благодаря какому фрукту человечество открыло закон всемирного тяготения
Драмы науки: зачем Ньютону яблоко?
Нужно ли ученому заботиться о репутации честного человека? Конечно да, скажете вы, и будете правы. Ведь без этого исследователя могут лишить звания первооткрывателя. Так, например, произошло с английским ученым Робертом Гуком — приоритет открытия закона тяготения был признан не за ним, а за Ньютоном. Но отчасти Гук сам был в этом виноват…
Думаю, что многие из нас на вопрос: «Кто и при каких обстоятельствах сформулировал закон всемирного тяготения?», не задумываясь, дадут однозначный ответ — Ньютон, после того, как увидел падение яблока с ветки. Но на самом деле все было не совсем так. Прежде всего, никакого яблока в этой истории, судя по всему, не было — про этот фрукт впервые рассказала биографу великого ученого его племянница, а он сам потом практически дословно повторял ее рассказ.
Но самое главное заключается в том, что, по мнению некоторых историков науки, закон всемирного тяготения был сформулирован независимо двумя людьми — Исааком Ньютоном и Робертом Гуком. Однако фамилию последнего в связи с этим законом обычно не упоминают. А зря. Потому что Гук сформулировал его раньше, чем Ньютон. Но давайте обо всем по порядку.
Вообще, английский физик Роберт Гук (1635-1703 годы) помимо того, что действительно был гениальным ученым, имел репутацию… великого склочника. Например, своего первого покровителя и наставника Роберта Бойля он как-то раз обвинил в том, что тот присвоил себе способы усовершенствования воздушного насоса, придуманные Гуком. Позднее обвинение было признано неправомерным, и Гуку пришлось извиняться.
В другой раз Гук ополчился на Гюйгенса, заявив, что великий физик украл у него идею часов со спиральной пружиной (чего тоже в реальности не было). Доходило до смешного — например, когда Ньютон представил Обществу придуманную им новую конструкцию секстанта, Гук тут же заявил, что изобрел такой прибор более 30 лет назад (хотя всем было известно, что он секстантов вообще никогда не изготавливал).
Секретарь Королевского общества г-н Ольденбург тут же известил Ньютона об этих обвинениях. Интересно, что сэр Исаак приложил все силы к тому, что бы не дать конфликту разгореться — он первый признал то, что использовал некоторые идеи Гука. Тот, в свою очередь, сразу же остыл, и принес Ньютону извинения в том, что «… поторопился с выводами, не изучив досконально всей работы». Ученые помирились, и, что самое интересное, Ньютон в дальнейшем до самой смерти Гука вообще не публиковал работ по физике света — его знаменитая монография «Оптика» вышла лишь в 1704 году, через год после того, как Гука не стало.
Так что неудивительно, что все ученые Англии воспринимали Гука как весьма завистливую, склочную и нечистоплотную личность, с которой лучше вообще никаких дел не иметь. И эта репутация в конце концов сыграла с ним злую шутку.
Произошло это так: когда в 1686 (первый том), и в 1687 (второй том) годах вышла знаменитая работа Ньютона «Математические начала натуральной философии», где и излагался закон всемирного тяготения, Гук сразу же заявил о том, что Ньютон присвоил себе его идеи. Однако ученому с репутацией завистника и скандалиста, конечно же, никто не поверил. И напрасно, потому что, по иронии судьбы, в этот раз Роберт Гук оказался прав.
Исследования писем и дневников ученого показало, что идею об универсальной силе тяготения, Гук впервые высказал еще где-то в середине 1660-х годов. Затем, она была изложена в его в трактате «Попытка доказательства движения Земли», который был опубликован в 1674 году. Правда, там этот закон был сформулирован весьма туманно — Гук говорил лишь о том, что, возможно, сила, с которой одно тело притягивает другое, пропорциональна их массам.
Однако уже в письме от 6 января 1680 года Ньютону Гук ясно формулирует закон всемирного тяготения (причем в том виде, в котором его знаем мы). Он предлагает своему соратнику строго математически обосновать его, показав при этом связь с первым законом Кеплера для некруговых орбит. Эта просьба не случайна — Гук прекрасно знал, что Ньютон более сведущ в математике, да и вообще в теории, в то время как он сам был сильным экспериментатором. Так что, как видите, яблоко тут совсем не причем — Ньютон получил формулировку закона уже в готовом виде.
Что же получается — Гук смог сформулировать закон, но не сумел доказать его математически? Это тоже не совсем так. Известный отечественный математик и популяризатор науки Владимир Игоревич Арнольд в книге «Гюйгенс и Барроу, Ньютон и Гук» аргументировал, в том числе документально (приводя выдержки из работ, писем и дневников), утверждение, что именно Гуком был открыт и доказан математически закон всемирного тяготения (сам Гук называл его закон обратных квадратов для центральной гравитационной силы). Причем это обоснование было безупречным, а все уравнения Гука были правильными. Однако он обосновал справедливость этого закона только лишь для тел, движущихся по круговым орбитам.
Ньютон же, в свою очередь, предоставил уравнения, описывающие движения по эллиптическим орбитам, то есть доказал справедливость этого закона для реально движущихся небесных тел. Любопытно, что именно об этом Гук его и просил, сообщив перед этим результаты своих расчетов. Можно сказать, что Ньютон, конечно же, сделал самую важную часть работы, однако, это вовсе не давало ему права заявлять, что закон всемирного тяготения — исключительно его рук (точнее, ума) дело.
И вот что интересно — сначала сэр Исаак вроде бы не отрицал соавторства Гука и везде упоминал о том, что саму идею о зависимости тяготения от массы и расстояния ему подал именно он. Однако потом он вдруг везде стал говорить о том, что еще раньше независимо от Гука сделал это открытие (и тут-то как раз появилась та самая легенда о яблоке — для наглядности, видимо), просто никому об этом не сообщал.
Возможно, это было вызвано появлением многочисленных памфлетов, в которых Ньютона в открытую называли плагиатором. Эти слова еще больше раздули конфликт, однако Королевское общество встало на сторону Ньютона, и в итоге был признан его приоритет. Выпады Гука просто проигнорировали — зачем, мол, слушать того, кто все время врет.
Но в данном случае, похоже, говорил неправду именно Ньютон. Анализ его архивов не дал никаких документальных подтверждений того, что он независимо сформулировал закон всемирного тяготения раньше, чем это сделал Гук. Более того, обнаружены письма, прямо свидетельствующие об обратном — в них сэр Исаак признается, что действительно думал о тяготении, но эта задачка ему с ходу не давалась, и он ее забросил. А вернулся он к ней лишь после того самого письма Роберта Гука.
Получается, Ньютон действительно присвоил себе чужое открытие? На самом деле — нет, поскольку без той части расчетов, которую произвел Ньютон, зависимость тяготения от массы тел нельзя было считать доказанной. То есть без работы сэра Исаака этот закон можно было рассматривать лишь как частный случай, а не как общую закономерность. Логичным выходом из ситуации было бы признание того, что закон сформулировали два великих ученых (и, соответственно, называть его следовало бы законом всемирного тяготения Гука — Ньютона). Однако, к сожалению, этого до сих пор так и не произошло.
В итоге Гук так и не получил заслуженных лавров основоположника современной физики наравне с Ньютоном. И хотя его имя не исчезло со страниц учебников совсем — о Гуке вспоминают всегда, когда говорят об открытии постоянства температуры таяния льда и кипения воды или о волнообразном распространении света и интерференции. Однако о том, что именно он первым догадался связать силу тяготения с массой тела, предпочитают не упоминать. И если быть совсем уж честным, он сам заслужил это своими бесконечными склоками. В очередной раз подтвердил свою правоту афоризм Козьмы Пруткова: «Единожды солгавший, кто тебе поверит?»…
Читайте самое интересное в рубрике «Наука и техника
Добавьте «Правду.Ру» в свои источники в Яндекс.Новости или News.Google, либо Яндекс.Дзен
Быстрые новости в Telegram-канале Правды.Ру. Не забудьте подписаться, чтоб быть в курсе событий.
Закон всемирного тяготения
Закон Ньютона не случайно назван всемирным. Сфера его действия не ограничена Землей и даже Солнечной системой. Он описывает взаимодействие любых тел во Вселенной: звезд, планет, спутников, комет, метеоритов.
Почему яблоки падают вниз?
В то самое время, когда молодой ученый Исаак Ньютон получил степень бакалавра, в Англии вспыхнула эпидемия чумы. Кембриджский университет закрыли, и Ньютон отправился в поместье своей матери. Два года, что он там провел, полностью изменили науку того времени, потому что Ньютон сделал несколько фундаментальных открытий, в том числе вывел закон всемирного тяготения.
Как он рассказывал в старости, мысль о существовании закона всемирного тяготения пришла к нему, когда он смотрел, как с деревьев падают спелые яблоки. В тот момент на небе была видна Луна. И вот, глядя на Луну, которая, как он знал, вращается вокруг Земли, и на яблоки, которые падают вниз, Ньютон вдруг понял, что и в том, и в другом случае действует одна и та же сила. Эта сила заставляет земные предметы падать вниз, и она же удерживает спутник Земли на орбите, не позволяя ему умчаться в космос.
Это было величайшее открытие, с математической точностью объяснившее движение небесных объектов и многие явления, происходившие на Земле. Сила тяготения (притяжения) — одна из самых универсальных в природе. Она действует между любыми объектами, обладающими массой. А так как материи без массы не бывает, то исключений для этой силы нет. Если бы мы могли видеть притяжение в виде нитей, то в любой точке пространства наблюдалось бы бесчисленное количество таких нитей, связывающих всё со всем. «Отгородиться» от силы тяготения невозможно, не существует никаких защитных экранов, которые были бы препятствием для этой вездесущей силы.
«Природа проста и не роскошествует излишними причинами.» Исаак Ньютон
Бесконечное падение
Ньютон был не первым, кто заметил, то тела падают на Землю. Еще Галилей изучал ускорение свободного падения. Но он считал, что сила притяжения действует только на Земле, максимум — распространяется до Луны. Кеплер, открывший законы движения планет, был уверен, что эти законы действуют только в космосе. И только гений Ньютона позволил объединить «земное» и «небесное». Ньютон стал первым, кто доказал, что и на Земле, и в космосе действуют одинаковые силы и одинаковые законы, и важнейший из них — закон всемирного тяготения.
Для того чтобы лучше понять единство этого закона, можно провести мысленный эксперимент. Представим, что мы стоим на краю высокого обрыва, рядом со старинной пушкой, и у наших ног лежат тяжелые чугунные ядра. Если просто столкнуть ядро с обрыва, то оно упадет вертикально вниз. Если же выстрелить ядром из пушки, то оно тоже упадет, но сначала полетит вперед и опишет в воздухе дугу. Здесь на ядро, кроме силы притяжения, действует и другая сила, придавшая ему начальное ускорение.
Теперь попробуем представить, что наша сверхмощная пушка может выстрелить ядро с такой силой, чтобы оно облетело вокруг Земли и снова вернулось в исходную точку. Что произойдет в этом случае? Ядро не упадет, а продолжит двигаться вокруг нашей планеты по круговой орбите. Получается, мы создали искусственный спутник.
На самом деле движение Луны вокруг Земли, Земли вокруг Солнца или искусственного спутника вокруг планеты — это постоянное «падение», вызванное силой гравитации и объясняемое законом всемирного тяготения. Из-за того, что скорость движения очень высока, меньшее тело не падает на большее, стремясь перемещаться по прямой линии. Но улететь они тоже не могут, так как их держит вездесущая сила тяготения — та же самая, что заставляет яблоки падать вниз.
«Он не позволял себе никакого отдыха и передышки… считал потерянным всякий час, не посвященный занятиям… Думаю, его немало печалила необходимость тратить время на еду и сон», — вспоминал о Ньютоне его помощник
Открытие Нептуна
Планету Нептун открыли благодаря ньютоновскому закону тяготения. В начале XIX века астрономы заметили, что Уран не просто следует по своей орбите, но ведет себя так, точно она испытывает возмущения со стороны какого-то другого тела. На основе закона Ньютона были сделаны различные предсказания, и в 1846 году планета Нептун, названная так в честь морского божества, была обнаружена очень близко от того места, в котором ее ожидали увидеть. Британские и французские астрономы не пришли к согласию относительно того, кто сделал это открытие, приписываемое и Джону Куху Адамсу, и Урбену Леверье. Нептун обладает массой, в 17 раз превосходящей массу Земли, и является «газовым гигантом» с толстой и плотной атмосферой, состоящей из водорода, гелия, аммиака и метана, окружающей еще более плотное ядро. Облака на Нептуне синеватые — из-за метана. На нем дуют самые сильные в Солнечной системе ветра — до 2500 километров в час.
Приливы
В своих «Началах» Ньютон описал и формирование на Земле океанских приливов. Они возникают оттого, что Луна с разной силой притягивает воду, находящуюся на ближней и дальней сторонах Земли, между тем как сама Земля притягивает воду одинаково. Различие в гравитационном притяжении на разных сторонах Земли заставляет воду вздуваться в направлении Луны и отступать от нее, отчего каждые 12 часов и возникают приливы и отливы. Хотя более массивное Солнце и притягивает Землю с большей, нежели маленькая Луна силой, последняя создает более сильный приливный эффект, поскольку находится ближе к Земле.
Упавшее яблоко или плагиат: как Ньютон открыл закон всемирного тяготения
Чувствуете, как вас тянет к другим людям? На самом деле это и правда происходит, согласно закону всемирного тяготения Ньютона.
Признайтесь, вы тоже не до конца поняли, что такое закон всемирного тяготения Ньютона, когда учились в школе? Это неудивительно: человечество, за исключением нескольких астрономов и физиков, даже не подозревало о нем до 1687 года, да и потом еще лет 200 ученые трудились над строгим обоснованием гениальной теории Ньютона. Так что нет ничего стыдного даже для взрослого человека в том, чтобы освежить свои знания о неведомой силе, которая притягивает все тела во Вселенной, определяет траектории движения планет Солнечной системы, создает приливы и отливы и запускает течение рек на Земле, а однажды подсказала ученым сам факт существования планеты Нептун.
Как был открыт закон всемирного тяготения?
По легенде, теория гравитации родилась в голове Ньютона благодаря упавшему на него яблоку, и это не пустой миф. Близкие знакомые ученого оставили свидетельства о разговоре с ним и о самом «яблочном инциденте», который, по-видимому, случился в 1666 году, когда молодой Исаак пережидал эпидемию бубонной чумы в поместье своей матери. Находясь в самоизоляции, 23-летний юноша размышлял о том, почему яблоко падает перпендикулярно к земной поверхности, а не вбок или вверх, и пришел к выводу о том, что яблоко притягивает Землю так же, как Земля притягивает яблоко.
Пока чума косила англичан, погубив пятую часть населения Лондона, научная мысль Ньютона шагала за пределы нашей планеты и он спрашивал себя: как далеко простирается эта незримая сила (гравитация) и не она ли удерживает Луну вблизи Земли, не давая ей улететь? История с падением яблока стала популярна благодаря Вольтеру, описавшему инцидент со слов племянницы Ньютона, и биографу Уильяму Стьюкли, который изложил ее в книге «Воспоминания о жизни Ньютона», выпущенной в 1752 году.
На формулировку закона всемирного тяготения у гениального британского ученого ушло два десятка лет: впервые он оповестил мир о нем в 1687 году — в своем фундаментальном труде «Математические начала натуральной философии». Так наконец удалось дать объяснение траектории движения планет вокруг Солнца, обосновать открытия немецкого астронома Кеплера, сформулированные в начале XVII века, ответив на главный вопрос: почему планеты движутся не по кругу, а по эллиптической орбите? Закон всемирного тяготения Ньютона и сама идея гравитации помогли объяснить феномены, о которых эмпирическим путем уже догадывались самые наблюдательные ученые. Большинство же людей верили в божий промысел, считали Землю центром Вселенной и даже не подозревали о том, что на яблоко и Луну влияют одни и те же физические законы.
Притяженья больше нет?
Если все тела во Вселенной притягиваются, то почему мы чувствуем притяжение только к Земле, а не к холодильнику или друг к другу? Все дело в массе и расстоянии: до тех пор, пока масса предмета мала, а расстояние велико, мы не чувствуем никакого притяжения. И лишь когда речь идет о такой махине, как Земля, мы сполна ощущаем силу тяжести — одну из самых заметных проявлений силы всемирного тяготения.
Закон всемирного тяготения гласит: два любых тела притягиваются друг к другу с силой, прямо пропорциональной массе каждого из них и обратно пропорциональной квадрату расстояния между ними
Для подсчета используется формула: F = G ∙ (m1 ∙ m2) / R², где m — масса, R — расстояние между телами, G — гравитационная постоянная, значение которой было определено экспериментально. Эта постоянная G очень мала (6,67 ∙ 10 –11 м³ / (кг ∙ с²)) — именно поэтому сила, с которой притягиваются тела небольшой массы, нами совершенно не ощущается.
Был ли Ньютон первооткрывателем?
С момента публикации «Начал» многим ученым не нравилось, что Ньютон не объяснил физическую природу гравитации, не назвал ее источник, не привел доказательства. Некоторые ученые считали, что ученый промышляет плагиатом: мысль о том, что движение планет объясняется действием силы, которая притягивает каждую планету к Солнцу, уже высказывалась ранее, в том числе английским физиком Робертом Гуком — он даже сформулировал, что эта сила убывает обратно пропорционально квадрату расстояния от Солнца. Свою теорию Гук изложил в том самом 1666 году, когда на Исаака упало яблоко, а в 1679 году посылал Ньютону письмо, где предлагал сотрудничать по решению этой задачи, но получил отказ и заверения о том, что эта тема давно не занимает адресата. В дальнейшем Гук требовал указывать его имя как первого автора закона тяготения и открыто обвинял Ньютона в плагиате. Ученые конфликтовали до конца жизни Гука, а спор о том, кто был первым, продолжался даже в XX веке.
«К сожалению, нам неизвестны детали того логического пути, которым Ньютон пришел к закону всемирного тяготения», — писали американские ученые в книге «Физика» в 1960 году.
«Если связать в одно все предположения и мысли Гука о движении планет и тяготении, высказанные им в течение почти 20 лет, то мы встретим почти все главные выводы «Начал» Ньютона, только высказанные в неуверенной и мало доказательной форме. Не решая задачи, Гук нашел ее ответ», — писал советский ученый Сергей Вавилов. Ньютон был блестящим математиком и смог решить поставленную Гуком задачу.
Ньютон помог открыть Нептун
Лишь после того, как ньютоновская теория стала основой небесной механики в XVIII веке, физики приняли ее более благосклонно. Закон всемирного тяготения Ньютона стал подарком для астрономов, так как математически объяснил почти все, что происходит во Вселенной. Но, пожалуй, главным вкладом Ньютона в астрономию стало открытие в 1846 году Нептуна — самой дальней от Земли планеты и первой, обнаруженной путем математических расчетов.
Этому знаменательному событию предшествовало открытие Урана в 1781 году английским астрономом Уильямом Гершелем. Наблюдавшие за ее движением астрономы многие годы народились в затруднении: реальная орбита Урана не совпадала с вычисленной. Это недоразумение заставляло думать о том, что за Ураном прячется еще одна планета, которая влияет на нее своим притяжением. Французский математик Урбен Леверье провел расчеты с помощью ньютоновой механики и указал астрономам, где именно нужно искать восьмую планету.
Однако даже в начале XX века оставалось несколько загадок, которые не находили объяснения с помощью закона тяготения Ньютона. Как именно сила притяжения простирается через пространство Вселенной и где ее источник? Почему она действует мгновенно и на любом расстоянии? Как объяснить так называемый гравитационный парадокс? Почему наблюдается расхождение теоретического и наблюдаемого смещения движения перигелия Меркурия? Многие космологические проблемы помогла решить общая теория относительности, которую предложил Альберт Эйнштейн в 1915 году. Но это, как говорится, уже совсем другая история.
Закон всемирного тяготения
Гравитационное взаимодействие
Земля — это большой магнит. Причем на самом деле магнит, с настоящим магнитным полем. Но сейчас речь пойдет о другом явлении, которое притягивает к Земле тела — от прыгающего с дерева котика до летящего мимо астероида. Называется это явление гравитацией.Земля — это большой магнит. Причем на самом деле магнит, с настоящим магнитным полем. Но сейчас речь пойдет о другом явлении, которое притягивает к Земле тела — от прыгающего с дерева котика до летящего мимо астероида. Называется это явление гравитацией.
Возьмем два тела — одно с большой массой, другое с маленькой. Натянем гигантское полотно ткани и положим на него тело с большей массой. После чего положим туда тело с массой поменьше. Мы будем наблюдать примерно такую картину:
Маленькое тело начнет притягиваться к тому, что больше, — это и есть гравитация. По сути, Земля — это большой шарик, а все остальные предметы — маленький (даже если это вовсе не шарики).
Гравитационное взаимодействие универсально. Оно справедливо для всех видов материи. Гравитация проявляется только в притяжении — отталкивание тел гравитация не предусматривает.
Из всех фундаментальных взаимодействий гравитационное — самое слабое. Хотя гравитация действует между всеми элементарными частицами, она настолько слаба, что ее принято не учитывать. Все дело в том, что гравитационное взаимодействие зависит от массы объекта, а у частиц она крайне мала. Эту зависимость впервые сформулировал Исаак Ньютон.
Закон всемирного тяготения
В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.
Формула силы тяготения согласно этому закону выглядит так:
Закон всемирного тяготения
F — сила тяготения [Н]
M — масса первого тела (часто планеты) [кг]
m — масса второго тела [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз.
Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.
Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.
Приливы и отливы существуют благодаря закону всемирного тяготения. В этом видео я рассказываю, что общего у приливов и прыщей.
Задачка раз
Две планеты с одинаковыми массами обращаются по круговым орбитам вокруг звезды. У первой из них радиус орбиты вдвое больше, чем у второй. Каково отношение сил притяжения первой и второй планеты к звезде?
Решение
По закону всемирного тяготения сила притяжения планеты к звезде обратно пропорциональна квадрату радиуса орбиты. Таким образом, в силу равенства масс отношение сил притяжения к звезде первой и второй планет обратно пропорционально отношению квадратов радиусов орбит:
По условию, у первой планеты радиус орбиты вдвое больше, чем у второй, то есть R1=2R2.
Ответ: отношение сил притяжения первой и второй планет к звезде равно 0,25.
Задачка два
У поверхности Луны на космонавта действует сила тяготения 144 Н. Какая сила тяготения действует со стороны Луны на того же космонавта в космическом корабле, движущемся по круговой орбите вокруг Луны на расстоянии трех лунных радиусов от ее центра?
Решение
По закону всемирного тяготения сила притяжения космонавта со стороны Луны обратно пропорциональна квадрату расстояния между ним и центром Луны. У поверхности Луны это расстояние совпадает с радиусом спутника. На космическом корабле, по условию, оно в три раза больше. Таким образом, сила тяготения со стороны Луны, действующая на космонавта на космическом корабле, в 9 раз меньше, чем у поверхности Луны, то есть:
Ответ: на расстоянии трех лунных радиусов от центра сила притяжения космонавта будет равна 16 Н.
Правильно говорить не «на тело действует сила тяготения», а «Земля притягивает тело с силой тяготения».
Ускорение свободного падения
Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.
Сила тяжести — сила, с которой Земля притягивает все тела.
Сила тяжести
F — сила тяжести [Н]
m — масса тела [кг]
g — ускорение свободного падения [м/с 2 ]
На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.
Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.
Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.
Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.
На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.
Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к этой планете притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:
Приравниваем правые части:
Делим на массу левую и правую части:
Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.
Закон всемирного тяготения
g — ускорение свободного падения [м/с 2 ]
M — масса планеты [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.
Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.
Но разве это не зависит еще и от массы предмета?
Нет, не зависит. На самом деле все тела падают одинаково вне зависимости от массы. Если мы возьмем перо и мяч, то перо, конечно, будет падать медленнее, но не из-за ускорения свободного падения. Просто из-за небольшой массы пера сопротивление воздуха оказывает на него большее воздействие, чем на мяч. А вот если бы мы поместили перо и мяч в вакуум, они бы упали одновременно.
Третий закон Ньютона
Третий закон Ньютона обобщает огромное количество опытов, которые показывают, что силы — результат взаимодействия тел.
Он звучит так: тела действуют друг на друга с силами, равными по модулю и противоположными по направлению.
Если попроще — сила действия равна силе противодействия.
Если вам вдруг придется объяснять физику во дворе, то можно сказать и так: на каждую силу найдется другая сила. 🙈
Третий закон Ньютона
F1 — сила, с которой первое тело действует на второе [Н]
F2 — сила, с которой второе тело действует на первое [Н]
Так вот, для силы тяготения третий закон Ньютона тоже справедлив. С какой силой Земля притягивает тело, с той же силой тело притягивает Землю.
Задачка для практики
Земля притягивает к себе подброшенный мяч с силой 5 Н. С какой силой этот мяч притягивает к себе Землю?
Решение
Согласно третьему закону Ньютона, сила, с которой Земля притягивает мяч, равна силе, с которой мяч притягивает Землю.
Ответ: мяч притягивает Землю с силой 5 Н.
Поначалу это кажется странным, потому что мы ассоциируем силу с перемещением: мол, если сила такая же, то на то же расстояние подвинется Земля. Формально это так, но у мяча масса намного меньше, чем у Земли. И Земля смещается на такое крошечное расстояние, притягиваясь к мячу, что мы его не видим, в отличие от падения мяча.
Если каждый брошенный мяч смещает Землю на какое-то расстояние, пусть даже крошечное, возникает вопрос — как она еще не слетела с орбиты из-за всех этих смещений. Но тут как в перетягивании каната: если его будут тянуть две равные по силе команды, канат никуда не сдвинется. Так же и с нашей планетой.