Π² ΠΎΠ΄Π½ΠΎΠΉ плоскости, ΡΠ²Π»ΡΡŽΡ‚ΡΡ Π½Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ, Π° ΡΠΊΡ€Π΅Ρ‰ΠΈΠ²Π°ΡŽΡ‰ΠΈΠΌΠΈΡΡ.

Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅, ΠΈΠ³Ρ€Π°ΡŽΡ‰Π΅Π΅ Π²Π°ΠΆΠ½ΡƒΡŽ Ρ€ΠΎΠ»ΡŒ Π² ΠΈΠ·ΡƒΡ‡Π°Π΅ΠΌΠΎΠΉ Ρ‚Π΅ΠΌΠ΅.

Π§Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ, Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΡƒΡŽ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ прямой ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ СдинствСнная прямая, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ. Π­Ρ‚ΠΎ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅ Π½Π΅Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Π½Π° Π±Π°Π·Π΅ извСстных аксиом ΠΏΠ»Π°Π½ΠΈΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ.

Π’ случаС, ΠΊΠΎΠ³Π΄Π° Ρ€Π΅Ρ‡ΡŒ ΠΈΠ΄Π΅Ρ‚ ΠΎ пространствС, Π²Π΅Ρ€Π½Π° Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°:

Π§Π΅Ρ€Π΅Π· Π»ΡŽΠ±ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ пространства, Π½Π΅ ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‰ΡƒΡŽ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ прямой, Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΡ€ΠΎΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ СдинствСнная прямая, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°Ρ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ.

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ прямых: ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΈ условия ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ

ΠŸΡ€ΠΈΠ·Π½Π°ΠΊ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π΅ΡΡ‚ΡŒ достаточноС условиС, ΠΏΡ€ΠΈ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π³Π°Ρ€Π°Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ прямых. Π˜Π½Π°Ρ‡Π΅ говоря, выполнСния этого условия достаточно, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΠΎΠ΄Ρ‚Π²Π΅Ρ€Π΄ΠΈΡ‚ΡŒ Ρ„Π°ΠΊΡ‚ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ.

Π’ Ρ‚ΠΎΠΌ числС, ΠΈΠΌΠ΅ΡŽΡ‚ мСсто Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ ΠΈ достаточныС условия ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых Π½Π° плоскости ΠΈ Π² пространствС. Поясним: Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ – Π·Π½Π°Ρ‡ΠΈΡ‚ Ρ‚ΠΎ условиС, Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ для ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых; Ссли ΠΎΠ½ΠΎ Π½Π΅ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ – прямыС Π½Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ.

Π Π΅Π·ΡŽΠΌΠΈΡ€ΡƒΡ, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ достаточноС условиС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых – Ρ‚Π°ΠΊΠΎΠ΅ условиС, соблюдСниС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈ достаточно, Ρ‡Ρ‚ΠΎΠ±Ρ‹ прямыС Π±Ρ‹Π»ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой. Π‘ ΠΎΠ΄Π½ΠΎΠΉ стороны, это ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, с Π΄Ρ€ΡƒΠ³ΠΎΠΉ – свойство, присущСС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌ прямым.

ΠŸΠ΅Ρ€Π΅Π΄ Ρ‚Π΅ΠΌ, ΠΊΠ°ΠΊ Π΄Π°Ρ‚ΡŒ Ρ‚ΠΎΡ‡Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²ΠΊΡƒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ ΠΈ достаточного условия, Π½Π°ΠΏΠΎΠΌΠ½ΠΈΠΌ Π΅Ρ‰Π΅ нСсколько Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… понятий.

БСкущая прямая – прямая, ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‰Π°Ρ ΠΊΠ°ΠΆΠ΄ΡƒΡŽ ΠΈΠ· Π΄Π²ΡƒΡ… Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… Π½Π΅ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰ΠΈΡ… прямых.

ΠŸΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°Ρ Π΄Π²Π΅ прямыС, сСкущая ΠΎΠ±Ρ€Π°Π·ΡƒΠ΅Ρ‚ восСмь Π½Π΅Ρ€Π°Π·Π²Π΅Ρ€Π½ΡƒΡ‚Ρ‹Ρ… ΡƒΠ³Π»ΠΎΠ². Π§Ρ‚ΠΎΠ±Ρ‹ ΡΡ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ достаточноС условиС, Π±ΡƒΠ΄Π΅ΠΌ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Ρ‚Π°ΠΊΠΈΠ΅ Ρ‚ΠΈΠΏΡ‹ ΡƒΠ³Π»ΠΎΠ², ΠΊΠ°ΠΊ накрСст Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅, соотвСтствСнныС ΠΈ односторонниС. ΠŸΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΡƒΠ΅ΠΌ ΠΈΡ… Π½Π° ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΠΈ:

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

Если Π΄Π²Π΅ прямыС Π½Π° плоскости ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ сСкущСй, Ρ‚ΠΎ для ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… прямых Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈ достаточно, Ρ‡Ρ‚ΠΎΠ±Ρ‹ накрСст Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΡƒΠ³Π»Ρ‹ Π±Ρ‹Π»ΠΈ Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ, Π»ΠΈΠ±ΠΎ Π±Ρ‹Π»ΠΈ Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ соотвСтствСнныС ΡƒΠ³Π»Ρ‹, Π»ΠΈΠ±ΠΎ сумма односторонних ΡƒΠ³Π»ΠΎΠ² Π±Ρ‹Π»Π° Ρ€Π°Π²Π½Π° 180 градусам.

ΠŸΡ€ΠΎΠΈΠ»Π»ΡŽΡΡ‚Ρ€ΠΈΡ€ΡƒΠ΅ΠΌ графичСски Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ достаточноС условиС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых Π½Π° плоскости:

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

Π’ ΠΎΠ±Ρ‰Π΅ΠΌ, эти условия ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΠΌΡ‹ ΠΈ для Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ пространства ΠΏΡ€ΠΈ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ Π΄Π²Π΅ прямыС ΠΈ сСкущая ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ ΠΎΠ΄Π½ΠΎΠΉ плоскости.

Π£ΠΊΠ°ΠΆΠ΅ΠΌ Π΅Ρ‰Π΅ нСсколько Ρ‚Π΅ΠΎΡ€Π΅ΠΌ, часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… ΠΏΡ€ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π΅ Ρ„Π°ΠΊΡ‚Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых.

На плоскости Π΄Π²Π΅ прямыС, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой. Π­Ρ‚ΠΎΡ‚ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊ доказываСтся Π½Π° основС аксиомы ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ, ΡƒΠΊΠ°Π·Π°Π½Π½ΠΎΠΉ Π²Ρ‹ΡˆΠ΅.

Π’ Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС Π΄Π²Π΅ прямыС, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ° изучаСтся Π² ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ 10 класса.

Π”Π°Π΄ΠΈΠΌ ΠΈΠ»Π»ΡŽΡΡ‚Ρ€Π°Ρ†ΠΈΡŽ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Ρ… Ρ‚Π΅ΠΎΡ€Π΅ΠΌ:

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

Π£ΠΊΠ°ΠΆΠ΅ΠΌ Π΅Ρ‰Π΅ ΠΎΠ΄Π½Ρƒ ΠΏΠ°Ρ€Ρƒ Ρ‚Π΅ΠΎΡ€Π΅ΠΌ, ΡΠ²Π»ΡΡŽΡ‰ΠΈΡ…ΡΡ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых.

На плоскости Π΄Π²Π΅ прямыС, пСрпСндикулярныС Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой.

Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΡƒΠ΅ΠΌ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½ΠΎΠ΅ для Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ пространства.

Π’ Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС Π΄Π²Π΅ прямыС, пСрпСндикулярныС Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой.

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

ВсС ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ Π²Ρ‹ΡˆΠ΅ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡ‹, ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΈ условия ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‚ ΡƒΠ΄ΠΎΠ±Π½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ прямых ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ. Π’.Π΅., Ρ‡Ρ‚ΠΎΠ±Ρ‹ привСсти Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Ρ€Π°Π²Π½Ρ‹ соотвСтствСнныС ΡƒΠ³Π»Ρ‹, ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ Ρ„Π°ΠΊΡ‚, Ρ‡Ρ‚ΠΎ Π΄Π²Π΅ Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ прямыС пСрпСндикулярны Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ ΠΈ Ρ‚.Π΄. Но ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π·Π°Ρ‡Π°ΡΡ‚ΡƒΡŽ для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых Π½Π° плоскости ΠΈΠ»ΠΈ Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС ΡƒΠ΄ΠΎΠ±Π½Π΅Π΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚.

