Самый твердый материал в мире
ТОП-20 самых твердых металлов в мире
Всего в мире насчитывается 94 вида металлов, различающихся по пластичности, ковкости, электропроводности, прочности. Ниже мы представим «двадцатку» самых твердых и перечислим их уникальные особенности.
Иридий
Это самый твердый металл на планете. Он почти не поддается обработке, но это не мешает его использованию в разных сферах промышленности. Из иридия делают комплектующие к ракетам и автомобильные детали. Его открыл в начале девятнадцатого века английский химик. Самый твердый в природе металл имеет следующие характеристики:
В природе встречается мало иридия. Ученые предполагают, что его залежи располагаются ближе к ядру Земли.
Рутений
Металл серебристого оттенка, открытый русским химиком в 1844 году, полностью инертен. Он относится к платиновой группе и является самым редким на земле. Ученые установили, что всего в мире не более пяти тысяч тонн рутения. В году удается добывать до 18 тонн. Из-за сравнительно большой цены рутений почти не применяют в промышленности, но его выбирают:
Высокопрочный тугоплавкий металл позволяет образовывать сложные химические соединения. Он придает золоту черный оттенок и применяется в аэрокосмической сфере.
Тантал
Открыт химиком из Швеции в 1804 году. Но выделить в чистом виде его смогли лишь через 120 лет и в Германии. Залежи редкого металла можно найти на западе Австралии. Сплавы с танталом не боятся попадания в агрессивную среду. Материал используют в авиакосмической и электронной промышленности, для создания атомной энергии, в составе медицинских протезов. Его считают самым плотным в мире — гарантировано высочайшее сопротивление коррозии.
Хром
Самый твердый и блестящий металл, который не боится кислотно-щелочного влияния, имеет голубоватый оттенок. Залежи хрома можно найти в Казахстане, Африке, на территории РФ. Открыт он был в России в 1763 году на Северном Урале.
Хром имеет высокую температуру плавления — до 1 856 градусов. Его добывают из кимберлита. По распространенности на планете занимает 22 позицию. На производство металлических сплавов приходится до 85 % запасов хрома. Используют его и в машиностроении, при проведении научных исследований, в синтезе искусственных рубинов.
Бериллий
Твердый металл, открытый французскими химиком в 1798 году, имеет серебристо-белый оттенок. Бериллий — высокотоксичный, может спровоцировать аллергические реакции. К нему нельзя приближаться без средств защиты. Но зато металл подходит для упрочнения стали — достаточно добавить 0,5 %, чтобы изделия выдерживали температуру красного каления. Бериллий выбирают для создания огнеупорных материалов, реактивного топлива. Из него создают экраны для аэрокосмической промышленности.
Осмий
Этот тугоплавкий и твердый металл был открыт в Великобритании в 1803 году. Он включен в платиновую группу и не боится агрессивного воздействия. Осмий используется в медицине при производстве кардиостимуляторов, легочных клапанов, в военном деле и химической промышленности. Это самый тяжелый и твердый металл в таблице Менделеева. Он плохо поддается обработке.
Рений
Один из самых редких тугоплавких металлов высокой прочности на планете. Его открыли в 1925 году химики из Германии, но первое предположение о существовании этого элемента высказывал еще Д.И. Менделеев в конце девятнадцатого века. Количество ежегодной добычи металла сейчас достигает сорока тонн. Его используют для производства катализаторов, самоочищающихся электрических контактов. Температура плавления достигает 2 000 градусов Цельсия. Металл находит применение в авиационных и ракетных двигателях.
Вольфрам
Серебристо-серый цвет и высокая тугоплавкость этого металла определяют сферы его применения. Вольфрам был открыт в 1781 году шведским химиком. Его используют для изготовления элементов накаливания, хирургических инструментов, контейнеров для хранения радиоактивных материалов. Этот металл плавится при температуре до 3422 градусов Цельсия. Способность сохранять эксплуатационные свойства при экстремально высоких температурах сделала вольфрам востребованным в военной промышленности.
