Температура суг в баллоне авто

Выбор газового оборудования Метан/Пропан LPG/CNG (система ГБО)

Температура суг в баллоне авто. Смотреть фото Температура суг в баллоне авто. Смотреть картинку Температура суг в баллоне авто. Картинка про Температура суг в баллоне авто. Фото Температура суг в баллоне авто

Здравствуйте, разговор пойдёт о том виде топлива, которое заменит бензин. Как Вы уже догадались — это газ. Но какой именно газ? Их ведь много разных.

Сегодня рассмотрим два самых популярных варианта газового оборудования доступных на рынке, работающих на пропан-бутановой смеси и метане.
Газовое оборудование, имеет сокращённую аббревиатуру (согласно наименованию газа): LPG и CNG соответственно.

Температура суг в баллоне авто. Смотреть фото Температура суг в баллоне авто. Смотреть картинку Температура суг в баллоне авто. Картинка про Температура суг в баллоне авто. Фото Температура суг в баллоне авто

Введение.
Сначала познакомимся с этими газами поближе. Для этого я надёргал 5 основных таблиц из сети для того, чтобы можно было в деталях получить основные характеристики и свойства газов.

Параметры торговых марок

Температура суг в баллоне авто. Смотреть фото Температура суг в баллоне авто. Смотреть картинку Температура суг в баллоне авто. Картинка про Температура суг в баллоне авто. Фото Температура суг в баллоне авто

Температура суг в баллоне авто. Смотреть фото Температура суг в баллоне авто. Смотреть картинку Температура суг в баллоне авто. Картинка про Температура суг в баллоне авто. Фото Температура суг в баллоне авто

Критические параметры газов
Газы могут быть превращены в жидкое состояние при сжатии, если температура при этом не превышает определённого значения, характерного для каждого однородного газа. Температура, свыше которой данный газ не может быть сжижен никаким повышением давления, называется критической температурой. Давление, необходимое для сжижения газа при этой критической температуре, называется критическим давлением.

Температура суг в баллоне авто. Смотреть фото Температура суг в баллоне авто. Смотреть картинку Температура суг в баллоне авто. Картинка про Температура суг в баллоне авто. Фото Температура суг в баллоне авто

Упругость насыщенных паров
Упругостью насыщенных паров сжиженных газов называется давление, при котором жидкость находится в равновесном состоянии со своей газовой фазой. При таком состоянии двухфазной системы не происходит ни конденсации паров, ни испарения жидкости. Каждому компоненту СУГ при определённой температуре соответствует определённая упругость насыщенных паров, возрастающая с ростом температуры. Давление в таблице указано в МПа.

Температура суг в баллоне авто. Смотреть фото Температура суг в баллоне авто. Смотреть картинку Температура суг в баллоне авто. Картинка про Температура суг в баллоне авто. Фото Температура суг в баллоне авто

Зависимость плотности от температуры

Температура суг в баллоне авто. Смотреть фото Температура суг в баллоне авто. Смотреть картинку Температура суг в баллоне авто. Картинка про Температура суг в баллоне авто. Фото Температура суг в баллоне авто

Определения.
LPG (Liquified Petroleum Gas) – сжиженный нефтяной газ (пропан-бутан). Наиболее распространенный вид топлива для легковых автомобилей, как коммерческого, так и частного использования. Получается как побочный продукт при переработки нефти.
CNG (Compressed Natural Gas) – сжатый природный газ (метан). Чаще всего встречается в автомобилях коммерческого назначения или у производителей заводского ГБО.

Тезисы для пропан-бутанового оборудования (LPG):
1. Пропан/бутан требует химического синтеза (получения) на предприятии (НПЗ), поэтому дороже метана.
2. Хранится при невысоком давлении в баллоне (до 16 бар).
3. Пропан-бутан отлично сжимается и, впоследствии, сжижается. Это положительно отражается на энерговооруженность авто при равном объёме с метаном.
4. Сжиженный газ LPG находится в равновесном состоянии с паровой фазой (при определённом давлении и температуре) и заполняет всё пространство баллона.
5. Баллоны заправляются не более чем на 80% от максимального объема, жидкой фазой, которая измеряется в литрах. Так делают в целях безопасности от воздействия повышенных температур.

Теперь самая интересная часть.
Сравним энерговооруженность бензиновой системы, LPG и CNG.
Для этого примем заправочную ёмкость равную 60 литрам (бензобак / баллон).
Стандартные условия: t=+20 °C, Ра=100 кПа
Низшая теплота сгорания метана: Qm = 36 МДж/м3
Низшая теплота сгорания пропана: Qp = 91 МДж/м3
Низшая теплота сгорания бутана: Qb = 119 МДж/м3
Низшая теплота сгорания бензина (АИ-98): Qv = 33 МДж/л
Плотность метана (паровой фазы): ρma = 0,668 кг/м3
Плотность пропана (паровой фазы): ρpa = 1,872 кг/м3
Плотность пропана (жидкой фазы): ρpl = 500 кг/м3
Плотность бутана (паровой фазы): ρba = 2,519 кг/м3
Плотность бутана (жидкой фазы): ρbl = 570 кг/м3
Плотность бензина: ρv = 750 кг/м3
Газовая постоянная метана: Rm = 519 Дж/(кг*К)
Газовая постоянная пропана: Rp = 189 Дж/(кг*К)
Газовая постоянная бутана: Rb =143 Дж/(кг*К)
Уравнение газа: P*V = m*R*T, где
P — давление, Па; V — объём, м3; m — масса, кг; R — газовая постоянная, Дж/(кг*°К); Т — температура, °C.

Бензин
энерговооружённость бака бензина: Wv = 33 Мдж/л * 60 л = 1980 МДж

Метан
масса сжатой паровой фазы в баллоне: mma = P*V/(R*T) = 200*10^5 Па * 0.06 м3 / ( 519 Дж/(кг*°К) * 293 °К) = 7,9 кг
плотность сжатой паровой фазы: Dma = 7,9 кг / 0,06 м3 = 131,7 кг/м3
отношение плотностей сжатой паровой фазы в баллоне и при стандартных условиях: Dma / ρma = 131,7 кг/м3 / 0,668 кг/м3 = 197
энерговооружённость баллона: Wma = 36 МДж/м3 * 0,06 м3 * 197 = 426 МДж ( Температура суг в баллоне авто. Смотреть фото Температура суг в баллоне авто. Смотреть картинку Температура суг в баллоне авто. Картинка про Температура суг в баллоне авто. Фото Температура суг в баллоне авто

Температура суг в баллоне авто. Смотреть фото Температура суг в баллоне авто. Смотреть картинку Температура суг в баллоне авто. Картинка про Температура суг в баллоне авто. Фото Температура суг в баллоне авто

Стоимость заправки 1 литра жидкого топлива
Бензин
Цена: 44 руб/л
Стоимость 1 МегаДжоуля: Sb = 44 руб/л / 33 МДж/л = 1,333 руб/МДж

Метан
Цена: 16 руб/м3
Стоимость 1 МегаДжоуля: Sm = 16 руб/м3 / 36 МДж/м3 = 0,444 руб/МДж

Пропан-Бутан (50/50)
Цена: 18 руб/л
Отношение плотностей жидкой и паровой фазы при стандартных условиях: ρpbl / ρpbv = 535 кг/м3 / 2,2 кг/м3 = 243,2
Из 1 литра жидкой фазы получится 243,2 литра паровой фазы: Vpbv = 0,2432 м3
Энергия этого объёма пара: Qpbv = 0,2432 м3 * 105 МДж/м3 = 25,534 МДж
Стоимость 1 МегаДжоуля: Spb = 18 руб/л / 25,534 МДж = 0,705 руб/МДж

Вывод: согласно расчёту, энергетическая стоимость пропан-бутанового топлива почти вдвое ниже бензина АИ-95.
А стоимость метана ровно в 3 раза ниже стоимости бензина АИ-95.
Цены взяты по Челябинску и округлены до рубля на дату публикации статьи.

Источник

Летний и зимний газ для ГБО автомобилей

Многие владельцы автомобилей в качестве топлива используют пропан-бутан. В такой ситуации важно понимать, что такое летний и зимний газ.

Температура суг в баллоне авто. Смотреть фото Температура суг в баллоне авто. Смотреть картинку Температура суг в баллоне авто. Картинка про Температура суг в баллоне авто. Фото Температура суг в баллоне авто

Летний и зимний газ оказывают существенное влияние на ГБО автомобиля в разное время года

Свойства этого, альтернативного бензину топлива, оказывают существенное влияние на характер движения машины и отдачу двигателя. Особенно это сказывается в разные периоды года, существенно отличающиеся по температуре.

Летний и зимний газ для переоборудованных моторов автомобилей

В качестве моторного топлива сжиженный газ зарекомендовал себя достаточно хорошо. Несмотря на имеющуюся критику в его адрес, огромное количество автовладельцев устанавливает газовое оборудование. В результате получается экономия финансовых средств, особенно для тех, кто ездит на большие расстояния.

Однако все это удовольствие может резко сократиться. Достаточно чтобы в ГБО начал поступать газ, не соответствующий периоду использования.

Когда такое может произойти

Причина кроется в правильном соотношении количества пропана и бутана в их смеси. Летний и зимний газ готовится в зависимости от наружной температуры периода года, когда он будет использоваться. В теплое время бутана должно быть больше, чем пропана. Оптимальное соотношение составляет 60% на 40% по объему. При низких температурах, наоборот, необходимо преобладание пропана – 60% на 40%.

Температура суг в баллоне авто. Смотреть фото Температура суг в баллоне авто. Смотреть картинку Температура суг в баллоне авто. Картинка про Температура суг в баллоне авто. Фото Температура суг в баллоне авто

Автомобильный баллон цилиндрического типа, куда закачивается газ пропан-бутан

Эти величины могут быть несколько иными, не нарушая общего соотношения. Это зависит от двух факторов. Во-первых, от месторождения, где добывался газ (соответственно свойства газа могут отличаться). Во-вторых, от фактической наружной температуры воздуха в регионе, где будет использоваться смесь пропан-бутана. Например, для северных районов количество пропана может достигать 75%. Поэтому летний и зимний газ существенно отличается по составу.

Почему следует использовать сезонный газ

Потому, что основой всему являются физические свойства пропана (C3H8) и бутана (C4H10). Оба газа могут находиться, как в жидком, так и в газообразном состоянии одновременно. Температура кипения пропана минус 43 о C, а бутана минус 0,5 о С. Это означает, что в парообразное состояние они переходят в разных условиях – пропан раньше, бутан – позже.

Причем пропан до испарения находится в двух состояниях — сжиженном, как и бутан и частично газообразном. По мере расходования бутана жидкий пропан дополнительно испаряясь переходит в газ, обеспечивая соответствующее давление в баллоне. Правильно подготовленный летний и зимний газ будет нормально обеспечивать этот процесс.

Температура суг в баллоне авто. Смотреть фото Температура суг в баллоне авто. Смотреть картинку Температура суг в баллоне авто. Картинка про Температура суг в баллоне авто. Фото Температура суг в баллоне авто

Смесь пропан-бутана в любом баллоне находится сразу в двух состояниях — жидком и газообразном

В редуктор ГБО поступает в большей части бутан через заборную трубку баллона. Именно он находится в сжиженном состоянии и располагается в нижней части емкости. При такой ситуации система газоснабжения автомобиля будет работать нормально.

Если соотношение пропана и бутана существенно нарушится, возможны разные нештатные ситуации. Например, переизбыток бутана приведет к его не полному испарению. Редуктор просто зальет не испарившейся жидкой фазой, и работа ГБО нарушится. Особенно это скажется, если в баллон заправлен газ низкого качества.

Из-за малого количества пропана может снизится давление в газовой магистрали. Это также отразится на работе газового оборудования автомобиля.

Летний и зимний газ – как это определить

Момент первый. Состав смеси пропан/бутан фиксируется в сертификате. Здесь же подтверждается возможность ее использования по сезону года (зима – лето). Его нужно требовать от заправщика, перед тем, как закачивать газ в баллон. Если документ достоверный, то негативного влияния газа на работу ГБО и двигателя не должно быть. Если заправщик отказывается предоставить сертификат, следует подумать, строит ли закачивать предлагаемый газ. Согласившись, вы рискуете попасть в неприятность.

Температура суг в баллоне авто. Смотреть фото Температура суг в баллоне авто. Смотреть картинку Температура суг в баллоне авто. Картинка про Температура суг в баллоне авто. Фото Температура суг в баллоне авто

Заправочная станция автомобилей пропан-бутаном

Второй момент. Пропан стоит дороже бутана. Поэтому зимняя смесь этих газов (когда пропана должно быть больше) дороже летней. Это может служить ориентиром водителю, для какого сезона предназначено это топливо.

Покупать летний и зимний газ очень правильно для обеспечения нормальной работы ГБО автомобиля. Понимая особенности этого вопроса, можно обеспечить себе беспроблемные поездки.

Автор: Сергей Морозов

Внимание! Эта статья защищается законом об авторском праве в цифровую эпоху (DMCA). Запрещается любое копирование без моего разрешения.

Источник

Как обманывают нас автомобилистов на газовых заправках

Недавно поставил себе газ на авто, сегодня заправлялся на заправке до «полного». И в мой баллон 54 литра влезло 55 литров газа. Я выразил свое недоумение заправщику, сказал что платить не буду за лишнее, попросил директора. Попререкавшись 5 минут заправщик кому то позвонил и сказал ок, плати токо за 50 литров. 100 рублей, которые походу хотели у меня своровать я отстоял. Задался вопросом «какого хрена» и что в дальнейшем делать, нашел хорошую статью на драйве2 ру.

Основные методы обмана на газовых заправках

Как обманывают на бензиновых заправках все знают.И противоядие мошенникам с АЗС тоже знают.Но вот как противостоять мошенничеству на газовых заправках? Ниже описано несколько самых ходовых методов «недолива» газа.

Прежде всего немного науки.

Компонентный состав сжиженного газа регламентируется техническими нормами ГОСТ 27578-87 «Газы углеводородные сжиженные для автомобильного транспорта. Технические условия» и ГОСТ 20448-90 «Газы углеводородные сжиженные топливные для коммунально-бытового потребления. Технические условия». Первый стандарт описывает состав сжиженного газа, используемом в автомобильном транспорте. Зимой предписывается применять сжиженный газ марки ПА (пропан автомобильный), содержащий 85±10% пропана, летом***8201;- ПБА (пропан-бутан автомобильный), содержащий 50±10% пропана, бутан и не более 6% непредельных углеводородов.

ГОСТ 20448-90 имеет более широкие допуски на содержание компонентов, в том числе вредных с точки зрения воздействия на газовую аппаратуру (например, серу и ее соединения, непредельные углеводороды и т.д.). По этим техническим условиям газовое топливо поступает двух марок: смесь пропан-бутановая зимняя (СПБТЗ) и смесь пропан-бутановая летняя (СПБТЛ).

Остальные методы это так сказать местного «разлива-недолива».Это методы внедряемые нижним и средним звеном работников заправок.

1. Тарировка заправочной колонки

Стараюсь заправляться в пустой баллон ДО ПОЛНОГО (к заправке тянусь на парах или уже на бензусе). Это дает возможность хоть приблизительно оценить точность тарировки колонки. В моем случае исправный баллон 40л, знаю, что залить могут максимум 85 %, т.е. 34 л, ну +/-5% итого 32…36 л. Часто вижу 38 л, с такими как правило не спорю — воруют в меру.

Если больше 38 и у меня есть время и надхнення плачу за 34л и развлекаюсь (о «умных» словах, используемых в развлечении- чуть позже)… Разница в литраже реальном и на табло колонки появляется из за соответствующей тарировки колонки. Во всех пропановых колонках расходомер механический, а счетчик электронный. Во время тарировки происходит присваивание единице (литру) электронного счетчика некоего объема проходящего через расходомер. Тарировка в минус самый частый способ жульничества.

2. Модифицированные «кулибинами» заправочные колонки

Кроме того, при заправке до полного на нормальных заправках КОЛОНКА ДАЕТ СТОП САМОСТОЯТЕЛЬНО. Если в конце заправки скорость залива существенно снижается, но при этом не меняет темпа, колонка не останавливает заправку самостоятельно, а заправщик подождав начинает тянуться к кнопке стопа — нежно перехватываю руку заправщика и глядя ему в глаза доверительно прошу «…пусть льется до полного, мне далеко ехать…». На короткое время бдительность заправщика таким маневром можно сбить. Как правило на 46 — 47 литре заправщики начинают нервничать, и пробиваться к кнопке стопа. Но этих лишних литров сверх объема моего баллона достаточно для мотивированного отказа платить. Отсутствие стопа — результат «усовершенствования» гидравлики колонки (в редких случаях электроники). В таких колонках пароотделитель переставляют ПОСЛЕ расходомера. Расходомер насчитывает Вам и объем газа, который идет в баллон Вашего авто и объем паров, которые… возвращаются назад в бочку заправки. Как только баллон авто залит по самое немогу, жидкая фаза идущая на колонку начинает возвращаться в бочку заправки через пароотделитель. Эта перестановка пароотделителя и творит такие чудеса с заправленными объемами.

Самый «элегантный» и редкий случай жульничества на заправках — заправка «газировкой».

К заправочному пропановому модулю подключают бытовой метановый баллон. В нормальном состоянии пропан-бутан дает единичные очень крупные паровые пузыри. После впрыска метана из баллона, пропан-бутан становится похожим на газированную воду из только открытой бутылки. Такой эффект с газом длится от полу часа до полтора часов. Заправка таким газом проходит в штатном режиме, литраж в норме, только вот пробег у Вас будет минимум на 30% меньше. Отследить такое дело можно только по давлению на манометре заправочной емкости. Если там больше 11и атмосфер летом, а тем более зимой, то скорее всего Вы стали свидетелем того редкого случая работы «думающих не стандартно» заправщиков. Если по близости с заправочным пропановым модулем Вы увидите МЕТАНОВЫЕ баллоны обязательно поинтересуйтесь давлением в бочке.

Никогда не спорте с заправщиками — только попортите себе нервы, ни в коем случае не дайте им втянуть себя в спор. Ведите себя максимально корректно и сразу настаивайте на разговоре С ХОЗЯИНОМ заправки.

Не старшим заправщиком, не главным инженером, который случайно оказался на этой заправке, только с хозяином. Объясню почему. Опять же из моей практики сформировалась статистика: 40% случаев жульничества на заправках — дело рук заправщиков, 50% — наемного руководства(опять же в сговоре с заправщиками) и только 10% — целенаправленная «бизнесполитика» хозяев.

По моей статистике(приблизительной, я не претендую на точность) порядочных заправок всего около 40%! Если заправщики отказываются набирать хозяина, настаивайте на своем, пригрозите вызвать милицию, которая сама вызовет сюда хозяина.

Наверняка, хозяин заправки в разговоре сразу попробует Вас оценить. Закинет удочку со сказками о давлении и коэффициентах газа. Чтоб не говорили, знайте и уверенно ответьте на это: рабочее давление пропановой заправки — 9…12 атмосфер, ВСЕ предохранительные клапаны — 16 атмосфер. Этого давления НЕДОСТАТОЧНО для сжатия жидкого газа! Коэффициенты в Вашем случае не имеют к объему никакого отношения. Просто 1 л заправленного газа может весить 520 гр, а может и 560 гр. Вы покупаете газ в ЛИТРАХ, не зависимо от его веса. Обязательно выскажите свои сомнения в правильности тарировки (сам термин — тарировка даст понять хозяину, что Вы в курсе ньюансов его бизнеса). Дальше, как правило, находится компромис. Если нет, то предложите хозяину вызывать комитет по защите прав потребителей для того, чтоб он рассудил кто из вас прав…

Думаю всем известно понятие «отсекатель» — т.е. клапан, который на ГБО при полном баке блокирует процесс налива.

Возможно на собственном авто или где-то еще вам приходилось слышать «потрескивание», или «постукивание», или «жужание» клапана в конце заправки.

Выяснился вот такой вот факт — когда тарахтит неисправный отсекатель — т.е. происходит его постоянное открытие/закрытие, процесс заправки переходит в импульсный режим вместо постоянного потока газа, он то льется, то останавливается на секунду, нагнетая давление, опять продавливает клапан и так по кругу.

Так вот — во всех колонках счетчик налива представлен очень сложной турбинкой, которая считает поток. Точность налива с такой турбинкой +/- 0,01 л. Но когда из-за неисправного грохочушего отсекателя налив то стартует, то останавливается на мгновение инерция турбинки, равная 0,01 умножается на к-во этих щелчков отсекателя, или как их еще назвать хз…

В общем получается так, что клиент сам себя наказывает, качая машину под грохот отсекателя, или просто не обращая внимания на его неисправность, т.е. «дурит» счетчик колонки не в свою пользу, а в нашу. При этом этого абсолютно не нужно, т.к. виновными становятся заправщики

Заправщикам дана инструкция предлагать отключать заправку клиентам, когда отсекатель начнет тарахтеть. Клиент может конечно настоять и на дальнейшей заправке, но точность налива будет нарушена.

ВСем добра и не бойтесь бороться за свои права!

Обязательно выскажите свои сомнения в правильности тарировки (сам термин — тарировка даст понять хозяину, что Вы в курсе ньюансов его бизнеса)

Можно сделать ход конем! Только въехал на заправку, открываешь окно и орешь заправщику ТАРИРОВКА. Должно подействовать как промокод)

Расходомер газовой колонки отличается от разходомера бензиновой только совей герметичностью, это такой же поршневой расходомер, который крутит такой же коленвал, который в свою очередь крутит импульсный датчик, который передает инфу на мозги.

Отсекатель может тарахтеть месяц, импульсность не влият на поршневой расходомер, а вот медленый и быстрый дебит влияют из за устройства самого расходомера.

То у тебя 54 л баллон, то 40. Ты уж определись там.

Тут разговор про пропановые или про метановые заправки?

Температура суг в баллоне авто. Смотреть фото Температура суг в баллоне авто. Смотреть картинку Температура суг в баллоне авто. Картинка про Температура суг в баллоне авто. Фото Температура суг в баллоне авто

Автор много чуши написал,у нас клиент всегда платит вперед,а потом,если что то не нравится,звонит директору(из 20 человек 1позвонит,остальным насрать), отсекатели чушь,давление чушь,летом при 14 будет запрпвляться треть бака,заправка осуществляется на разности давлений в насосе и в баке,летом баки горячие,следователно заправлять реально при давлении17+

Колонку обязаны тарировать каждый раз после слива газа на стационарных азс, либо после налива ёмкости на передвижных.

Литр, пройдя через турбину, покажет литр, если не накручены коэффициенты в прогамме управления колонкой.

Тарировка нужна тк газ имеет разную плотность в зависимости от содержания бутана/пропана. Более того, о накладной везут одну плотность с базы, по факту, первые газовозы забирают тяжелый газ и по мере разбора ёмкости, плотность снижается.

Приехала машина на заправку, остаток 20атмосфер, закачала «до упора» 260 атмосфер.

Сейчас: водила оплатил клубы и свободен.

Приветствую читатели! Пишу тут впервые, ибо этот абсурд меня доконал! Считаю, что такой сор нужно выносить из избы на всеобщее обозрение.

-Живу в общем то я в городе Хабаровске, рядом с недавно открывшимся (10 дней назад) торговым центром «Счастье». Квартиры у нас все с подключенным газопроводом и печи у нас газовые.

В последнее время супруга начала жаловаться что как только она собирается готовить пищу, тут же оказывается, что отключен газ, а за окном во дворе на газовом объекте вовсю копошатся газовики и потом смело собираются и уезжают (газ по прежнему отключен). Потом катаются туда сюда приезжают и включают, и так происходит изо дня в день на протяжении как раз дней десяти (10 дней назад открылся через дорогу торговый центр).
Газ отключают как на зло перед обедом, ужином. В выходные могут отключить вечером и включить утром на следующий день. Ну да ладно, может какая поломка скажете вы?! Ну и мы так тоже думали, пока не стали замечать очень много загадочных совпадений.

Кстати, до того как я дошел до этой мысли, я звонил в газовую службу. Описав суть проблемы мне там ответили примерно с таким же лицом, как у мальчика на фото

Температура суг в баллоне авто. Смотреть фото Температура суг в баллоне авто. Смотреть картинку Температура суг в баллоне авто. Картинка про Температура суг в баллоне авто. Фото Температура суг в баллоне авто

В общем такой вот пост, обсуждать не стесняйтесь, может будут тут газовики и скажут может ли быть у профессионалов такие недочеты в их не легком ремесле, а может быть это как всегда маркетинг и взятка с целью поднять спрос на не съедобный полуфабрикат? В итоге сколько семей перед едой оказывается в положении, когда не на чем готовить еду и приходится выкручиваться.. а счет потом за газ будет как следует (платеж фиксированый)😟

Источник

Газойл Центр

Нефть Газ Нефтепродукты

Свойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем

Свойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем

Температура суг в баллоне авто. Смотреть фото Температура суг в баллоне авто. Смотреть картинку Температура суг в баллоне авто. Картинка про Температура суг в баллоне авто. Фото Температура суг в баллоне автоСвойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем. Более 30 лет в нашей стране, сжиженные углеводородные газы применяются в качестве авто-мобильного топлива. За сравнительно короткий промежуток времени пройден достаточно трудный путь по организации учета сжиженных газов, ясного понимания процессов, происходящих при перекачке, измерении, хранении, транспортировке. Общеизвестно, что добыча и использование нефти и газа в России имеет многовековую историю.

Быстрые темпы роста добычи газа стали возможны благодаря коренному усилению работ по строительству магистральных газопроводов, соединив-ших основные газодобывающие районы с потребителями газа крупными промышленными центра-ми и химическими заводами. Тем не менее, основательный подход к точному измерению и учету сжиженных газов в на-шей стране стал появляться не более 10 – 15 лет назад. Для сравнения, сжиженный газ в Англии производится с начала 30-х годов XX века, с учетом того, что это страна с развитой рыночной экономикой, технология измерения и учета сжиженных газов, а также производство специального оборудования для этих целей стали развиваться практически с началом производства.

Итак, коротко рассмотрим

Итак, коротко рассмотрим (Свойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем), что представляют собой сжиженные углеводородные газы и как они производятся. Сжиженные газы делятся на две группы:

Сжиженные углеводородные газы (СУГ) – представляют собой смесь химических соединений, состоящую в основном из водорода и углерода с различной структурой молекул, т.е. смесь углеводородов различной молекулярной массы и различного строения. Основными компонентами СУГ являются пропан и бутан, в виде примесей в них содержатся более легкие углеводороды (ме-тан и этан) и более тяжелые (пентан). Все перечисленные компоненты являются предельными углеводородами. В состав СУГ могут входить также непредельные углеводороды: этилен, пропилен, бутилен. Бутан-бутилены могут присутствовать в виде изомерных соединений (изобутана и изобутилена).

ШФЛУ – широкая фракция легких углеводородов, включает в основном смесь легких угле-водородов этановой (С2) и гексановой (С6) фракций.

В целом типичный состав ШФЛУ выглядит следующим образом: этан от 2 до 5%; сжижен – ный газ фракций С4- С5 40-85%; гексановая фракция С6 от 15 до 30%, на пентановую фракцию приходится остаток.

Учитывая широкое применение в газовом хозяйстве именно СУГ, следует более подробно остановиться на свойствах пропана и бутана.

Пропан

Пропан́— это органическое вещество класса алканов. Содержится в природном газе, образуется при крекинге нефтепродуктов. Химическая формула C3H8 (рис. 1). Бесцветный газ без запаха, очень малорастворим в воде. Точка кипения −42,1С. Образует с воздухом взрывоопасные смеси при концентрации паров от 2,1 до 9,5%. Температура самовоспламенения пропана в воздухе при давлении 0,1 МПа (760 мм рт. ст.) составляет 466 °С.

Пропан используется в качестве топлива, основной компонент так называемых сжиженных угле-водородных газов, в производстве мономеров для синтеза полипропилена. Является исходным сырьём для производства растворителей. В пищевой промышленности пропан зарегистрирован в качестве пищевой добавки E944, как пропеллент.

Бутан́(C4H 10) — органическое соединение класса алканов. В химии название используется в ос-новном для обозначения н-бутана. Химическая формула C4H10 (рис. 1). Такое же название имеет смесь н-бутана и его изомера изобутана CH(CH3)3. Бесцветный горючий газ, без запаха, легко сжижаемый (ниже 0 °C и нормальном давлении или при повышенном давлении и обычной темпе-ратуре — легколетучая жидкость). Содержится в газовом конденсате и нефтяном газе (до 12 %). Является продуктом каталитического и гидро-каталитического крекинга нефтяных фракций.

Производство, как сжиженного газа, так и ШФЛУ осуществляется за счет следующих трех основных источников:

предприятия нефтедобычи – получение СУГ и ШФЛУ происходит во время добычи сырой нефти при переработке попутного (связанного) газа и стабилизации сырой неф-ти;

предприятия газодобычи – получение СУГ и ШФЛУ происходит при первичной пере-работке скважинного газа или несвязанного газа и стабилизации конденсата;

Система

Система находится в равновесном состоянии, если все параметры остаются неизменными. При таком состоянии в системе не происходит видимых качественных и количественных измене-ний. Изменение хотя бы одного параметра нарушает равновесное состояние системы, вызывая тот или иной процесс.

Углеводородные системы могут быть гомогенными и гетерогенными. Если система имеет однородные физические и химические свойства – она гомогенна, если же она неоднородна или со-стоит из веществ, находящихся в разных агрегатных состояниях – она гетерогенна. Двухфазные системы относятся к гетерогенным.

Под фазой понимается определенная гомогенная часть системы, имеющая четкую границу раздела с другими фазами.

Сжиженные газы при хранении и транспортировании постоянно изменяют свое агрегатное состояние, часть газа испаряется и переходит в газообразное состояние, а часть конденсируется, переходя в жидкое состояние. В тех случаях, когда количество испарившейся жидкости равно количеству сконденсировавшегося пара, система жидкость-газ достигает равновесия и пары на жид-костью становятся насыщенными, а их давление называется давлением насыщения или упругостью паров.

Упругость паров СУГ возрастает с повышением температуры и уменьшается с ее понижением.

Сжиженные углеводородные газы

Сжиженные углеводородные газы транспортируются в железнодорожных и автомобильных цистернах, хранятся в резервуарах различного объема в состоянии насыщения: в нижней части со-судов размещается кипящая жидкость, а в верхней находятся сухие насыщенные пары (рис. 2). При снижении температуры в резервуарах часть паров сконденсируется, т.е. увеличивается масса жид-кости и уменьшается масса пара, наступает новое равновесное состояние. При повышении температуры происходит обратный процесс, пока при новой температуре не наступит равновесие фаз.

Таким образом, в резервуарах и трубопроводах происходят процессы испарения и конденсации, которые в двухфазных средах протекают при постоянном давлении и температуре, при этом тем
пературы испарения и конденсации равны.

В реальных условиях в сжиженных газах в том или ином количестве присутствуют водяные пары. Причем их количество в газах может увеличиваться до насыщения, после чего влага из газов выпадает в виде воды и смешивается с жидкими углеводородами до предельной степени раствори-мости, а затем выделяется свободная вода, которая отстаивается в резервуарах. Количество воды в СУГ зависит от их углеводородного состава, термодинамического состояния и температуры. Доказано, что если температуру СУГ снизить на 15-30 0 С, то растворимость воды снизится в 1,5-2 раза и свободная вода скопится на дне резервуара или выпадет в виде конденсата в трубопроводах.

Скопившуюся в резервуарах воду необходимо периодически удалять, иначе она может попасть к потребителю или привести к поломке оборудования.

1-3 – упругость паров: 1 – пропана, 2 – смеси пропан-бутана, 3 – бутана; 4-5 – линии гидратообразования: 4 – пропана, 5 – бутана.

Рисунок 3. Гидратообразование и упругость паров пропана и бутана.

Согласно методам испытаний СУГ определяют наличие лишь свободной воды, присутствие растворенной допускается.

За рубежом предъявляются более жесткие требования на наличие воды в СУГ и ее количество, посредством фильтрации доводится до 0,001% по массе. Это оправдано, так как растворенная вода в сжиженных газах является загрязнителем, ибо даже при положительных температурах она образует твердые соединения в виде гидратов.

Гидраты

Гидраты можно отнести к химическим соединениям, так как они имеют строго определенный состав, но это соединения молекулярного типа, однако химическая связь на базе электронов у гидратов отсутствует. В зависимости от молекулярной характеристики и структурной формы внутренних ячеек, различные газы внешне представляют собой четко выраженные прозрачные кристаллы разнообразной формы, а гидраты, полученные в турбулентном потоке – аморфную массу в виде плотно спрессованного снега.

Условия образования гидратов необходимо знать при проектировании трубопроводов и сис-тем для транспортировки газов, оборудования ГНС, АГЗС, а также для разработки мер по предупреждению их образования и ликвидации гидратных пробок. Установлено, что давление, при ко-тором образуются гидраты при температуре +5 0 С ниже упругости паров пропана и бутана.

В большинстве случаев, говоря о сжиженных газах, мы подразумеваем углеводороды соответствующие ГОСТ 20448-90 «Газы углеводородные сжиженные для коммунально-бытового потребления» и ГОСТ 27578-87 «Газы углеводородные сжиженные для автомобильного транспорта». Они представляют собой смесь, состоящую в основном из пропана, бутана и изобутана. Благодаря идентичности строения их молекул приближенно соблюдается правило аддитивности: параметры смеси пропорциональны концентрациям и параметрам отдельных компонентов. Поэтому по некоторым параметрам можно судить о составе газов.

Соответствующие параметры смесей

Соответствующие параметры смесей получают суммированием парциальных параметров отдельных компонентов:

Где yсм – параметр смеси; yi – параметр компонента; xi – концентрация компонента.

В соответствие с правилом аддитивности и таблицами 1; 2 можно рассчитать любой параметр смеси. Для примера возьмем пропан-бутановую смесь с концентрацией 40% бутана и 60% пропана. Необходимо определить плотность смеси при 10 0 С. По формуле 1 находим:

ρсм = 516,8 ×0,6 +586,3 ×0,4 = 310,08 + 234,52 = 544,6

При проведении измерений количества СУГ и при учетных операциях на объектах хранения, важное значение имеют такие понятия как плотность, температурное расширение и вязкость.

Плотность, кг/м 3 – отношение массы тела к его объему, зависящее от углеводородного состава и его состояния. Плотность паровой фазы СУГ – сложная функция температуры, состояния и давления для каждого компонента.

Жидкой фазы плотность пропан-бутановых смесей зависит от состава углеводородов и температуры, так как с ростом температуры снижается плотность жидкости, что обусловлено объемным расширением.

Относительное изменение объема жидкости при изменении температуры на один градус характеризуется температурным коэффициентом объемного расширения β т, который у сжиженных газов (пропана и бутана) в несколько раз больше чем у иных жидкостей.

При повышении давления жидкая фаза пропана и бутана сжимается. Степень сжатия ее оценивается коэффициентом объемной сжимаемости βсж, размерность которого обратна размерности давления.

Вязкость – это способность газов или жидкостей оказывать сопротивление сдвигающим усилиям, обусловленная силами сцепления между молекулами вещества. При относительном движении между слоями потока возникает касательная сила, которая зависит от площади соприкосновения слоев и градиента скорости. Удельное касательное напряжение, возникающее между слоями, определяет динамическую вязкость газа или жидкости и называется коэффициентом динамической вязкости. Анализ экспериментальных исследований показал, что вязкость СУГ зависит от темпера-туры, а с увеличением давления растет незначительно. В отличие от жидкостей у газа вязкость с повышением температуры возрастает.

В технических расчетах часто пользуются кинематической вязкостью ν, представляющей собой отношение динамической вязкости к плотности:ν = η ;ρ(2)Физические и термодинамические свойства сжиженных газов приведены в таблицах 1 – 2.Таблица 1

Термодинамические и физические свойства жидкой фазы пропана и бутана

03v, 10 -7Сж,r,λ, 10 -3a 2 , 10-Т, К (С)Р, МПаρж, кг/мм 2 /скДж/(кгкДж/кгВт/(мм 2 /сРгЖидкаяфаза пропана223(-50)0,070594,34,0952,207434,94126,680,9664,24228(-45)0,088587,93,9322,230429,50125,990,9614,09233(-40)0,109581,43,7362,253424,02125,300,9573,90238(-35)0,134574,93,5682,278418,32124,610,9513,75243(-30)0,164568,53,4102,303412,62123,920,9463,60248(-25)0,199562,03,2592,328406,685123,230,9423,46253(-20)0,239555,53,1162,353400,75122,550,9383,32258(-15)0,285549,12,9802,385394,58121,860,9313,20263(-10)0,338542,62,8512,416388,41121,170,9243,09268(-5)0,398536,22,7312,448381,76120,480,9182,97273(0)0,467529,72,6132,479375,11119,790,9122,87278(5)0,544523,22,5022,519367,99119,100,9042 77283(10)0,630516,82,3982,558360,87118,410,8962,68288(15)0,727510,32,3002,604353,2711-7,720,8862,60
293 (20)0,834503,92,2092,650345,67117,030,8762,52
298 (25)0,953497,42,1202,699337,125116,350,8672,45
303 (30)1,084490,92,0372,747328,58115,660,8582,37
308 (35)1,228484,51,9602,799318,84114,970,8482,31
313 (40)1,385478,01,8872,851309,11114,280,8392,25
318 (45)1,558571,51,8182,916297,48113,590,8262,20
323 (50)1,745465,11,7552,981285,84112,900,8142,16

Жидкая фаза бутана

228 (-45) 0,0126 667,0 4,92 2,125 420,36 132,72 0,9364 5,25

223(-50)0,0094674,35,092,114423,96133,450,93625,44
233(-40)0,0167659,74,762,135416,75131,590,93715,08
238(-35)0,0218652,34,602,152412,97131,270,93514,92
243(-30)0,0280645,04,432,169409,19130,540,93314,75
248(-25)0,0357637,74,282,188405,41129,820,93044,60
253(-20)0,0449630,34,182,207401,63129,090,92804,50
258(-15)0,056616,63,982,234397,67128,370,93194,27
263(-10)0,069611,53,832,261393,70127,640,92324,15
268(-5)0,085606,33,6982,270389,56126,920,92224,01
273(0)0,103601,03,5612,307385,42126,190,91013,91
278(5)0,123593,73,4222,334381,10125,460,90543,78
283(10)0,147586,33,3202,361376,77124,740,90113,68
288(15)0,175579,03,1732,392372,09124,010,89403,55
293(20)0,206571,73,0452,424367,41123,290,88973,42
298(25)0,242564,32,9342,460362,37122,560,88283,32
303(30)0,282557,02,8202,495357,32121,840,87673,22
308(35)0,327549,72,7042,535351,92121,110,86913,11
313(40)0,377542,32,6062,575346,52120,390,86213,02
318(45)0,432535,02,5252,625340,76119,660,85212,96
323(50)0,494527,72,4212,680334,99118,930,84092,88

Таблица 2.

Термодинамические и физические свойства паровой фазы пропана и бутана

Т, К (0С)Р, МПа3v, 10 -7Сn,r, кДж/кгλ, 10 -3a 2 , 10-ρn, кг/мм 2 /скДж/(кгК)Вт/(мК)м 2 /сПаровая фаза пропана223(-50)0,0701 9630,281,428434 940,9232,9228(-45)0,0882 4125,231,454429,500,9627,4233(-40)0,1092 9221,321,480424,021,0023,1238(-35)0,1343,5218,091,505418,321,0419,6243(-30)0,1644,2215,431,535412,621,0716,5248(-25)0,1995,0213,261,552406,6851,1114,2253(-20)0,2395,9011,521,587400,751,1512,3258(-15)0,2856 9010,061,610394,581,1910,7263(-10)0,3388,038,821,640388,411,249,4268(-5)0,3989,287,781,675381,761,288 2273(0)0,46710,676,901,710375,111,327,2278(5)0,54412 236,141,750367,991,366,4283(10)0,63013,915,501,786360,871,415,7288(15)0,72715 754,941,820353,271,455,1293(20)0,83417,794,451,855345,671,504 5298(25)0,95319,994,031,888337,1251,544,1303(30)1,08422 36З,671,916328,581,593,7308(35)1,22
824,923,351,940318,841,633,4313(40)1,38527,663,061,960309,111,683,1318(45)1,558З0,602,811,976297,481,732,9323(50)1,74533,762,591,989285,841,782,7

Паровая фаза бутана

223(-50)0,00940,30168,5351,440423,960,90208,3228(-45)0,01260,39132,8661,463420,360,93163,0233(-40)0,01670,51104,0621,480416,750,97128,5238(-35)0,02180,6583,5731,505412,971,01103,2243(-30)0,02800,8267,7681,520409,191,0584,2248(-25)0,03571,0355,1591,540405,411,0968,7253(-20)0,04491,2745,7121,560401,631,1357,0258(-15)0,0561,5538,2521,580397,671,1747,8263(-10)0,0691,8632,5401,610393,701,2140,4268(-5)0,0852,2627,3251,632389,561,2634,2273(0)0,1032,6623,6771,654385,421,3029,5278(5)0,1233,1820,1891,674381,101,3425,2283(10)0,1473,7117,6341,694376,771,3922,1288(15)0,1754,3515,3181,713372,091,4319,2293(20)0,2065,0513,4351,732367,411,4816,9298(25)0,2425,8211,8641,751362,371,5315,0
303 (30)0,2826,6810,5171,770357,32′1,5713,3
308 (35)0,3277,609,4021,791351,921,6211,9
313 (40)0,3778,628,4281,810346,521,6710,7
318 (45)0,4329,727,5961,830340,7551,729,7
323 (50)0,49410,936,8641,848334,991,778,8

Таким образом, можно подвести итог и выделить основные свойства пропан-бутановых смесей, влияющих на условия их хранения, транспортирования и измерения.

В мире

Во всем мире, углеводородные системы и оборудование, а также устройство технологических систем подчинено единым требованиям и правилам.

Сжиженный газ представляет собой ньютоновскую жидкость, поэтому процессы перекачивания и измерения описываются общими законами гидродинамики. Но функция углеводородных систем сводится не только к простому перемещению жидкости и ее измерению, но и обеспечению уменьшения влияния «отрицательных» физико-химических свойств СУГ.

Принципиально, системы, перекачивающие СУГ (Свойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем), мало отличаются от систем для воды и нефтепродуктов, и, тем не менее, необходимо дополнительное оборудование, гарантирующее качественные и количественные характеристики измерения.

Исходя из этого технологическая углеводородная система, как минимум должна иметь в своем составе резервуар, насос, газоотделитель, измеритель, дифференциальный клапан, отсечной или регулирующий клапан, устройства безопасности от превышения давления или скорости потока.

Пояснения

Резервуар хранения должен быть оборудован входным патрубком для налива продукта, линией слива для отпуска и линией паровой фазы, которая используется для выравнивания давления, воз-врата паров от газоотделителя или калибровки системы.

Насос – обеспечивает давление, необходимое для движения продукта через систему отпуска. Насос должен быть подобран по емкости, производительности и давлению.

Измеритель – включает преобразователь количества продукта и отсчетное устройство (индикацию) которое может быть электронным или механическим.

Газоотделитель – отделяет пар, образованный во время потока жидкости, прежде чем он достиг-нет счетчика и возвращает его в паровое пространство резервуара.

Дифференциальный клапан – служит для обеспечения прохождения через счетчик только жид-кого продукта, посредством создания после счетчика избыточного дифференциального давления, заведомо большего, чем давление паров в емкости.

Система должна удовлетворять следующим требованиям:

быть герметичной и выдерживать необходимое расчетное давление; изготовлена из материалов, предназначенных для работы с СУГ;

оборудована клапанами сброса давления для управляемого выпуска продукта при превышении давления сверх рабочего.

Основные характеристики конструкции, описанные выше, применимы ко всем типам систем, используемых для измерения и отпуска СУГ. Однако это не единственные критерии. Конструкция системы должна отражать различные условия ее использования для коммерческого отпуска продукта (Свойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем).

Условно можно разделить системы измерения на следующие группы (типы):

осуществление измерения СУГ (в том числе налив автоцистерн) при относительно высокой скорости потока (400-500 л/мин.). Как правило, это НПЗ, ГНС.

измерение количества СУГ при поставках на АГЗС или конечным потребителям авто-цистернами (в том числе налив автоцистерн). Производительность в данном случае колеблется от 200 до 250 л/мин.

Коммерческая заправка газобаллонных автомобилей. Скорость заправки обычно не превышает 50 л/мин.

Конструкция и тип систем измерения для СУГ определен физическими свойствами продукта, особенно его зависимость от температуры и давления во время отпуска.

Чтобы обеспечить точное измерение, конструкция системы должна включать средства для минимизации испарения и устранения образовавшегося пара, прежде чем он попадет в счетчик.

Конструкция измерительной системы зависит от ее использования и от максимальной производительности. Измерительные установки могут использоваться как стационарно, так и устанавли-ваться на автоцистернах, применяться при оптовой и розничной продаже.

Рассмотрим отдельно компоненты, которые учувствуют в операциях измерения СУГ и являются обязательными для большинства систем учета (Свойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем).

Напорная линия – соединяет емкость хранения и входной патрубок установки измерения и имеет элементы, которые управляют потоком жидкости и гарантируют ее поддержание в жидком состоянии. Напорная линия, как правило, состоит из следующих элементов:

Насосы.

Поскольку в емкости хранения система жидкость-пар находятся в равновесном состоянии и в купе с системой измерения составляют закрытую систему, газ не может течь самостоятельно. В результате должен использоваться насос для подачи СУГ на раздаточную линию.

Существует несколько типичных конструкций насосов, широко применяемых в тех или иных случаях. Это лопастные насосы, шестеренные насосы, вихревые насосы.

Скорость насоса может стать критическим фактором для точности измерительной системы и

Перепускной клапан.

В течение коротких промежутков времени, насос может находиться в рабочем состоянии, в то время как отпуск продукта не производится. Чтобы предотвратить повреждения, ряд насосов оборудованы перепускными клапанами. При повышении давления, клапан внутри насоса открывается, и жидкость начинает циркулировать внутри насоса. Как правило, подобная схема приводит к нагреву продукта и его вскипанию, при этом образуется паровая подушка, препятствующая движению жидкости. Проведя неоднократные опыты с насосами, оборудованными внутренними перепускными клапанами, мы пришли к выводу, что оптимальное решение для таких жидкостей как СУГ, это установка внешнего перепускного клапана.

Эта конструкция позволяет продукту циркулировать через емкость хранения и непрерывно снабжать насос не разогретым газом.

Скоростные клапаны.

Скоростными клапанами должны быть оборудованы все патрубки емкости хранения и раздаточные рукава. Цель этих клапанов остановить поток продукта в случае разрыва рукава или разъединения раздаточного крана.

Манометры.

Манометры необходимо устанавливать на всасывающей и напорной линиях насоса, на паро-вой фазе емкости хранения, а также на фильтрах системы (Свойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем).

Предохранительные клапаны.

В любом месте технологической и измерительной систем, где возможно заключение объема жидкости между двумя запорными устройствами необходима установка предохранительных клапанов, для предотвращения от возможного превышения давления.

Газоотделитель.

Газоотделитель – отделяет пар, образованный во время потока жидкости, прежде чем он достигнет счетчика и возвращает его в паровое пространство резервуара.

Как правило, газоотделители имеют поплавковую систему газоотделения, но некоторые производители отказываются от такой схемы в пользу применения скоростных или обратных клапанов и установки расширяющихся патрубков (сифонов) совместно с отверстиями малых диаметров. Та-кая схема для СУГ достаточно эффективна, если принять во внимание, что газоотделитель в за-крытых системах играет роль газо-конденсатора, т.е. его цель сконденсировать паровую фазу, а часть отвести в емкость хранения.

Фильтры.

Краны и клапаны.

Неотъемлемой частью любой технологической системы для СУГ являются запорные устройства. Они призваны обеспечить удобное и быстрое техническое обслуживание отдельных компонентов без освобождения от газа и давления всей системы.

Счетчики и отсчетные устройства.

Отделенная от пара жидкость, после газоотделителя попадает в счетчик (преобразователь объема) (Свойства сжиженных углеводородных газов Особенности эксплуатации углеводородных систем). В большинстве систем измерения СУГ счетчики имеют тип камерного расходомера, который, по нашему мнению, является самым надежным и очень точным методом измерения жидкости. Существуют также другие типы расходомеров, такие как турбинные или массовые (кориолисовые) расходомеры.

Конструкция камерных расходомеров с технической точки зрения достаточно сложна, но принцип их работы является прямым. Существуют следующие типы расходомеров: шестеренные, ротационные, кольцевые, дисковые, лопастные, ковшовые, поршневые и т.п.

Из-за простого принципа действия таких устройств измерения, число факторов, которые вызывают неточное измерение немного.

Дифференциальный клапан

Дифференциальный клапан – служит для обеспечения прохождения через счетчик только жидкого продукта, посредством создания после счетчика избыточного дифференциального давления, заведомо большего, чем давление паров в емкости.

Линия отпуска

Линия отпуска пропускает измеренный продукт к точке выдачи. Чтобы обеспечить точное измерение, шланг должен быть заполнен жидким продуктом в начале отпуска и под рабочим давлением. Это называется «полный рукав». Для этого раздаточные пистолеты имеют клапан, который закрывается после отпуска и отсоединения раздаточного крана.

Свойства сжиженных углеводородных газов, как впрочем, и других жидкостей, требующих учета подразумевают индивидуальный подход к выбору оборудования

Тем не менее, благодаря многолетнему мировому опыту и точным теоретическим данным о свойствах сжиженных газов имеет место универсальность оборудования, т.е. конфигурация того или иного гидравлического узла позволяет использовать его в любой технологической системе по перекачке, измерению и учету СУГ.

Наша компания ежедневно сталкивается с задачами выбора и проектирования оборудования для различных технологических систем. Благодаря собственному опыту, а также опыту мировых производителей нам удалось создать устройства, которые в любой технологической системе позволяют исключить, или, по крайней мере, минимизировать отрицательные факторы термодинамических свойств СУГ.

Таким образом, подводя итог сказанному можно сделать вывод, что выбор оборудования дол-жен быть максимально облегчен и производиться по параметрам производительности, точности, внешнего вида и т.д. (рис.4) Остальные технические характеристики оборудования (это подтверждается мировой практикой) должны быть предусмотрены самой конструкцией.

Критерии выбора технологического оборудования

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *