Поддержка sse2 что это
Поддержка sse2 что это
Особенности
Ссылки
Наборы расширения базовых инструкций процессоров семейства x86 |
---|
MMX | MMXEXT | SSE | SSE2 | SSE3 | SSSE3 | SSE4 | ATA | 3DNow! | 3DNowExt | SSE5 | AVX | AES |
Полезное
Смотреть что такое «SSE2» в других словарях:
SSE2 — SSE2, Streaming SIMD Extensions 2, is one of the IA 32 SIMD (Single Instruction, Multiple Data) instruction sets. SSE2 was first introduced by Intel with the initial version of the Pentium 4 in 2001. It extends the earlier SSE instruction set,… … Wikipedia
SSE2 — (Streaming SIMD Extensions 2) ist eine x86 Befehlssatzerweiterung, die Intel mit dem Pentium 4 einführte. Die mit SSE eingeführten 128 Bit Register können in SSE2 auch mit MMX Operationen verwendet werden. SSE2 ermöglicht die Verarbeitung von… … Deutsch Wikipedia
SSE2 — Saltar a navegación, búsqueda SSE2 es el acrónimo de Streaming Single Instruction Multiple Data Extensions 2 es uno de los conjuntos de instrucciones de la arquitectura IA 32 SIMD. Fue utilizada por primera vez en la primera versión del Pentium 4 … Wikipedia Español
SSE2 — Streaming SIMD Extension 2 Streaming SIMD Extension 2, généralement abrégé SSE2. Elle est composée de 144 instructions et fait son apparition avec le Pentium 4 d Intel. Elle gère des registres 128 bits pour les entiers et les flottants… … Wikipédia en Français
SSE2 — Streaming Single Instruction, Multiple Data Extensions 2 (Computing) … Abbreviations dictionary
SSE 2 — SSE2 (Streaming SIMD Extensions 2) ist eine x86 Befehlssatzerweiterung, die Intel mit dem Pentium 4 einführte. Die mit SSE eingeführten 128 Bit Register können in SSE2 auch mit MMX Operationen verwendet werden. SSE2 ermöglicht die Verarbeitung… … Deutsch Wikipedia
Streaming SIMD Extensions 2 — SSE2 (Streaming SIMD Extensions 2) ist eine x86 Befehlssatzerweiterung, die Intel mit dem Intel Pentium 4 einführte. Die mit SSE eingeführten 128 Bit Register können in SSE2 auch mit MMX Operationen verwendet werden. SSE2 ermöglicht die… … Deutsch Wikipedia
Streaming SIMD Extensions 2 — SSE2 (англ. Streaming SIMD Extensions 2, потоковое SIMD расширение процессора) это Pentium 4. SSE2 использует восемь 128 битных регистров (xmm0 до xmm7), включённых в архитектуру x86 с вводом расширения SSE, каждый из которых трактуется как 2… … Википедия
Comparison of AMD processors — This list is incomplete; you can help by expanding it. Colors of the processor code names indicate same core. Archi tecture Family Code Name Model Group Speed (MHz) Socket Process (nm) Cores FSB/HT (MHz) Cache (KiB) Memory Controller … Wikipedia
List of AMD Athlon 64 microprocessors — This list is incomplete; you can help by expanding it. The Athlon 64 microprocessor from AMD is an eighth generation CPU targeted at the consumer market. Contents 1 Single core desktop processors 1.1 Athlon 64 … Wikipedia
SSE2 (Streaming SIMD Extensions 2)
По сути SSE2 является дополнением к технологии SSE, разработанной Intel в 1999 году. Этот набор инструкций добавил к SSE 144 новые команды (в SSE их было только 70). При этом, дополнительные регистры не вводились.
То есть, инструкции SSE2 используют все те же восемь 128-битных регистров SSE и позволяют процессору улучшить работу с ними. В частности, SSE2 дает возможность в регистрах SSE эффективно производить разнообразные операции со скалярными и упакованными типами данных, вещественными числами, а также осуществлять потоковую обработку целочисленных данных. Кроме того, SSE2 включает в себя сложные дополнения к командам преобразования чисел, а также алгоритмы управления кэшем процессора, минимизирующие его загрязнения при обработке объёмных потоков данных.
Поддержка инструкций SSE2 является обязательным условием использования современного программного обеспечения. В частности, без этого набора команд не будут работать популярные браузеры Google Chrome и Яндекс-браузер. На компьютере без SSE2 также невозможно использовать Windows 8, Windows 10, Microsoft Office 2013 и др.
Люди обычно оценивают процессор по количеству ядер, тактовой частоте, объему кэша и других показателях, редко обращая внимание на поддерживаемые им технологии.
Отдельные из этих технологий нужны только для решения специфических заданий и в «домашнем» компьютере вряд ли когда-нибудь понадобятся. Наличие же других является непременным условием работы программ, необходимых для повседневного использования.
Так, полюбившийся многим браузер Google Chrome не работает без поддержки процессором SSE2. Инструкции AVX могут в разы ускорить обработку фото- и видеоконтента. А недавно один мой знакомый на достаточно быстром Phenom II (6 ядер) не смог запустить игру Mafia 3, поскольку его процессор не поддерживает инструкции SSE4.2.
Если аббревиатуры SSE, MMX, AVX, SIMD вам ни о чем не говорят и вы хотели бы разобраться в этом вопросе, изложенная здесь информация станет неплохим подспорьем.
Одной из особенностей компьютеров на базе процессоров AMD, которой они выгодно отличаются от платформ Intel, является высокий уровень совместимости процессоров и материнских плат. У владельцев относительно не старых настольных систем на базе AMD есть высокие шансы безболезненно «прокачать» компьютер путем простой замены процессора на «камень» из более новой линейки или же флагман из предыдущей.
Если вы принадлежите к их числу и задались вопросом «апгрейда», эта небольшая табличка вам в помощь.
В таблицу можно одновременно добавить до 6 процессоров, выбрав их из списка (кнопка «Добавить процессор»). Всего доступно больше 2,5 тыс. процессоров Intel и AMD.
Пользователю предоставляется возможность в удобной форме сравнивать производительность процессоров в синтетических тестах, количество ядер, частоту, структуру и объем кэша, поддерживаемые типы оперативной памяти, скорость шины, а также другие их характеристики.
Дополнительные рекомендации по использованию таблицы можно найти внизу страницы.
В этой базе собраны подробные характеристики процессоров Intel и AMD. Она содержит спецификации около 2,7 тысяч десктопных, мобильных и серверных процессоров, начиная с первых Пентиумов и Атлонов и заканчивая последними моделями.
Информация систематизирована в алфавитном порядке и будет полезна всем, кто интересуется компьютерной техникой.
Таблица содержит информацию о почти 2 тыс. процессоров и будет весьма полезной людям, интересующимся компьютерным «железом». Положение каждого процессора в таблице определяется уровнем его быстродействия в синтетических тестах (расположены по убыванию).
Есть фильтр, отбирающий процессоры по производителю, модели, сокету, количеству ядер, наличию встроенного видеоядра и другим параметрам.
Для получения подробной информации о любом процессоре достаточно нажать на его название.
Проверка стабильности работы центрального процессора требуется не часто. Как правило, такая необходимость возникает при приобретении компьютера, разгоне процессора (оверлокинге), при возникновении сбоев в работе компьютера, а также в некоторых других случаях.
В статье описан порядок проверки процессора при помощи программы Prime95, которая, по мнению многих экспертов и оверлокеров, является лучшим средством для этих целей.
ПОКАЗАТЬ ЕЩЕ
Расширенные инструкции процессора: Разбираемся с SIMD (MMX,SSEx,3DNow!)
Перед тем, как процессор сгорит, в его памяти проносятся
все операции, которые он совершал в своей жизни (c)
Как известно одним из основных требований к компьютеру вообще и к процессору в частности является высокая производительность независимо от решаемой задачи. При обработке относительно больших объемов информации, показателем производительности процессора является количество информации, которую он может обработать за некоторый промежуток времени. При этом требуется минимизировать суммарное время, потраченное на обработку всего объема данных.
все операции, которые он совершал в своей жизни (c)
Как известно одним из основных требований к компьютеру вообще и к процессору в частности является высокая производительность независимо от решаемой задачи. При обработке относительно больших объемов информации, показателем производительности процессора является количество информации, которую он может обработать за некоторый промежуток времени. При этом требуется минимизировать суммарное время, потраченное на обработку всего объема данных.
За один такт процессор выполняет несколько инструкций над некоторым количеством исходных данных. Число тактов в единицу времени прямо пропорционально тактовой частоте, на которой работает процессор. Отсюда видно, что уменьшить время, требуемое на решение задачи можно несколькими способами: увеличив тактовую частоту, увеличив число исполняемых за такт команд или увеличить количество данных обрабатываемых каждой командой. Для реализации последнего способа необходимо чтобы единицы данных располагались последовательно и имели один и тот же тип (соответственно одинаковый размер). Именно это и наблюдается в мультимедиа контенте.
Мультимедийный файл представляет собой массив однородных элементов. Этому массиву предшествует некоторая описательная информация (заголовок), в котором содержится общая информация о файле. Так как в подобных массивах размер обычно одинаков, то их удобно обрабатывать группами, что ускоряет процесс решения задачи и уменьшает затраченное на него время. Аналогично и в области 3D-графики, где требуется рассчитать координаты вершин огромного количества полигонов, что также можно подвергнуть групповым вычислениям.
Для организации групповой обработки данных в процессорах используется SIMD расширения к х86 инструкциям. Аббревиатура SIMD расшифровывается как Single Instruction Multiple Data (одна инструкция – множество данных). Под SIMD расширением понимается программно-аппартное решение, представляющее собой совокупность дополнительных регистров и наборов инструкций процессора, предназначенных для групповой обработки данных. Также необходимо наличие соответствующих компиляторов, ”знающих” SIMD инструкции и способных оптимизировать под них код.
Поскольку каждый производитель процессоров по-своему улучшал архитекутуру, развитие микропроцессоров сопровождалось появлением нескольких вариантов SIMD расширений. Основные из них мы рассмотрим ниже.
MMX-расширение появилось в Pentium MMX (P55, январь 1997) и включало в себя 57 новых команд, предназначенных для обработки звуковых и видеосигналов. Позднее их поддержка появилась в K6 (Little Foot) от AMD и в 6х86MX от Cyrix.
MMX-расширение микропроцессора Pentium предназначено для поддержки приложений, ориентированных на работу с большими массивами данных целого типа, над которыми выполняются одинаковые операции. С данными такого типа обычно работают мультимедийные, графические, коммуникационные программы. По этой причине данное расширение архитектуры микропроцессоров Intel и названо MultiMedia eXtensions (MMX), что переводится как мультимедиа расширения.
Основа программной компоненты – система команд MMX-расширения (те самые 57 новых команд) и четыре новых типа данных. MMX-команды являются естественным дополнением основной системы команд микропроцессора. Основным принципом их работы является одновременная обработка нескольких единиц однотипных данных одной командой. Основа аппаратной компоненты – 8 MMX регистров, каждый размером в 64 бит = 8 байт. MMX работает только с целыми числами; поддерживаются данные размером в 1, 2, 4 или 8 байт. То есть, один MMX регистр может содержать 8, 4, 2 или 1 операнд соответственно.
Данные, содержащиеся в MMX-регистрах, можно покомпонентно складывать, умножать, вычитать, выполнять разнообразные специфические, необходимые для мультимедиа приложений, операции, вроде сложения без переполнения, вычисления среднего арифметического и производить логические операции с битами (побитовый and, or, xor). Делить, правда, нельзя, есть ещё ограничения. Но многие операции можно делать на порядок быстрее, даже больше. Однако, применение MMX в особенности требует специальной ручной оптимизации, никакой компилятор тут существенно не поможет. Под MMX, например, оптимизируются разнообразные кодеки аудио файлов, алгоритмы работы которых хорошо сочетаются с MMX. Причём, не вся программа целиком, а небольшая часть, выполняющая основную работу, и это обстоятельство упрощает оптимизацию.
Данное расширение появилось в Pentium III (ядро Katmai, сентябрь 1999) и насчитывало 70 новых команд. Позднее в Athlon XP (начиная с Palomino) его стали поддерживать и процессоры AMD. Аббревиатура SSE расшифровывается как Streaming SIMD Extensions (потоковые SIMD расширения).
SSE интересно прежде всего тем, что оперирует с данными вещественного типа, которые используются в геометрических расчётах, то есть, приложениях трёхмерной графики, компьютерных играх, редакторах вроде 3DStudioMax, и многих других. С тех пор как в компьютерных играх вроде Quake текстурирование треугольников стало производиться при помощи видеоускорителей, большая надобность в целочисленных вычислениях отпала. На первое место вышла скорость операций с плавающей точкой, вроде перемножения вещественного вектора на вещественную матрицу.
При внедрении SSE процессор получил в дополнение к стандартным регистрам архитектуры x87 8 новых больших регистров размером по 128 бит, в каждом из которых содержится 4 32-битных вещественных числа. С четвёрками операндов можно покомпонентно производить следующие операции: сложить две четвёрки чисел, вычесть, перемножить, разделить. Вычислить одновременно 4 (обратных) квадратных корня, точно или приближённо. Ещё можно тасовать содержимое регистров, перекладывать данные из одних частей регистра в другие и производить некоторые другие аналогичные операции. Однако перемещение данных происходит не быстрее их сложения, так что эффективное использование SSE возможно только на подготовленных правильно упакованных данных.
Если посчитать, что SSE-операция заменяет 4 аналогичных обыкновенных, то при оптимизации можно получить прирост производительности в 4 раза. Если быть более точным, то даже несколько больше, за счёт использования новых больших регистров. Однако, далеко не все вычисления можно эффективно оптимизировать под SSE. Как пример «хорошей» задачи следует привести умножение четырёхмерной матрицы на четырёхмерный вектор. Ускорение четырёхкратное без особых затрат.
В первую очередь использование SSE позволяет современным процессорам при выполнении трансформации вершин треугольников, составляющих трёхмерную сцену, успешно соревноваться с видеоускорителями. Другое дело, что у процессора много других задач, и лучше его по возможности разгрузить, чтобы он работал параллельно с видеоускорителем, и каждый выполнял свою задачу.
SSE2
Следующее расширение, являющееся логическим продолжением MMX и SSE появилось в Pentium 4 (начиная с Willamette). В Athlon 64 появилось начиная с Clawhammer.
В данное расширение включены 144 команды SSE2, ориентированные, в первую очередь, на работу с потоковыми данными. Подобно Pentium III, они также оперируют со 128-битными регистрами, но уже не только с четверками чисел одинарной точности, но и с любыми другими типами данных, которые умещаются в 128 бит. Это пары вещественных чисел двойной точности, шестнадцать однобайтовых целых, восьмерки двухбайтовых целых, пары восьмибайтовых целых etc. В результате получился некий симбиоз MMX и SSE.
Теперь те же 8 больших 128-битных регистров уже можно интерпретировать как содержащие не четыре 32-битных вещественных числа, а два 64-битных вещественных числа повышенной точности. Числа с повышенной точностью используются в тех случаях, когда вычисления с обычной точностью приводят к большим погрешностям. Все операции перенеслись с SSE, только работают не с четвёркой пар операндов, а с двойкой пар операндов.
В SSE2 регистры по сравнению с MMX удвоились, то есть, там стало помещаться не, например, 8 чисел, а 16. Поскольку скорость выполнения инструкций не изменилась, при оптимизации под SSE2 программа запросто получала двукратный прирост производительности. Надо отметить ещё следующее обстоятельство. Если программа уже была оптимизирована под MMX, то оптимизация под SSE2 даётся сравнительно легко в силу сходности системы команд.
Следующий набор появился в Pentium 4 начиная с Prescott и Athlon 64 начиная с Venice. Это расширение, имевшее поначалу имело рабочее название Prescott New Instruction, но получившее в итоге не совсем верное с технической точки зрения название SSE3, призвано облегчить оптимизацию программ под SSE и SSE2. Причём, в первую очередь, сделать более легкой полностью автоматическую оптимизацию программ средствами компилятора. То есть, для оптимизации необходимо будет просто перекомпилировать программу.
Некорректность названия SSE3 объясняется тем, что в отличие от других SIMD инструкций, где операции (например сложение) выполняются вертикально, здесь появилась возможность горизонтального выполнения операций.
Данный набор появился в новейших процессорах Intel Core 2. Конкретная информация по этим инструкциям пока отсутствует.
Кстати стоит отметить, что в новых интеловских процессорах появилась технология Intel Advanced Digital Media Boost, суть которой в ускорении выполнения SIMD инструкций. Если раньше каждая инструкция выполнялась за два такта (один такт для обработки старших 64 бит, а второй такт для младших), то теперь выполнение этой инструкции занимает один такт. Налицо двукратное ускорение, что должно сказываться на работе программ, оптимизированных под этот набор инструкций.
*Обновлено: информация о наборе инструкций SSE4 оказалась преждевременной, на самом деле SSE4 появится в процессорах поколения Penryn, которые предположительно должны появиться в четвертом квартале 2007 года.
Различают три поколения этого расширения инструкций: 3DNow!, Enhanced 3DNow! и 3DNow! Professional, однако очень часто их все называют просто 3DNow!
Набор инструкций 3DNow! появился в AMD K6-2 (Chomper). Данный набор, состоящий из 21 команды, был оптимизирован для еще более узкой области, нежели «универсально-мультимедийный» Intel MMX, а именно: для наиболее ресурсоемких расчетов, связанных с 3D-графикой. Даже в самом названии этого набора (3DNow!) отразилась область его применения. Это расширение во многом сходно с SSE, но так же имеет и значительные отличия. Регистров так же 8, но они размером не 128 бит, а 64. Соответственно, в них помещается не 4 числа, а только 2. Имеется аналогичный SSE набор арифметических операций с регистрами. Сложить-умножить-разделить две пары операндов и т.п. Есть и операции нахождения (обратного) квадратного корня, точные и более быстрые приближённые. Однако, есть ещё одно важное отличие расширения 3DNow! Можно складывать между собой содержимое одного регистра. То есть, так же как и в SSE3, производить не только вертикальные операции, но и горизонтальные.
В дальнейшем изменения блока 3DNow! произошли в К7. Он, как и раньше, работал с 64-битными регистрами, в которых находились пары вещественных чисел одинарной точности, зато его набор команд расширился еще на 24 инструкции (Enhanced 3DNow!). Последнее расширение этого набора до 3DNow! Professional появилось в ядре Thoroughbred.
На развитие набора 3DNow! негативно повлияло то, что у AMD первое время отсутствовал оптимизирующий компилятор, к тому же разработчики программ не торопились оптимизировать свои программы под эти инструкции.
Оценка прироста производительности.
После продолжительного поиска необходимые бенчмарки были найдены. Все они имеют возможность включать/отключать оптимизацию под определнные виды инструкций. Итак, тесты условно были поделены на четыре группы:
Материнская плата: Gigabyte GA-8I945P-G, BIOS v.F10
Процессор: Intel Pentium 4 630@3.600 MHz
Система охлаждения: TT Big Typhoon
Оперативная память: 512 Mb DDR2–667@638 Samsung Original (5-5-4-14), 512 Mb DDR2–667@638 Hynix (5-5-4-14)
Видеокарта: PCI-E Palit GeForce 6600GT@585/551 MHz
Дисковая подсистема: 160Gb SATA-II SAMSUNG HD160JJ, 40Gb Ultra-ATA/100 Seagate Barracuda ST340014A
Software: Windows XP SP2, ForceWare 91.28
Тест CPU RightMark достаточно редко встречается в обзорах, и я не удивлюсь если о нем слышали немногие (я сам только недавно его ”выловил”). Тест моделирует поведение притягивающихся и отталкивающих шаров в пространстве. Сам он представляет собой, по сути, два теста, объединенных в один. Модуль решателя (solver) рассчитывает физику взаимодействия тел, а модуль рендеринга (render) отображает это взаимодействие на экране. Нагрузку можно изменять и на модуль решателя (увеличивая количество рассчитываемых объектов), и на модуль рендеринга (изменяя количество источников света и качество текстур). В обоих модулях можно настраивать то, какие инструкции будут использованы при решении задачи. Тест больше оптимизирован под SSE/SSE3, поскольку требуется рассчитывать координаты объектов и силы их взаимодействия.
Как и ожидалось прирост от использования SIMD-инструкций в играх мал, и он тем меньше, чем лучше настройки графики.
Напоследок хочу привести таблицу десктопных ядер от Intel и AMD с указанием поддерживаемых наборов инструкций.
Этот FAQ содержит информацию по процессорам intel эпохи Core. Рекомендуется к прочтению новичкам, дабы ориентироваться в терминологии. Материал содержит большой объем информации собранной из разных источников, поэтому просьба в случае обнаружения неточностей и ошибок сообщить о них автору данного FAQ alex1974.
Расширение системы команд
MMX (Multimedia Extensions — мультимедийные расширения) — коммерческое название дополнительного набора инструкций, выполняющих характерные для процессов кодирования/декодирования потоковых ау.
Этот FAQ содержит информацию по процессорам intel эпохи Core. Рекомендуется к прочтению новичкам, дабы ориентироваться в терминологии. Материал содержит большой объем информации собранной из разных источников, поэтому просьба в случае обнаружения неточностей и ошибок сообщить о них автору данного FAQ alex1974.
Расширение системы команд
MMX (Multimedia Extensions — мультимедийные расширения) — коммерческое название дополнительного набора инструкций, выполняющих характерные для процессов кодирования/декодирования потоковых аудио/видео данных действия за одну машинную инструкцию. Впервые появился в процессорах Pentium MMX.
SSE (Streaming SIMD Extensions, потоковое SIMD-расширение процессора) — это SIMD (Single Instruction, Multiple Data, Одна инструкция — множество данных) набор инструкций, разработанный Intel и впервые представленный в процессорах серии Pentium III как ответ на аналогичный набор инструкций 3DNow! от AMD, который был представлен годом раньше. Первоначально названием этих инструкций было KNI — Katmai New Instructions (Katmai — название первой версии ядра процессора Pentium III).
Технология SSE позволяла преодолеть 2 основные проблемы MMX — при использовании MMX невозможно было одновременно использовать инструкции сопроцессора, так как его регистры были общими с регистрами MMX, и возможность MMX работать только с целыми числами.
SSE включает в архитектуру процессора восемь 128-битных регистров и набор инструкций, работающих со скалярными и упакованными типами данных.
Преимущество в производительности достигается в том случае, когда необходимо произвести одну и ту же последовательность действий над разными данными. В таком случае блоком SSE осуществляется распараллеливание вычислительного процесса между данными.
SSE2 (Streaming SIMD Extensions 2, потоковое SIMD-расширение процессора) — это SIMD (Single Instruction, Multiple Data, Одна инструкция — множество данных) набор инструкций, разработанный Intel и впервые представленный в процессорах серии Pentium 4. SSE2 расширяет набор инструкций SSE с целью полностью вытеснить MMX. Набор SSE2 добавил 144 новые команды к SSE, в котором было только 70 команд.
SSSE3 (Supplemental Streaming SIMD Extension 3) — это обозначение данное Intel’ом четвёртому расширению системы команд. Предыдущее имело обозначение SSE3 и Intel добавил ещё один символ ‘S’ вместо того, чтобы увеличить номер расширения, возможно потому, что они посчитали SSSE3 простым дополнением к SSE3. Также их называли кодовыми именами Tejas New Instructions (TNI) и Merom New Instructions (MNI) по названию процессоров, где впервые Intel намеревалась поддержать эти новые команды. Появившись в Intel Core Microarchitecture, SSSE3 доступно в сериях процессоров Xeon 5100 (Server и Workstation версии), а также в процессорах Intel Core 2 (Notebook и Desktop версии) и Intel Atom. Новыми в SSSE3, по сравнению с SSE3, являются 16 уникальных команд, работающих с упакованными целыми. Каждая из них может работать как с 64-х битными (MMX), так и с 128-ми битными (XMM) регистрами, поэтому Intel в своих материалах ссылается на 32 новые команды.
SSE4 — новый набор команд микроархитектуры Intel Core, впервые реализованный в процессорах серии Penryn. SSE4 состоит из 54 инструкций, 47 из них относят к SSE4.1 (они есть в процессорах Penryn). Полный набор команд (SSE4.1 и SSE4.2, то есть 47 + оставшиеся 7 команд) доступен только в процессорах Intel с микроархитектурой Nehalem, которые были выпущены в середине ноября 2008 года. Ни одна из SSE4 инструкций не работает с 64-х битными mmx регистрами (только с 128-ми битными xmm0-15).
AVX (Advanced Vector Extensions) — расширение системы команд x86 для микропроцессоров Intel, предложенное Intel в марте 2008. AVX предоставляет различные улучшения, новые инструкции и новую схему кодирования машинных кодов: 1. Размер векторных регистров SIMD увеличивается с 128 до 256 бит. Существующие 128-битные инструкции будут использовать младшую половину новых YMM регистров. В будущем возможно расширение до 512 или 1024 бит. 2. Неразрушающие операции. Набор инструкций AVX позволяет использовать любую двухоперандную инструкцию XMM в трёхоперандном виде без модификации двух регистров-источников, с отдельным регистром для результата. Например, вместо a = a + b можно использовать c = a + b, при этом регистр a остаётся не изменённым. AVX не поддерживает неразрушающие формы операций над обычными регистрами общего назначения, такими как EAX, но такая поддержка, возможно, будет добавлена в последующих расширениях. 3.Требования выравнивания данных для операндов SIMD в памяти ослаблены.
AES (Advanced Encryption Standard) — расширение системы команд x86 для микропроцессоров, предложенное компанией Intel в марте 2008. Целью данного расширения является ускорение приложений, использующий шифрование и дешифрирование по алгоритму AES.
EM64T (также x86-64/ x64/Intel64/) — 64-битная аппаратная платформа для выполнения 64-разрядных приложений. Это расширение архитектуры x86 с полной обратной совместимостью. Основной отличительной особенностью EM64T является поддержка 64-битных регистров общего назначения, 64-битных арифметических и логических операций над целыми числами и 64-битных виртуальных адресов. В процессоры с EM64T добавились 16 целочисленных 64-битных регистра общего назначения, 8 80-битных регистров с плавающей точкой, 8 64-битных регистров Multimedia Extensions, 16 128-битных регистров SSE, 64-битный указатель RIP и 64-битный регистр флагов RFLAGS. Кроме поддержки со стороны процессора, технология так же требует поддержки со стороны материнской платы (чипсета). Технология впервые была реализована в поздних моделях Pentium4.
EIST или Enhanced Intel SpeedStep – программно-управляемая технология энергосбережения, динамически изменяющая множитель и напряжение питания ядра процессора в зависимости от нагрузки и настроек операционной системы, в этом ее главное отличие от C1E. Чрезвычайно полезна в ноутбуках, где с помощью настроек плана электропитания позволяет увеличить длительность работы от батареи, за счет ограничения потребления процессора. На десктопах позволяет тонко настроить в ОС пороги снижения множителя в зависимости от нагрузки. Если в биос EIST включена, а в ОС множитель не снижается – проверьте настройки плана электропитания. О настройке плана электропитания читать тут.
LLC (LoadLine Calibration, Vcore Drop Control ) – интеллектуальная функция устранения просадки напряжения Vcore в нагрузке. Как правило имеет несколько режимов устранения просадок, чем жестче режим, тем выше будет нагрев процессора.
Execute Disable Bit (XD) — атрибут страницы памяти в архитектурах x86 и x86-64. Поскольку в современных компьютерных системах память разделяется на страницы, имеющие определенные атрибуты, разработчики процессоров добавили ещё один: запрет исполнения кода на странице. То есть, такая страница может быть использована для хранения данных, но не программного кода. При попытке передать управление на такую страницу процессор сформирует особый случай ошибки страницы и программа (чаще всего) будет завершена аварийно.
Physical Address Extension (PAE) — режим работы встроенного блока управления памятью x86-совместимых процессоров, в котором используются 64-битные элементы таблиц страниц (из которых для адресации используются только 36 бит), c помощью которых процессор может адресовать 64 ГБ физической памяти (вместо 4 ГБ, адресуемых при использовании 32-разрядных таблиц), хотя каждая задача (программа) всё равно может адресовать максимум 4 ГБ виртуальной памяти.
Температуры, термомониторинг, термозащита
Thermal Monitor 1 (TM1) – он же троттлинг, Throttling, или Thermal Throttling, а также Thermal Trip. Механизм TM1 заключается в снижении тепловыделения за счет пропуска тактов при перегреве процессора. TM1 основан на механизме модуляции тактового сигнала (clock modulation), позволяющем регулировать эффективную частоту работы ядра с помощью введения холостых циклов — периодического отключения подачи тактового сигнала на функциональные блоки процессора. Перегревом считается достижение значения 0 по датчикам DTS. Впервые появился в процессорах Pentium M.
TurboThrottling – выражение, появившееся на страницах оверклокерских форумов. Означает прекращение работы технологии TurboBoost в Nehalem или TurboBoost 2.0 в Sandy Bridge, по сути дальнейшее развитие TM2 в процессорах Core i7(i5, i3), постепенно снижает турбомножитель вплоть до стандартного в нагрузке, если были превышены турболимиты (Sandy Bridge) или превышено TDP (nehalem). TurboThrottling также срабатывает при достижении критической температуры.
Tjmax – значение для вычисления температуры по датчикам DTS, формула проста: Tcore = Tjmax – Distance to tjmax. В процессорах nehalem и более поздних содержится в специальном регистре, и может быть считано программами мониторинга. Для всех процессоров Core 2 значение Tjmax составляет 100 градусов за исключением экстремальных моделей QX****. Автор данного FAQ предпочитает игнорировать Tjmax и в качестве индикатора температуры предпочитает Distance to tjmax.
TDP (Thermal Design Package, Thermal Design Power) – или проще термопакет. Параметр, характеризующий максимальную выделяемую процессором тепловую мощность, необходим для расчета мощности системы охлаждения. Измеряется в ваттах.
ThrottleStop Показывает параметры энергосбережения, турбобуста, потребляемую мощность, реальный множитель для всех ядер. Ну и как видно из названия позволяет заблокировать троттлинг, а так же тонко настроить энергосбережение.
Функциональные блоки, шины, и т.п.
Чипсет (англ. chipset) — набор микросхем, спроектированных для совместной работы с целью выполнения набора каких-либо функций. Так, в компьютерах чипсет, размещаемый на материнской плате, выполняет роль связующего компонента, обеспечивающего совместное функционирование подсистем памяти, центрального процессора (ЦП), ввода-вывода и других.
PCH (Platform Controller Hub) – так называется южный мост в чипсетах для процессоров Lynnfield и Sandy Bridge. Главное отличие от ЮМ в том, что PCH подключается непосредственно к процессору через шину DMI. Функционально – самый обычный ЮМ.
IMC (Integrated Memory Controller) – интегрированный контроллер памяти как правило в процессорах s1156.
FSB (Front Side Bus) – шина эпохи s775 обеспечивающая соединение между процессором и северным мостом.
Частота CPU = BCLK x Множитель процессора
Частота Uncore = BCLK x Множитель Uncore (в процессорах поколения Nehalem)
Частота памяти = BCLK x Множитель памяти
Частота QPI = BCLK x Множитель QPI (в процессорах поколения Nehalem, в исполнении 1366)
iGPU (integrated Graphics processing unit) – интегрированное графическое ядро процессоров интел.
PLL (Phase-locked loop) – ФАПЧ, или Фа́зовая автоподстро́йка частоты.
Absolute maximum and minimum ratings для процессоров Sandy Bridge до сих пор не представлены (отсутствует в даташитах), поэтому о допустимых вольтажах приходится судить по косвенным данным:
Исходя из одинакового техпроцесса (32nm) о допустимых вольтажах для Sandy Bridge можно судить по таблице для i7 32nm для s1366.
Vcore (CPU Voltage)– напряжение питания ядра (ядер) процессора. Увеличение этого напряжения благоприятно влияет на разгон ядер процессора. В процессорах i7(i5, i3), установка Vcore через этот пункт приводит к невозможности энергосберегающих технологий управлять напряжением Vcore.
CPU Offset Voltage (DVID) – параметр биос материнских плат для процессоров i7(i5, i3) устанавливает смещение Vcore в вольтах, может принимать как положительное так и отрицательное значение. При этом параметр CPU Voltage должен быть установлен в normal или в offset mode (зависит от материнской платы). Установка Vcore через этот параметр позволяет корректно работать энергосберегалкам. Так же подобный параметр присутствовал на некоторых платах с чипсетом х38/48 но не был широко распространен.
Vtt (FSB termination voltage)– напряжение питания терминаторов внешних шин процессора, ключевое напряжение в GTL логике. Поднятие напряжения благоприятно влияет на стабильность всех внешних шин процессора, положительно влияет на стабильность операций с памятью.
QPI/VTT, QPI/DRAM – в процессорах поколения Nehalem совмещенное напряжение питающее блок Uncore, а также терминаторы внешних шин процессора. Рекомендуется поднимать при разгоне Uncore/DDRIII.
VccIO – аналог VTT в процессорах Sandy Bridge.
CPU PLL Voltage (VccPLL)— Напряжение питания блока ФАПЧ (Фазовой автоподстройки частоты, и тактового генератора в Sandy Bridge). На материнских платах s775 часто совмещалось с напряжением питания южного моста. На процессорах Core i7(i5, i3) становится полностью самостоятельным параметром. Считается, что напряжение благоприятно влияет на стабильность системы при экстремальном разгоне. При среднем и низком разгоне параметром можно пренебречь, а иногда и снизить (на Nehalem и Sandy Bridge).
NB Core Voltage (MCH Voltage)– напряжение питания Северного Моста на материнских платах эпохи s775. Поднятие напряжение положительно влияет на стабильность при высоких шинах FSB, а также на стабильность подсистемы памяти.
SB Core Voltage (ICH Voltage, PCH Voltage)– напряжение питания Южного Моста, теоретически поднятие этого напряжения положительно влияет на стабильность внешних интерфейсов материнской платы, таких как IDE, SATA, USB, etc.
IMC Voltage – напряжение питания контроллера памяти в процессорах Lynnfield.
DDR Voltage (DRAM Voltage)– напряжение питания модулей памяти, в процессорах поколения Nehalem так же питает шину памяти процессора.
Стабильность, тесты, мониторинг
Prime95 является клиентом распределенных вычислений для решения математической задачи – поиска простых чисел Мерсенна. Как и любой другой подобный клиент, программа загружает задание с центрального сервера, производит необходимые вычисления и возвращает результат. Но компьютерным энтузиастам Prime95 известна благодаря другим способностям – ее можно использовать как достаточно эффективный тест стабильности компьютера. Сравнение полученных результатов с эталонными помогает выявить ошибки в работе связки процессор–память (правда, определить, что именно «виновато» в возникновении ошибок – процессор или же память, бывает затруднительно). Имеется три режима проверки стабильности, причем Large FFT более эффективно тестирует CPU, а Blend – память. Для уверенности в стабильности рекомендуется тестирование праймом проводить не менее 3 часов, а для железной стабильности не менее 12.
Linpack — программная библиотека, написанная на языке Фортран, которая содержит набор подпрограмм для решения систем линейных алгебраических уравнений. Изначально предназначалась для работы на суперкомпьютерах которые использовались в 1970-х — начале 1980-х годов.
Сегодня переработанный и оптимизированный компанией intel линпак используется для измерения производительности системы в гигафлопсах. В оверклокерской среде линпак получил популярность благодаря способности создавать максимальную нагрузку сопровождаемую максимальным энергопотреблением и нагревом процессора. Поэтому тест рекомендуется использовать в первую очередь для испытания на прочность охлаждения и проверки достаточности Vcore. При тестировании используйте максимальный объем задачи и минимум 20 проходов (рекомендую не менее 50-ти). Память линпак тестирует плохо, и даже с заведомой нестабильностью подсистемы память-северный мост может пройти успешно как 20 так и 100 проходов. Так что тест не самодостаточен, и без тестов основанных на прайм коде не обойтись.
График зависимости нагрузки от объема вычислений в линпак, взят с сайта интел:
Если результаты в Linx снижаются с каждым следующим проходом или «прыгают» от прохода к проходу возможно сработал троттлинг, турботроттлинг (i7, i5, i3) или троттлинг памяти (i7, i5, i3 только ахитектуры Sandy Bridge). Попытайтесь понизить температуру процессора, если с температурой все в порядке, проверьте установку турболимитов, а также память соотв софтом (см. выше).
Программа поддерживает несколько процессоров (от номера версии), имеет оптимизированные тесты прогрева с обнаружением ошибок под процессоры AMD, Intel Pentium4 и Core2. Тест памяти может проверять любой объем памяти. Тестирование так-же сегментами, тесты сделаны по образу и подобию TM1 и TM2.
Тест диска, особенно тест интерфейса, тоже вовсе не декоративный элемент программы. 🙂
Тест-комбайн включающий в последних версиях практически все популярные тесты стабильности почти для всех узлов системы.
CPU OCCT основан на прайм коде, может заменить прайм95.
Кроме самих тестов в программу встроен очень недурной мониторинг, сопровождаемый графическими логами.
После тестирования можно просмотреть графики просадки напряжений и сопоставить их с нагрузкой на разные узлы системы. Как вы уже наверное поняли, для непредвзятых пользователей OCCT Perestroïka 3.1.0 способен заменить линпак прайм и фурмарк.
Перед запуском теста рекомендуется установить в свойствах максимально допустимую температуру равной tjmax вашего камня.
Intel Thermal Analysis Tool (TAT) – отличная грелка для процессоров Pentium 4, Pentium D, Core 2 65 нм. Не работает с камнями архитектуры Penryn и более поздними. Отслеживает троттлинг, мониторит температуры.
Известен наверное всем. Утилита работает из под DOS, и отлично тестирует память на дефекты. В качестве теста стабильности памяти для разогнанной системы подходит слабо (очень долго выявляет ошибки). Для разогнанной системы желательно пройти несколько полных циклов тестирования (хотя бы три). Для тестирования систем на базе Sandy Bridge используйте версию не младше 4.2.
Новый тест памяти от камрада serj, подробности можно прочесть в теме https://forums.overclockers.ru Программа имеет очень гибкие настройки и оптимизирована под современные многоядерные процессоры.
BSOD в разогнанных системах
BSOD Codes for i7 x58 chipset:
0x101 = необходимо увеличить Vcore.
0x124 = увеличить или уменьшить QPI/VTT, если не помогло увеличить Vcore.
0x1A = Возможно неисправный модуль памяти, проверить память с помощью MemTest. Так же возможна нехватка Vddr.
0x1E = Увеличить Vcore.
0x3B = Увеличить Vcore.
0x3D = Увеличить Vcore.
0xD1 = увеличить или уменьшить QPI/VTT, если не помогло увеличить Vddr.
0x9C = увеличить или уменьшить QPI/VTT, если не помогло увеличить Vcore.
0x109 = увеличить/уменьшить Vddr.
0x116 = занижен IOH (NB) voltage, либо проблемы с видиосистемой, особенно актуально для систем с несколькими видеокартами.
BSOD Codes for SandyBridge:
0x101 = необходимо увеличить Vcore.
0x50 = неверно подобраны тайминги или множитель памяти, увеличить/уменьшить Vddr, если не помогло VccIO и/или VccSA.
0x1E = необходимо увеличить Vcore.
0x3B = необходимо увеличить Vcore.
0xD1 = увеличить VccIO /или VccSA.
0x9C = увеличить или уменьшить VccIO и/или VccSA, если не помогло увеличить Vcore.