Уран
Один из наиболее твердых металлов в мире был открыт в 1840 году, но о его высоких радиоактивных свойствах узнали только через 56 лет. Французский химик Беккерель потратил годы на исследование уранового излучения.
Залежи этого элемента в природе очень велики. Урановую руду активно добывают в Казахстане, Австралии, разных регионах России. Запасы радиоактивного элемента природного происхождения распространены в земной коре.
Титан
Это самый легкий и твердый металл из всех в мире. Титан удалось получить лишь в 1825 году шведским химиком. Его отличают серебристо-белый оттенок, высокая стойкость к механическим и коррозийным воздействиям. К другим свойствам относятся:
Титан выступает в роли легирующего элемента во многих сплавах, применяется в судостроительной отрасли и аэрокосмической промышленности, в медицине и машиностроении. Он содержится в виде оксидов в большей части магматических пород.
Родий
В ТОП самых твердых металлов входит и родий — самый дорогой из платиновой группы. Он имеет голубовато-серебристый оттенок. Родий — благородный металл с холодным, аристократическим блеском. Он содержится в никелевых и платиновых рудах, распространен в Южной Америке.
До 81 % всех запасов направляют на изготовление каталитических фильтров-нейтрализаторов. Родий устойчив кфизическому воздействию. Механическая обработка возможна только при нагревании до 810-900 градусов Цельсия. Серная кислота и раскаленная царская водка не способны растворить этот металл. Родий легко сплавляется с другими платиноидами.
Палладий
Благородный металл серебристого цвета из платиновой группы. Крупнейшие месторождения находятся в Норильске (Россия), на Аляске, в Австралии, Африке и Канаде.
Палладий используют для производства искусственных волокон, постоянных магнитов, электрических контактов в приборах. Это ковкий, тягучий металл, который не тускнеет на воздухе. Редкий элемент был открыт английским химиком в 1803 году — его обнаружили в самородной платине. Температура плавления составляет 1 554 градуса Цельсия.
Железо
Уникальный ковкий металл, составляющий большую часть ядра нашей планеты. Это наиболее распространенный элемент земной коры. Железо в чистом виде — довольно пластичный металл серебристо-серого цвета, который используется в разных направлениях промышленности. Он имеет малую стоимость. К характеристикам относятся:
Сталь
Высокая твердость сплава железа с углеродом, устойчивость к коррозийному воздействию позволяют использовать разные марки инструментальной стали в промышленности. Это самый твердый металл для ножа, из которого делают сверла и другие части инструментов, механизмы для строительной сферы. Легированная высокоуглеродистая сталь относится к наиболее твердым. Помимо железа и углерода она может включать молибден, марганец, ванадий, хром.
Платина
Редкий драгоценный металл, который встречается в магматических месторождениях. Платина имеет цвет, переходящий от серо-стального к темно-серому. Этот минерал редко встречается в чистом виде, содержит примеси иридия и никеля, палладия. Разведанные запасы составляют около 80 000 тонн и распределяются по ЮАР, США и России.
Платина применяется в качестве катализатора, легирующей добавки для высокопрочных сталей, в ювелирной промышленности, для производства постоянных магнитов, в виде покрытия для деталей СВЧ-техники.
Никель
В природе никель встречается в минералах с высоким содержанием серы или мышьяка. Это переходный элемент, который используется в металлопрокате для производства сталей. На это уходит до 68 % от общего объема добычи. Никель выбирают и для чеканки монет, при разработке аккумуляторных батарей и в гальванике, в музыкальной промышленности, медицине, химических и радиационных технологиях.
Крупные запасы располагаются в Индонезии, на территории России, на Филиппинах. Никель плавится при температуре 1 453 градуса Цельсия. Он был открыт в Швеции в 1751 году.
Бронза
Это сплав меди с оловом, марганцем и другими добавками, включая свинец и фосфор. Его температура плавления варьируется от 930 до 1 140 градусов Цельсия. Бронза — пластичная и твердая. Оттенки варьируются в зависимости от состава. Различают золотистую и серебристую, красную, серую и черную бронзу. Она используется при производстве:
Медь
Это один из немногих элементов, которые встречаются в природе в пригодной для использования форме. Медь не требует предварительного извлечения из минеральных руд, поэтому она стала пригодной для эксплуатации очень давно. Еще до нашей эры ее использовали с оловом для получения бронзы. Сейчас медь применяется при производстве кровельных материалов, сантехнического оборудования, кабелей и электрических проводов. Этот металл плавится при температуре 1083 градуса Цельсия. Предел его текучести достигает 340 мПа.