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ прямых Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚

Π’ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ прямая опрСдСляСтся ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ прямой Π½Π° плоскости ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΈΠ· Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ². Π’Π°ΠΊ ΠΈ прямой Π»ΠΈΠ½ΠΈΠΈ, Π·Π°Π΄Π°Π½Π½ΠΎΠΉ Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‚ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ уравнСния прямой Π² пространствС.

Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ ΠΈ достаточныС условия ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π² зависимости ΠΎΡ‚ Ρ‚ΠΈΠΏΠ° уравнСния, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰Π΅Π³ΠΎ Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ прямыС.

НачнСм с условия ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых Π½Π° плоскости. Оно базируСтся Π½Π° опрСдСлСниях Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой ΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π²Π΅ΠΊΡ‚ΠΎΡ€Π° прямой Π½Π° плоскости.

Π§Ρ‚ΠΎΠ±Ρ‹ Π½Π° плоскости Π΄Π²Π΅ Π½Π΅ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰ΠΈΠ΅ прямыС Π±Ρ‹Π»ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈ достаточно, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠ΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… прямых Π±Ρ‹Π»ΠΈ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ΠΌΠΈ, ΠΈΠ»ΠΈ Π±Ρ‹Π»ΠΈ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ΠΌΠΈ Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… прямых, ΠΈΠ»ΠΈ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΠΉ Π²Π΅ΠΊΡ‚ΠΎΡ€ ΠΎΠ΄Π½ΠΎΠΉ прямой Π±Ρ‹Π» пСрпСндикулярСн Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΠΌΡƒ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρƒ Π΄Ρ€ΡƒΠ³ΠΎΠΉ прямой.

A 1 = t Β· A 2 B 1 = t Β· B 2

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ссли ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС Π½Π° плоскости Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π·Π°Π΄Π°ΡŽΡ‚ΡΡ уравнСниями с ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌΠΈ коэффициСнтами, Ρ‚ΠΎ ΡƒΠ³Π»ΠΎΠ²Ρ‹Π΅ коэффициСнты Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… прямых Π±ΡƒΠ΄ΡƒΡ‚ Ρ€Π°Π²Π½Ρ‹. И Π²Π΅Ρ€Π½ΠΎ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠ΅ ΡƒΡ‚Π²Π΅Ρ€ΠΆΠ΄Π΅Π½ΠΈΠ΅: Ссли Π½Π΅ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰ΠΈΠ΅ прямыС Π½Π° плоскости Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‚ΡΡ уравнСниями прямой с ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ ΡƒΠ³Π»ΠΎΠ²Ρ‹ΠΌΠΈ коэффициСнтами, Ρ‚ΠΎ эти Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

a x = t Β· b x a y = t Β· b y

РСшСниС

Π—Π°ΠΏΠΈΡˆΠ΅ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой Π² ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°Ρ… Π² Π²ΠΈΠ΄Π΅ ΠΎΠ±Ρ‰Π΅Π³ΠΎ уравнСния:

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π½Π΅ выполняСтся Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ достаточноС условиС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых Π½Π° плоскости, Π° Π·Π½Π°Ρ‡ΠΈΡ‚ Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ прямыС Π½Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

ΠžΡ‚Π²Π΅Ρ‚: Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ прямыС Π½Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

РСшСниС

ΠœΡ‹ Π²ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ уравнСния прямых y = 2 x + 1 ΠΈ y = 2 x + 4 Π½Π΅ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΌΠΈ (Ссли Π±Ρ‹ Π±Ρ‹Π»ΠΎ ΠΈΠ½Π°Ρ‡Π΅, прямыС Π±Ρ‹Π»ΠΈ Π±Ρ‹ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰ΠΈΠΌΠΈ) ΠΈ ΡƒΠ³Π»ΠΎΠ²Ρ‹Π΅ коэффициСнты прямых Ρ€Π°Π²Π½Ρ‹, Π° Π·Π½Π°Ρ‡ΠΈΡ‚ Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ прямыС ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ.

Π‘Π»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ шагом ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ условия ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… прямых.

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ пСрпСндикулярны: это дСмонстрируСт Π½Π°ΠΌ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΈΠ΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ³ΠΎ ΠΈ достаточного условия ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ исходных прямых. Π’.Π΅. Π·Π°Π΄Π°Π½Π½Ρ‹Π΅ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

ΠžΡ‚Π²Π΅Ρ‚: Π΄Π°Π½Π½Ρ‹Π΅ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

Для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых Π² ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ систСмС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ пространства ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ достаточноС условиС.

Π§Ρ‚ΠΎΠ±Ρ‹ Π΄Π²Π΅ Π½Π΅ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‰ΠΈΠ΅ прямыС Π² Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС Π±Ρ‹Π»ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ ΠΈ достаточно, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰Π΅ Π²Π΅ΠΊΡ‚ΠΎΡ€Ρ‹ этих прямых Π±Ρ‹Π»ΠΈ ΠΊΠΎΠ»Π»ΠΈΠ½Π΅Π°Ρ€Π½Ρ‹ΠΌΠΈ.

a β†’ = t Β· b β†’ ⇔ a x = t Β· b x a y = t Β· b y a z = t Β· b z

РСшСниС

Π‘Π»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅ ΠΈ достаточноС условиС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых Π² пространствС Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ.

ΠžΡ‚Π²Π΅Ρ‚: ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… прямых Π΄ΠΎΠΊΠ°Π·Π°Π½Π°.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΈ свойства ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых

ΠŸΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых

1. Если Π΄Π²Π΅ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ прямой, Ρ‚ΠΎ ΠΎΠ½ΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ:

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

2. Если Π΄Π²Π΅ прямыС пСрпСндикулярны Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ прямой, Ρ‚ΠΎ ΠΎΠ½ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹:

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

ΠžΡΡ‚Π°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых основаны Π½Π° ΡƒΠ³Π»Π°Ρ…, ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰ΠΈΡ…ΡΡ ΠΏΡ€ΠΈ пСрСсСчСнии Π΄Π²ΡƒΡ… прямых Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ.

3. Если сумма Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… односторонних ΡƒΠ³Π»ΠΎΠ² Ρ€Π°Π²Π½Π° 180Β°, Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹:

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

Если ∠1 + ∠2 = 180Β°, Ρ‚ΠΎ a || b.

4. Если соотвСтствСнныС ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹:

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

5. Если Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΠ΅ накрСст Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹:

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

Бвойства ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых

УтвСрТдСния, ΠΎΠ±Ρ€Π°Ρ‚Π½Ρ‹Π΅ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых, ΡΠ²Π»ΡΡŽΡ‚ΡΡ ΠΈΡ… свойствами. Они основаны Π½Π° свойствах ΡƒΠ³Π»ΠΎΠ², ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… пСрСсСчСниСм Π΄Π²ΡƒΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ прямой.

1. ΠŸΡ€ΠΈ пСрСсСчСнии Π΄Π²ΡƒΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ прямой, сумма ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Ρ… ΠΈΠΌΠΈ Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½ΠΈΡ… односторонних ΡƒΠ³Π»ΠΎΠ² Ρ€Π°Π²Π½Π° 180Β°:

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

Если a || b, Ρ‚ΠΎ ∠1 + ∠2 = 180Β°.

2. ΠŸΡ€ΠΈ пСрСсСчСнии Π΄Π²ΡƒΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ прямой, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΈΠΌΠΈ соотвСтствСнныС ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹:

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

3. ΠŸΡ€ΠΈ пСрСсСчСнии Π΄Π²ΡƒΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ прямой, ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½Π½Ρ‹Π΅ ΠΈΠΌΠΈ накрСст Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹:

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

Π‘Π»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅ свойство являСтся частным случаСм для ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ ΠΏΡ€Π΅Π΄Ρ‹Π΄ΡƒΡ‰Π΅Π³ΠΎ:

4. Если прямая Π½Π° плоскости пСрпСндикулярна ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π΄Π²ΡƒΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых, Ρ‚ΠΎ ΠΎΠ½Π° пСрпСндикулярна ΠΈ Π΄Ρ€ΡƒΠ³ΠΎΠΉ:

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

ΠŸΡΡ‚ΠΎΠ΅ свойство β€” это аксиома ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых:

5. Π§Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ, Π½Π΅ Π»Π΅ΠΆΠ°Ρ‰ΡƒΡŽ Π½Π° Π΄Π°Π½Π½ΠΎΠΉ прямой, ΠΌΠΎΠΆΠ½ΠΎ провСсти Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΠ΄Π½Ρƒ ΠΏΡ€ΡΠΌΡƒΡŽ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΡƒΡŽ Π΄Π°Π½Π½ΠΎΠΉ прямой:

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС. ΠŸΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых

Как ΠΌΡ‹ Π·Π½Π°Π΅ΠΌ, прямыС Π»ΠΈΠ±ΠΎ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ (Ρ‚.Π΅. ΠΈΠΌΠ΅ΡŽΡ‚ ΠΎΠ΄Π½Ρƒ ΠΎΠ±Ρ‰ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ), Π»ΠΈΠ±ΠΎ Π½Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ (Ρ‚.Π΅. Π½Π΅ ΠΈΠΌΠ΅ΡŽΡ‚ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠΉ ΠΎΠ±Ρ‰Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ).

Если прямыС a ΠΈ b ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹, Ρ‚ΠΎ это ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ Ρ‚Π°ΠΊ:

На рисункС Рис.1 ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ прямыС a ΠΈ b, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ пСрпСндикулярны ΠΊ прямой c. Π’ этом случаС эти прямыС Π½Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ (см. ΡΡ‚Π°Ρ‚ΡŒΡŽ ΠŸΠ΅Ρ€ΠΏΠ΅Ρ€Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ прямыС), Ρ‚.Π΅. ΠΎΠ½ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ (ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ 1).

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

ΠŸΠΎΠ½ΡΡ‚ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΌΠΎΠΆΠ½ΠΎ Ρ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚ΡŒ ΠΈ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ.

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

Аналогично опрСдСляСтся ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΠΈ прямой, ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΠΈ Π»ΡƒΡ‡Π°, Π΄Π²ΡƒΡ… Π»ΡƒΡ‡Π΅ΠΉ, Π»ΡƒΡ‡Π° ΠΈ прямой.

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠŸΠΎ ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠŸΠΎ ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠŸΠΎ ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

На Рис.3 ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ AB ΠΏΠ΅Ρ€Π°Π»Π»Π΅Π»Π΅Π½ ΠΊ прямой a ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ прямая, проходящай Ρ‡Π΅Ρ€Π΅Π· ΠΎΡ‚Ρ€ΠΎΠ΅Π·ΠΎΠΊ AB ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° прямой a. На рисункС Рис.4 ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ AB ΠΏΠ΅Ρ€Π°Π»Π»Π΅Π»Π΅Π½ ΠΊ Π»ΡƒΡ‡Ρƒ a Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ прямыС, проходящиС Ρ‡Π΅Ρ€Π΅Π· ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ AB ΠΈ Π»ΡƒΡ‡ a ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Для Рис.5 ΠΈ Рис.6 ΠΌΠΎΠΆΠ½ΠΎ ΡΠ΄Π΅Π»Π°Ρ‚ΡŒ Π°Π½Π°Π»ΠΎΠ³ΠΈΡ‡Π½Ρ‹Π΅ рассуТдСния.

ΠŸΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ прямых

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ 3. ΠŸΡ€ΡΠΌΠ°Ρ c называСтся сСкущСй ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ прямым a ΠΈ b, Ссли ΠΎΠ½Π° пСрСсСкаСт ΠΈΡ… Π² Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ….