Алюминий
Это широко используемый в разных отраслях промышленности и строительства цветной металл. Из него состоит около 8 % всей земной коры. Алюминий используется в аэрокосмической промышленности, при развитии городской инфраструктуры, для производства металлургического оборудования. К его главным характеристикам относятся:
Золото
Один из самых востребованных в ювелирном деле драгоценных металлов. Исторически сложилось, что золото используется в медицине, электронной промышленности и для изготовления денег. Свыше 10 % всех мировых запасов идет на производство коррозийно-стойких элементов. Геологи уверены, что недра нашей планеты скрывают свыше 80 % золотых запасов. Температура плавления металла — 1064 градуса Цельсия, а его текучесть — до 30 мПа. Золото характеризуется:
Таблица по твёрдости Мооса
Самые твердые металлы по шкале Мооса представлены в таблице по убыванию значений:
Самый твердый металл в мире
Наш мир полон удивительных фактов, которые интересны множеству людей. Не являются исключением и свойства различных металлов. Среди этих элементов, которых в мире насчитывается 94, есть самые пластичные и ковкие, есть также с высокой электропроводностью или с большим коэффициентом сопротивления. В этой статье речь пойдет о самых твердых металлах, а также об их уникальных свойствах.
Иридий
Первенство в перечне металлов, отличающихся наибольшей твердостью, занимает иридий. Его открыл в начале XIX века химик из Англии Смитсон Теннант. Иридий обладает следующими физическими свойствами:
Поскольку иридий является твердейшим металлом на планете, он с трудом поддается обработке. Но его все же применяют в различных промышленных сферах. К примеру, из него изготавливаются небольшие шарики, которые используются в перьях для ручек. Из иридия изготавливают комплектующие к космическим ракетам, некоторые детали для автомобилей и другое.
В природе встречается очень мало иридия. Находки этого металла являются своего рода свидетельством того, что в месте, где он был обнаружен, падали метеориты. Эти космические тела содержат значительное количество металла. Ученые полагают, что наша планета также богата иридием, но его залежи находятся ближе к ядру Земли.
Рутений
Вторая позиция в нашем списке достается рутению. Открытие этого инертного металла серебристого цвета принадлежит русскому химику Карлу Клаусу, которое было сделано в 1844 году. Этот элемент относится к платиновой группе. Он является редким металлом. Ученым удалось установить, что всего на планете имеется примерно 5 тыс. тонн рутения. В год удается добыть примерно 18 тонн металла.
Из-за ограниченного количества и высокой стоимости рутений редко применяется в промышленности. Его используют в следующих случаях:
Тантал
Открытому в 1802 гуду металлу, названному танталом, достается третье место в нашем списке. Его обнаружил шведский химик А. Г. Экеберг. Долгое время считалось, что тантал тождественен ниобию. Но немецкому химику Генриху Розе удалось доказать, что это два разных элемента. Выделить тантал в чистом виде смог ученый Вернер Болтон из Германии в 1922 году. Это очень редкий металл. Больше всего залежей танталовой руды было обнаружено в Западной Австралии.
Благодаря своим уникальным свойствам, тантал является очень востребованным металлом. Он применяется в различных сферах:
Одним из самых твердых металлов является и хром. Его открыли в России в 1763 году в месторождении Северного Урала. Он имеет голубовато-белый цвет, хотя бывают случаи, что его считают черным металлом. Хром нельзя назвать редким металлом. Его залежами богаты следующие страны:
Месторождения хрома есть и в других государствах. Этот металл широко применяется в различных отраслях металлургии, науки, машиностроения и других.
Бериллий
Пятая позиция в списке наиболее твердых металлов досталась бериллию. Его открытие принадлежит химику Луи Никола Воклену из Франции, которое было сделано в 1798 году. Этот металл имеет серебристо-белый цвет. Несмотря на свою твердость, бериллий является хрупким материалом, что сильно усложняет его обработку. Его применяют для создания высококачественных громкоговорителей. Он применяется для создания реактивного топлива, огнеупорных материалов. Металл широко используется при создании аэрокосмической техники и лазерных установок. Он также применяется в атомной энергетике и при изготовлении рентгенотехники.
Осмий
В список твердейших металлов также входит осмий. Он является элементом, входящим в платиновую группу, и по своим свойствам схож с иридием. Этот тугоплавкий металл устойчив к воздействиям агрессивной среды, имеют большую плотность, и плохо поддается обработке. Открыл его ученый Смитсон Теннант из Англии в 1803 году. Этот металл широко применяется в медицине. Из него изготовлены элементы электрокардиостимуляторов, он также применяется при создании клапана легочного ствола. Он широко применяется также в химической промышленности и в военных целях.
Рений
Переходному серебристому металлу рению достается седьмая позиция в нашем списке. Предположение о существовании этого элемента были сделаны Д. И. Менделеевым в 1871 году, а открыть его удалось химикам из Германии в 1925 году. Уже через 5 лет после этого удалось наладить добычу этого редкого, прочного и тугоплавкого металла. На то время за год удавалось получить 120 кг рения. Сейчас количество ежегодной добычи металла увеличилось до 40 тонн. Он применяется для производства катализаторов. Из него также изготавливают электрические контакты, способные самоочищаться.
Вольфрам
Серебристо-серый вольфрам является не только одним из наиболее твердых металлов, он также лидирует по тугоплавкости. Его удается расплавить только при температуре в 3422 о С. Благодаря такому свойству он используется для создания элементов накаливания. Сплавы из этого элемента обладают высокой прочностью и часто применяются в военных целях. Вольфрам также используется для производства хирургических инструментов. Из него также изготавливают контейнеров, в которых хранят радиоактивные материалы.
Одним из наиболее твердых металлов является уран. Его открыл в 1840 году химик Пелиго. Большой вклад в изучение свойств этого металла сделал Д. И. Менделеев. Радиоактивные свойства урана были выявлены ученым А. А. Беккерелем в 1896 году. Тогда химик из Франции выявленные излучения металла назвал лучами Беккереля. Уран часто встречается в природе. Странами, имеющими наибольшие месторождения урановой руды, являются Австралия, Казахстан и Россия.
Титан
Заключительное место в десятке твердейших металлов достается титану. Впервые этот элемент в чистом виде удалось получить химику Й. Я. Берцелиусу из Швеции в 1825 году. Титан является легким металлом серебристо-белого цвета, который отличается высокой прочностью и устойчивостью к коррозии и механическим воздействиям. Сплавы из титана применяются во многих отраслях машиностроения, медицины и химической промышленности.
Рейтинг самых твердых металлов на планете
В мире существует большое разнообразие металлов, которые обладают своими отличительными особенностями и уникальными характеристиками. Некоторые из них отличаются низким или высоким коэффициентом сопротивления, другие являются ковкими, третьи – пластичными.
Титан металл фото
Существуют металлы, которые отличаются своей невероятной твердостью. Самым известным из них является титан. Однако и у него есть достойные конкуренты.
Характеристика титана
Данный химический элемент в чистом виде был выделен в 1825 году. Удалось это шведскому химику Берцелиусу. Титан – это металл, который имеет серебристо-белый цвет и отличается небольшим весом. Элемент имеет малую молекулярную массу, которая составляет всего 22. Для титана характерны следующие свойства:
1. Плотность твердого титана составляет 4,51 грамм на кубический сантиметр. В жидком состоянии плотность металла снижается до 4,12 грамм на сантиметр кубический.
2. Температура плавления – 1668 градусов Цельсия.
3. Температура закипания – 3227 градусов Цельсия.
4. Твердость НВ – 103. Данный показатель может изменяться в зависимости от наличия и количества примесей.
5. Упругость у титана не самая высокая, что является весомым недостатком материала.
6. При обычных условиях металл не корродирует.
7. Титан – это инертный материал, благодаря этому его широко используют в медицинских целях. Однако инертность снижается под влиянием высоких температур. Таким образом, при ее повышении до 200 градусов, титан начинает активно поглощать водород, меняя свои характеристики.
8. Плохо проводит электрический ток.
По шкале МООСА твердость титана составляет 4,5. Из этого можно сделать вывод, что он не является самым твердым металлом. Тем не менее, из других твердых он получил наибольшее распространение.
Использование титана
Титан применяется практически в каждой области промышленности, притом довольно широко его распространение.
Сегодня материал используется в таких сферах человеческой деятельности:
• Авиастроение. Некоторые элементы самолетов испытывают воздействие высоких температур, а также подвергаются действию деформационных сил. Поэтому в воздушном судне многие детали (элементы шасси, заклепки, некоторые части корпуса) сделаны из титана.
Использование титана в авиастроении
• Космические аппараты. Данная техника испытывает еще большие нагрузки чем самолеты, поэтому здесь также используется титан. В больших количествах материал применяется для обшивки.
Использование титана космических аппаратах
Использование титана судостроении
• Добыча нефти и газа. Титановые компоненты в основном встречаются в бурящих трубах и насосах, работающих под большим давлением.
Использование титана добыче нефти и газа
• Строительство. Титан, который обладает высокой твердостью, необходим для создания особенно важных элементов конструкций.
Использование титана в строительстве
• Медицинская промышленность. Многие протезы и инструменты изготавливаются из данного металла.
Использование титана в медицинской промышленности
• Спорт. Из титана делаются некоторые велосипедные детали, турники и другой спортивный инвентарь.
Использование титана в спорте
• Химическая промышленность. Титан является незаменимым, когда необходимо получить твердое вещество устойчивое к кислотам. В химической промышленности без данного металла невозможно обойтись при изготовлении различных обменников, труб и других различных конструкций.
Использование титана в химической промышленности
Несмотря на свою высокую твердость, титан достаточно легкий металл. Данный факт также влияет на широкое распространение использование титана в разных сферах промышленности. Изделия из него отличаются долговечностью.
Особенности титана и его примесей
Данный металл обладает еще одним примечательным свойством – парамагнитность. Это означает, что титан не притягивается под действием магнитного поля, вместе с тем он и не может выталкиваться магнитного поля. В процессе производства пытаются получить максимально чистый металл, где будет минимальное количество примесей. Это необходимо, чтоб получить максимальную твердость вещества.
Если в титане присутствуют неметаллические примеси, то такое вещество получается не таким твердым и более ломким. При этом примеси других металлов сделают материал менее жаропрочным. Если в титане присутствует какая-либо примесь (даже в минимальном количестве), то металл считается техническим. Зачастую данная разновидность проявляет наибольшую противокоррозионную стойкость.
Важно! Необычным свойствам титана является тот факт, что даже минимальное попадание в него другого вещества, в значительной степени влияет на первоначальные характеристики металла.
В сравнении с другими металлами, которые часто используются в хозяйственной деятельности человечества, то титан вдвое прочнее железа и в шесть раз крепче алюминия. Данный материал практически не подвержен коррозии. По данной характеристике он ушел далеко вперед от нержавеющей стали и алюминия.
Получение материала
По распространенности титан занимает 10 место на планете. Зачастую рассматриваемое вещество в природе встречается в виде титановой кислоты, находящейся в минералах. В частности бывают такие титановые руды:
• Анатаз;
• Брукит;
• Первоксит;
• Рутил.
Запасы данных веществ в большом количестве присутствуют в Бельгии, Великобритании, Испании, РФ, США, Франции и Японии.
На данный момент используется несколько вариантов получения титана:
1. Электролиз. Через титановую руду пропускают сильный ток, в результате материал распадается на компоненты.
2. Магниетермия. В первую очередь добывают диоксид титана. Далее вещество хлорируют с добавлением специального катализатора, ведь в естественных условиях процесс будет протекать очень медленно и долго. Вырабатывается газ, который восстанавливается при помощи натрия и магния. Далее смесь нагревается и из нее выплавляется титан.
3. Рафинирование. В данном случае диоксид титана обрабатывают при помощи паров йода. Таким образом получают йодид титана. Полученное вещество нагревается до высоких температур, а также подвергается воздействию тока. На выходе получается йод и титан.
4. Гидридно-кальциевый метод. Для начала добывают гидрид натрия. Далее происходит разделение смеси на составляющие.
На масштабных производствах зачастую используется два метода: магниетермический и гидридно-кальциевый. Это связано с тем, что данные способы позволяют получить чистый титан при самых низких затратах.
Иные металлы с высокой твердостью
Как уже было сказано, титан – это не самый твердый металл на Земле. Он имеет достаточно много конкурентов (если в расчет брать исключительно прочностные характеристики). Кроме титана в мире существуют такие твердые металлы:
• Иридий. На самом деле именно этот материал занимает первое место по твердости. Однако это является также и его минусом: его очень трудно обрабатывать, поэтому его используют крайне редко. Его применяют для изготовления некоторых компонентов в ракетостроении, кроме того, он используется в машиностроении и в производстве шариков для ручек. Иридий плавиться при температуре 2466 градусов Цельсия, имеет светло-серебристый цвет. В природе встречается очень редко, зачастую имеет метеоритное происхождение.
Иридий металл
• Рутений. Также очень редкий металл, по подсчетам его на Земле всего около 5 000 тонн. Добыча рутения составляет порядка 18 тонн в год. В связи с тем, что вещества крайне мало, оно используется только как катализатор химически процессов. Кроме того, рутений добавляют к титану, чтоб получить более устойчивый к ржавчине материал.
Рутений металл
• Хром. Материал был открыт в середине 18 века. Он имеет голубовато-белый цвет. Нашел применение в металлургии, машиностроении и в науке. В природе имеется достаточно ограниченное количество вещества.
Хром металл
• Бериллий. Данный материал получил распространение в атомной энергетике, кроме того, его используют в производстве рентгеновских аппаратов, громкоговорителей высоких частот, огнеупорных материалов. Бериллий очень сложно обрабатывать, ведь он не только твердый, но еще и очень хрупкий.
Бериллий металл фото
• Осмий. По характеристикам очень похож на иридий. Данный материал является тугоплавким, невероятно твердым и сложным в обработке. Зачастую встречается в медицинской промышленности. В частности, его используют практически во всех кардиостимуляторах.
Осмий металл фото. Самый тяжелый металл в мире
• Вольфрам. Самый тугоплавкий металл на планете, он имеет серебристо-серый оттенок. Благодаря своему свойству используется в элементах накаливания. Довольно часто из него делают тару для хранения радиоактивных веществ. Также из вольфрама делают хирургический инструмент, используется в военной промышленности.
Вольфрам металл фото
• Уран. Достаточно распространенный твердый металл. Характерной особенностью являются радиоактивные свойства.
Уран металл фото
Заключение
Твердые материалы нужны во многих областях промышленности. В частности для производства продукции, которая в последствие будет подвергаться сильному силовому влиянию. Такие металлы нужны для постройки космических кораблей, морских и воздушных судов – для всего этого требуется твердый и тугоплавкий материал, который не подвержен коррозии.
В природе существует несколько твердых металлов, однако большинство из них достаточно редкие. Самым популярным стал титан. Для его получения используют несколько методов. В природе он встречается в виде нескольких минералов.
Также в промышленности используют и сплавы титана, ведь примеси в значительной степени могут изменить свойства металла.
Карбин: новый самый прочный материал в мире?
Научные сотрудники из Университета Райса, используя компьютерное моделирование выяснили, что карбин, состоящий из расположенных параллельно друг другу цепочек атомов углерода, в два раза прочнее углеродных нанотрубок и в три раза тверже, чем алмаз. Если их исследования действительно верны и в будущем люди смогут справиться с проблемами производства этого материала, то карбин может оказаться невероятно полезным элементом для очень широкого спектра применения.
Почему углерод является таким особенным элементом? Если вспомнить школьную программу по химии, то одной из причин является то, что он обладает способностью легко образовывать химические связи совершенно разных типов и может обладать разнообразным набором физических свойств. Суть в том, что даже просто «играя» с атомами углерода, в конечном итоге на выходе могут получиться самые различные вещества, начиная от графита и заканчивая алмазами. А относительно недавно ученые искусственно создали на основе углерода такие вещества, как фуллерен (бакибол), графен или все те же углеродные нанотрубки.
Все эти искусственно созданные формы углерода обладают порой невероятными свойствами прочности и открывают дорогу для их применения в самых различных сферах, включая следующее поколение электроники. Вот почему ученые всячески стараются проводить новые исследования и опыты, чтобы в конечном итоге найти еще более превосходные (уже от найденных) свойства этих веществ.
Одним из таких веществ может оказаться карбин, еще одна аллотропная форма углерода, которая представляет из себя линейную цепочку из одинарных или тройных атомных связей. Будучи цепочкой толщиной всего в один атом, а не слоем (как графен) или не в виде полой трубки (как углеродные нанотрубки), карбин можно считать действительно одномерной формой углерода. Ученые долгое время считали, что за счет своей одномерности карбин обладает невероятными механическими и электрическими свойствами.
Нанонити или наностержни из карбина, цепочек атомов углерода, могут стать прочнее графена или даже алмаза, если, конечно, ученые найдут способ их производства
Борис Якобсон, физик-теоретик из Университета Райса, и его команда исследователей на основе ранее полученной информации и путем компьютерной симуляции поставили цель описать больше химических свойств карбина. Убедившись в стабильности карбина при комнатной температуре, ученые решили пойти дальше и выяснить, что на самом деле наделяет карбин такими удивительными свойствами, какими он на самом деле обладает.
В рамках его механических свойств или прочности, а также способности к растягиванию ученые пришли к выводу, что он в два раза прочнее графена, в три раза прочнее алмаза. При этом его прочность можно изменять путем присоединения правильных молекул в конце каждой углеродной цепи.
По мнению Якобсона, карбин, помимо прочего, действительно обладает некоторыми очень интересными и порою даже уникальными электрическими свойствами. Установленные на каждый конец цепи молекулы делают его пригодным для хранения энергии. При этом повысив пропускную способность энергетической щели, важного свойства, которое позволяет определить электропроводность, с 3.2 до 4,4 эВ, путем простого растягивания материала всего на 10 процентов и завернув его на 90 градусов, карбин превращается в магнитный полупроводник.
Если вышеописанные результаты действительно имеют место быть, то однажды такая податливость карбина сможет открыть для нас новые возможности в самых различных областях — начиная от производства наноэлектроники и спинтроники (квантовая электроника) и заканчивая производством очень производительных механических компонентов.
Однако, к сожалению, простое знание свойств карбина пока не открывает дверей к его использованию. Дело в том, что карбин очень редок. Его можно обнаружить в межзвездной пыли или в очень сжатом графите. Его очень сложно создать в лабораторных условиях. Ученые, проводившие последние эксперименты, смогли создать всего лишь небольшую цепочку карбина из 44 атомов. Но исследования, подобные этому, однажды могут привести к появлению более простого и дешевого способа массового производства более длинных цепей этого материала.
Якобсон и его коллеги говорят, что в настоящий момент собираются более пристально изучить свойства проводимости карбина. Особенно их интересует вопрос связи между закручиванием материала и его электронной щели. Кроме того, они хотят посмотреть, содержит ли периодическая система элемент, который при правильных манипуляциях над ним позволит создать ученым похожие одномерные цепочки.
Создан материал, который мягкий и прочный одновременно
Британские ученые разработали материал с очень противоречивыми свойствами. Он на 80% состоит из воды, но при этом одновременно мягкий, эластичный и прочный. В ходе проведенного эксперимента прямоугольник из этого материала несколько раз переехал автомобиль весом 1200 килограммов. Можно было ожидать, что он лопнет как заполненный водой воздушный шар, но этого не произошло — он восстановился и снова поднял листы металла, под которыми лежал. По словам изобретателей, их материал в спокойном положении обладает свойствами резины, а при сжатии будто бы превращается в сверхтвердое стекло. Созданный материал планируется использовать в создании роботов, датчиков, протезов и даже спортивной обуви. Предлагаю вместе разобраться, как ученым удалось дать «куску резины» настолько сложные свойства.
Самый мягкий и прочный материал в мир похож на кусок холодца
Подробностями о необычном материале поделилось научное издание Science Alert. Если говорить точнее, он представляет собой даже не резину, а холодец. При касании он, подобно желе, сгибается и подрагивает. Однако, несмотря на 80% содержание воды в его составе, его не сможет раздавить даже самый сильный человек в мире. Как и говорилось выше, материал обладает высоким сопротивлением к сжатию — при сильном давлении он будто бы превращается в закаленное стекло.
Что такое гидрогель?
По своей сути, новый материал представляет собой гидрогель. Так принято называть вещества, которые состоят из прочно связанных между собой полимерных цепей. Гидрогели способны впитывать большое количество воды — регулируя его количество, ученые способны придавать материалу разные физические свойства. Гидрогели уже давно интересуют ученых, потому что обладают большой прочностью и способны восстанавливать свою форму даже после высокого давления. Однако, до сих пор существовали пороговые значения — при слишком сильном сдавливании сделанные из гидрогеля фигуры разрушались. Но британским ученым удалось решить эту проблему.
Гидрогель можно купить даже в магазине — из него делают средство для накопления и удержания влаги в почве
Самый прочный гидрогель
По словам одного из авторов научной работы Цзехуана Хуанга (Zehuan Huang), для увеличения прочности материала они укрепили связи между молекулами гидрогеля при помощи сшивающих агентов. В их роли выступило вещество кукурбитурил, молекулы которого по форме напоминают бочку. Он, как выразились ученые, удерживает молекулы подобно наручникам. Изменяя состав гидрогеля, исследователи могут создавать материалы и с другими свойствами. Всем этим материалам можно будет найти применение.
Насколько нам известно, это первый гидрогель со свойствами, похожими на прочное стекло. Мы не просто создали что-то интересное, а открыли новую главу в области «мягких материалов с высокими эксплуатационными характеристиками», — похвастался Цзехуан Хуанг.
Чтобы доказать прочность материала, ученые провели эксперимент. Они положили небольшой кусочек «холодца» между двумя тонкими листами металла. После этого по этой поверхности несколько раз проехал автомобиль весом 1200 килограммов. Материал сжимался до нескольких миллиметров, но оставался целым и после уезда автомобиля быстро восстановил свою форму. По словам авторов научной работы, материал ничуть не повредился — внешний вид у него был такой же, как до испытания.
Проверка прочности нового материала
Где применяются гидрогели?
Ученые считают свое изобретение очень перспективным и уже предполагают, где его можно использовать. Так как гидрогель очень мягкий и безвреден для человеческого здоровья, его можно использовать при создании носимых устройств. Например, можно создать удобные кроссовки с датчиком шагов — электроника будет надежно защищена и обувь может прослужить очень долго.
Из нового материала можно сделать кроссовки со счетчиком шагов
Благодаря тому, что материал выдерживает большое давление и восстанавливает свою форму, его можно использовать в роботах. В теории, можно наделить роботов системой распознавания прикосновений, сделав их еще больше похожими на настоящих людей.
Ссылки на интересные статьи, смешные мемы и много другой интересной информации можно найти на нашем телеграм-канале. Подпишитесь!
Как я уже говорил выше, гидрогели давно интересуют ученых своими необычными свойствами. В 2019 году китайские ученые нашли им отличное применение в медицине — при помощи них можно останавливать неконтролируемые кровотечения. Ученые постарались сделать гидрогель максимально совместимыми с соединительными тканями человека и у них это получилось. При возникновении кровотечения можно заделать рану веществом и посветить на него ультрафиолетом — смесь затвердевает и предотвращает потерю крови. Подробнее об этом изобретении вы можете почитать тут.