ΠŸΡ€ΠΈ пСрСсСчСнии прямой c с a ΠΈ b ΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‚ΡΡ восСмь ΡƒΠ³Π»ΠΎΠ², Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΠ°Ρ€Ρ‹ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΈΠΌΠ΅ΡŽΡ‚ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½Ρ‹Π΅ названия (Рис.7):

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

ΠžΠΏΡ€Π΅Π΄Π΅Π»ΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π΄Π²ΡƒΡ… прямых, связанныС с этими ΠΏΠ°Ρ€Π°ΠΌΡ‹ ΡƒΠ³Π»ΠΎΠ².

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 1. Если ΠΏΡ€ΠΈ пСрСсСчСнии Π΄Π²ΡƒΡ… прямых сСкущСй накрСст Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ. ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ пСрСсСчСнии прямых a ΠΈ b сСкущСй AB накрСст Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹: По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹(Рис.8).

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

Π”ΠΎΠΊΠ°ΠΆΠ΅ΠΌ, Ρ‡Ρ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

Если ΡƒΠ³Π»Ρ‹ 1 ΠΈ 2 прямыС (Рис.9), Ρ‚ΠΎ получаСтся, Ρ‡Ρ‚ΠΎ прямыС a ΠΈ b пСрпСндикулярны прямой AB ΠΈ, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΎΠ½ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ (Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° 1 ΡΡ‚Π°Ρ‚ΡŒΠΈ ΠŸΠ΅Ρ€ΠΏΠ΅Ρ€Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹Π΅ прямыС ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ 1 настоящСй ΡΡ‚Π°Ρ‚ΡŒΠΈ).

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

ΠŸΡ€Π΅Π΄ΠΏΠΎΠ»ΠΎΠΆΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΡƒΠ³Π»Ρ‹ 1 ΠΈ 2 Π½Π΅ прямыС (Рис.10).

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

НайдСм сСрСдину ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° AB ΠΈ ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ Ρ‡Π΅Ρ€Π΅Π· O. Из Ρ‚ΠΎΡ‡ΠΊΠΈ O ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ пСрпСндикуляр OM ΠΊ прямой a. На прямой b ΠΎΡ‚Π»ΠΎΠΆΠΈΠΌ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ BN Ρ€Π°Π²Π½ΠΎΠΉ ΠΎΡ‚Ρ€Π΅Π·ΠΊΡƒ MA. Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ OAM ΠΈ OBN Ρ€Π°Π²Π½Ρ‹ ΠΏΠΎ Π΄Π²ΡƒΠΌ сторонам ΠΈ ΡƒΠ³Π»Ρƒ ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ, Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ OA=OB, MA=NB, По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π’ΠΎΠ³Π΄Π° По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΈ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° N Π»Π΅ΠΆΠΈΡ‚ Π½Π° ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠΈ Π»ΡƒΡ‡Π° MO, Ρ‚.Π΅. Ρ‚ΠΎΡ‡ΠΊΠΈ M, O, N Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой. Π£Π³ΠΎΠ» BNO прямой (ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΡƒΠ³ΠΎΠ» AMO прямой). ΠŸΠΎΠ»ΡƒΡ‡Π°Π΅Ρ‚ΡΡ, Ρ‡Ρ‚ΠΎ прямыС a ΠΈ b пСрпСндикулярны ΠΊ прямой MN, ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΠ½ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 2. Если ΠΏΡ€ΠΈ пСрСсСчСнии Π΄Π²ΡƒΡ… прямых сСкущСй соотвСтствСнныС ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ. ΠŸΡƒΡΡ‚ΡŒ ΠΏΡ€ΠΈ пСрСсСчСнии прямых a ΠΈ b сСкущСй с соотвСтствСнныС ΡƒΠ³Π»Ρ‹ Ρ€Π°Π²Π½Ρ‹, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹(Рис.11).

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡƒΠ³Π»Ρ‹ 2 ΠΈ 3 Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅, Ρ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π’ΠΎΠ³Π΄Π° ΠΈΠ· По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΈ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΡΠ»Π΅Π΄ΡƒΠ΅Ρ‚, Ρ‡Ρ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Но ΡƒΠ³Π»Ρ‹ 1 ΠΈ 3 накрСст Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΠΈ, ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ 1, прямыС a ΠΈ b ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

Π’Π΅ΠΎΡ€Π΅ΠΌΠ° 3. Если ΠΏΡ€ΠΈ пСрСсСчСнии Π΄Π²ΡƒΡ… прямых сСкущСй сумма односторонних ΡƒΠ³Π»ΠΎΠ² Ρ€Π°Π²Π½Π° 180Β°, Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.

Π”ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ. ΠŸΡƒΡΡ‚ΡŒ ΠΏΡ€ΠΈ пСрСсСчСнии прямых a ΠΈ b сСкущСй с сумма односторонних ΡƒΠ³Π»ΠΎΠ² Ρ€Π°Π²Π½Π° 180Β°, Π½Π°ΠΏΡ€ΠΈΠΌΠ΅Ρ€ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹(Рис.11). Из рисунка Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ ΡƒΠ³Π»Ρ‹ 4 ΠΈ 3 смСТныС, Ρ‚.Π΅. По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Из По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΈ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΡΠ»Π΅Π΄ΡƒΠ΅Ρ‚, Ρ‡Ρ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Но ΡƒΠ³Π»Ρ‹ 1 ΠΈ 3 накрСст Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅ ΠΈ, ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ 1 прямыС a ΠΈ b ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹.По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС

ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅


ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ прямыми
Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ Π΄Π²Π΅ прямыС,
ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Π½Π΅ ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡŽΡ‚ΡΡ.

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ прямых ΠΎΠ±ΠΎΠ·Π½Π°Ρ‡Π°ΡŽΡ‚ Π·Π½Π°ΠΊΠΎΠΌ: βˆ₯. НапримСр
ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ прямых a ΠΈ b обозначаСтся Ρ‚Π°ΠΊ: a βˆ₯ b.

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

На рисункС 1 ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ Ρ‚Ρ€ΠΈ прямыС. ΠŸΡ€ΡΠΌΠ°Ρ Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π°
прямой b, прямая c Π½Π΅ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Π° Π½ΠΈ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· прямых.

Π’Π°ΠΊΠΆΠ΅, ΠΊΠ°ΠΊ ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅ прямыС, ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‚ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Π΅
ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ. Π”Π²Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Π½Π°Π·Ρ‹Π²Π°ΡŽΡ‚ΡΡ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ, Ссли ΠΎΠ½ΠΈ
Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых.

ΠŸΡ€ΠΈΠ·Π½Π°ΠΊΠΈ

ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ Π΄Π²ΡƒΡ… прямых ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΠΏΠΎ Ρ‚Ρ€Π΅ΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ.

По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹. Π€ΠΎΡ‚ΠΎ По ΠΊΠ°ΠΊΠΈΠΌ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ°ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Ρ‡Ρ‚ΠΎ прямыС ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹

На рисункС 2 ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Ρ‹ 8 ΡƒΠ³Π»ΠΎΠ², ΠΏΡ€ΠΈ ΠΏΠΎΠΌΠΎΡ‰ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠΆΠ½ΠΎ
Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ всС Ρ‚Ρ€ΠΈ ΠΏΡ€ΠΈΠ·Π½Π°ΠΊΠ° ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Π­Ρ‚ΠΎ накрСст Π»Π΅ΠΆΠ°Ρ‰ΠΈΠ΅
ΡƒΠ³Π»Ρ‹: 3 ΠΈ 5, 4 ΠΈ 6; односторонниС ΡƒΠ³Π»Ρ‹: 4 ΠΈ 5, 3 ΠΈ 6;
соотвСтствСнныС ΡƒΠ³Π»Ρ‹: 1 ΠΈ 5, 4 ΠΈ 8, 2 ΠΈ 6, 3 ΠΈ 7.

ΠŸΡ€ΡΠΌΠ°Ρ называСтся сСкущСй ΠΏΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ ΠΊ Π΄Π²ΡƒΠΌ Π΄Ρ€ΡƒΠ³ΠΈΠΌ прямым,
Ссли ΠΎΠ½Π° пСрСсСкаСт ΠΈΡ… Π² Π΄Π²ΡƒΡ… Ρ‚ΠΎΡ‡ΠΊΠ°Ρ….

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *