Что может быть в черной дыре
10 фактов о черных дырах, которые должен знать каждый
Черные дыры — это, пожалуй, самые загадочные объекты Вселенной. Если, конечно, где-то в глубинах не скрываются вещи, о существовании которых мы не знаем и знать не можем, что вряд ли. Черные дыры — это колоссальная масса и плотность, сжатая в одну точку небольшого радиуса. Физические свойства этих объектов настолько странные, что заставляют ломать голову самых искушенных физиков и астрофизиков. Сабина Хоссфендер, физик-теоретик, сделала подборку десяти фактов о черных дырах, которые должен знать каждый.
Возможно так и выглядит черная дыра
Что такое черная дыра?
Схматичное изображение устройства черной дыры
Определяющим свойством черной дыры является ее горизонт. Это граница, преодолев которую ничто, даже свет, не сможет вернуться обратно. Если отделенная область становится отделенной навсегда, мы говорим о «горизонте событий». Если же она только временно отделена, мы говорим о «видимом горизонте». Но это «временно» также может означать, что область будет отделенной гораздо дольше нынешнего возраста Вселенной. Если горизонт черной дыры является временным, но долгоживущим, разница между первым и вторым расплывается.
Насколько большие черные дыры?
Выглядит впечатляюще, согласны?
Можно представить горизонт черной дыры как сферу, и ее диаметр будет прямо пропорциональным массе черной дыры. Поэтому чем больше массы падает в черную дыру, тем больше становится черная дыра. По сравнению со звездными объектами, впрочем, черные дыры крошечные, потому что масса сжимается в очень малые объемы под действием непреодолимого гравитационного давления. Радиус черной дыры массой с планету Земля, например, всего несколько миллиметров. Это в 10 000 000 000 раз меньше настоящего радиуса Земли.
Радиус черной дыры называется радиусом Шварцшильда в честь Карла Шварцшильда, который впервые вывел черные дыры как решение для общей теории относительности Эйнштейна.
Что происходит на горизонте?
Так называемый эффект «спагетти»
Когда вы пересекаете горизонт, вокруг вас ничего особенного не происходит. Все из-за принципа эквивалентности Эйнштейна, из которого следует, что нельзя найти разницу между ускорением в плоском пространстве и гравитационным полем, создающим кривизну пространства. Тем не менее наблюдатель вдали от черной дыры, который наблюдает за тем, как кто-то другой падает в нее, заметит, что человек будет двигаться все медленнее и медленнее, подходя к горизонту. Будто бы время вблизи горизонта событий движется медленнее, чем вдали от горизонта. Однако пройдет некоторое время, и падающий в дыру наблюдатель пересечет горизонт событий и окажется внутри радиуса Шварцшильда.
То, что вы испытываете на горизонте, зависит от приливных сил гравитационного поля. Приливные силы на горизонте обратно пропорциональны квадрату массы черной дыры. Это означает, что чем больше и массивнее черная дыра, тем меньше силы. И если только черная дыра будет достаточно массивна, вы сможете преодолеть горизонт еще до того, как заметите, что что-то происходит. Эффект этих приливных сил растянет вас: технический термин, который для этого используют физики, называется «спагеттификация».
В первые дни общей теории относительности считалось, что на горизонте существует сингулярность, но это оказалось не так.
Что внутри черной дыры?
Никто не знает наверняка, но точно не книжная полка. Общая теория относительности прогнозирует, что в черной дыре сингулярность, место, в котором приливные силы становятся бесконечно большими, и как только вы преодолеваете горизонт событий, вы уже не можете попасть куда-либо еще, кроме как в сингулярность. Соответственно, ОТО лучше не использовать в этих местах — она попросту не работает. Чтобы сказать, что происходит внутри черной дыры, нам нужна теория квантовой гравитации. Общепризнанно, что эта теория заменит сингулярность чем-то другим.
Как образуются черные дыры?
А вы когда-нибудь задумывались, что произойдет, если рядом с Землей появится Черная Дыра?
Следующим распространенным типом черных дыр являются «сверхмассивные черные дыры», которые можно найти в центрах многих галактик и которые имеют массы примерно в миллиард раз больше, чем черные дыры солнечной массы. Пока доподлинно неизвестно, как именно они формируются. Считается, что когда-то они начинались как черные дыры солнечной массы, которые в густонаселенных галактических центрах поглощали множество других звезд и росли. Тем не менее они, похоже, поглощают вещество быстрее, чем предполагает эта простая идея, и как именно они это делают — все еще остается предметом исследований.
Более спорной идеей стали первичные черные дыры, которые могли быть сформированы практически любой массой в крупных флуктуациях плотности в ранней Вселенной. Хотя это возможно, достаточно трудно найти модель, которая производит их, при этом не создавая чрезмерное их количество.
На нашем канале Яндекс.Дзен выходят эксклюзивные материалы, которых нет на сайте
Наконец, есть очень умозрительная идея о том, что на Большом адронном коллайдере могут образовываться крошечные черные дыры с массами, близкими массе бозона Хиггса. Это работает только в том случае, если у нашей Вселенной имеются дополнительные измерения. Пока не было никаких подтверждений в пользу этой теории.
Откуда мы знаем, что черные дыры существуют?
Черные дыры до сих пор не изучены, и вряд ли будут изучены ближайшие десятки лет
У нас есть много наблюдательных доказательств существования компактных объектов с крупными массами, которые не излучают свет. Эти объекты выдают себя по гравитационному притяжению, например, за счет движения других звезд или газовых облаков вокруг них. Они также создают гравитационное линзирование. Мы знаем, что у этих объектов нет твердой поверхности. Это вытекает из наблюдений, потому что вещество, падая на объект с поверхностью, должно вызывать выброс большего числа частиц, чем вещество, падающее сквозь горизонт.
Почему в прошлом году Хокинг сказал, что черные дыры не существуют?
Так существуют ли черные дыры на самом деле?
Он имел в виду, что черные дыры не имеют вечного горизонта событий, а только временный кажущийся горизонт (см. пункт первый). В строгом смысле только горизонт событий считается черной дырой.
Как черные дыры испускают излучение?
Черные дыры испускают излучение, каким бы безумным это не казалось
Черные дыры испускают излучение за счет квантовых эффектов. Важно отметить, что это квантовые эффекты вещества, а не квантовые эффекты гравитации. Динамическое пространство-время коллапсирующей черной дыры меняет само определение частицы. Подобно течению времени, которое искажается рядом с черной дырой, понятие частиц слишком зависимо от наблюдателя. В частности, когда наблюдатель, падающий в черную дыру, думает, что падает в вакуум, наблюдатель далеко от черной дыры думает, что это не вакуум, а полное частиц пространство. Именно растяжение пространства-времени вызывает этот эффект.
Здесь можно почитать о самой большой Черной Дыре, которую удалось обнаружить на данный момент
Впервые обнаруженное Стивеном Хокингом, испускаемое черной дырой излучение называется «излучением Хокинга». Это излучение имеет температуру, обратно пропорциональную массе черной дыры: чем меньше черная дыра, тем выше температура. У звездных и сверхмассивных черных дыр, которые мы знаем, температура значительно ниже температуры микроволнового фона и поэтому не наблюдается.
Что такое информационный парадокс?
Парадокс потери информации обусловлен излучением Хокинга. Это излучение сугубо термическое, то есть случайно и из определенных свойств имеет только температуру. Излучение само по себе не содержит никакой информации о том, как сформировалась черная дыра. Но когда черная дыра испускает излучение, она теряет массу и сокращается. Все это совершенно не зависит от вещества, которое стало частью черной дыры или из которого она образовалась. Выходит, зная только конечное состояние испарения нельзя сказать, из чего сформировалась черная дыра. Этот процесс «необратим» — и загвоздка в том, что в квантовой механике нет такого процесса.
Выходит, испарение черной дыры несовместимо с квантовой теории, известной нам, и с этим нужно что-то делать. Каким-то образом устранить несогласованность. Большинство физиков считают, что решение состоит в том, что излучение Хокинга должно каким-то образом содержать информацию.
Что предлагает Хокинг для решения информационного парадокса черной дыры?
Идея состоит в том, что у черных дыр должен быть способ хранить информацию, который до сих пор не приняли. Информация хранится на горизонте черной дыры и может вызывать крошечные смещения частиц в излучении Хокинга. В этих крошечных смещения может быть информация о попавшей внутрь материи. Точные детали этого процесса в настоящее время не определены. Ученые ждут более подробного технического документа от Стивена Хокинга, Малькома Перри и Эндрю Строминджера. Говорят, он появится в конце сентября.
На данный момент мы уверены, что черные дыры существуют, знаем, где они находятся, как образуются и чем станут в итоге. Но детали того, куда девается поступающая в них информация, до сих пор представляют одну из самых больших загадок Вселенной.
Давайте обсудим Черные Дыры в нашем Telegram-канале?
Что будет, если попасть в черную дыру?
Сразу огорчу фанатов научной фантастики. На самом деле вы не можете пережить путешествие через черную дыру. И если вы попытаетесь попасть хотя бы в одну из них, как, например, это сделал Мэттью Макконахи в фильме «Интерстеллар», вас разорвет на части задолго до того, как вы узнаете, что находится внутри черной дыры. Однако ученые не просто так наблюдают за этими загадочными космическими объектами последние десятки лет. Это позволило ответить на два вопроса: что такое черная дыра, и что (в теории) находится внутри нее.
Вы вряд ли когда-нибудь захотите отправиться к черной дыре
Что такое черная дыра?
Чтобы в полной мере понять, почему вы не можете просто упасть или запустить свой космический корабль в черную дыру, вы должны сначала понять основные свойства этих космических объектов.
Черные дыры не просто назвали именно так, поскольку они не отражают и не излучают свет. Они видны только тогда, когда поглощают очередную звезду или газовое облако, которые после этого не могут выбраться за границу черной дыры, называемой горизонтом событий. За горизонтом событий находится крошечная точка — сингулярность, где гравитация настолько интенсивна, что она бесконечно изгибает пространство и время. Именно здесь законы физики, какими мы их знаем, нарушаются, а это означает, что все теории о том, что находится внутри черной дыры, являются лишь предположениями.
Этот снимок считается первой фотографией черной дыры M87. Она находится в 55 миллионах световых лет от Земли
Черные дыры кажутся экзотикой большинству из нас, но для ученых, которые на них специализируются, их изучение — обычное дело. Физики выдвигали теории о подобных объектах в течение десятилетий после того, как общая теория относительности Альберта Эйнштейна предсказала существование черных дыр. Однако эта концепция не воспринималась всерьез до 1960-х годов, пока ученые не стали свидетелями поглощения звезд черными дырами. Сегодня черные дыры считаются частью звездной эволюции, и астрономы подозревают, что даже в нашей галактике Млечный Путь их миллионы.
Какие бывают черные дыры
Черные дыры бывают разных видов и могут быть смоделированы с различными уровнями сложности. Например, одни могут вращаться, а другие — содержать электрический заряд. Так что если вы попали в одну из них (ну, допустим, вас не разорвало в клочья до этого), ваша точная судьба может зависеть от того, с какой именно черной дырой вы столкнетесь.
На простейшем уровне существуют три вида черных дыр: звездные черные дыры, сверхмассивные черные дыры и черные дыры средней массы (реликтовые).
Черные дыры с массой звезд образуются, когда очень большие звезды заканчивают свой жизненный цикл и разрушаются. Реликтовые черные дыры все еще мало изучены, и за все время было найдено только несколько таких объектов. Но астрономы считают, что процесс их образования схож с таковым у сверхмассивных черных дыр.
Сверхмассивные черные дыры обитают в центрах большинства галактик и, вероятно, могут увеличиваться до невероятных размеров. Они в десятки миллиардов раз более массивные, чем наше Солнце — за счет поглощения звезд и слияния с другими черными дырами.
После разрушения звезда может стать черной дырой
Звездные черные дыры по размеру могут быть ничтожными по сравнению с их более крупными братьями, но на самом деле они обладают более экстремальными приливными силами, выходящими за пределы их горизонтов событий. Эта разница возникает благодаря особому свойству черных дыр, которое, вероятно, удивит некоторых случайных наблюдателей. Меньшие черные дыры на самом деле имеют более сильное гравитационное поле, чем сверхмассивные. То есть вы скорее заметите изменение в гравитации рядом с небольшой черной дырой.
Что будет, если попасть в черную дыру?
Предположим, вам все же как-то удалось оказаться в космосе рядом со звездной черной дырой. Как ее вообще найти? Единственным намеком на то, что она существует, может быть гравитационное искажение или отражение от звезд, которые находятся рядом.
Но как только вы подлетите ближе к этому странному месту, ваше тело будет растянуто в одном направлении и раздавлено совершенно в другом — это процесс, который ученые называют спагеттификацией. Им обозначается сильное растяжение объектов по вертикали и горизонтали (то есть уподобления их виду спагетти), вызванного большой приливной силой в очень сильном неоднородном гравитационном поле. Говоря простыми словами, гравитация черной дыры будет сжимать ваше тело по горизонтали, а в вертикальном направлении тянуть его, словно ириску. Вы не сможете дышать, говорить и читать наш Telegram-чат тем более.
И это еще самая приличная картинка того, что может быть внутри черной дыры
Если бы вы прыгнули в черную дыру «солдатиком», гравитационная сила на ваших пальцах была бы намного сильнее, чем та сила, которая тянет вас за голову. Каждый кусочек вашего тела будет вытянут в разном направлении. Черная дыра буквально сделает из вас спагетти.
Можно ли выжить после попадания в чёрную дыру?
Итак, попав в звездную черную дыру, вы, вероятно, не будете сильно беспокоиться о «космических» тайнах, которые вы можете открыть на «другой стороне». Вы будете мертвы за сотни километров до того, как узнаете ответ на этот вопрос.
Этот сценарий не полностью основан на теориях и предположениях. Астрономы стали свидетелями такого «приливного разрушения» еще в 2014 году, когда несколько космических телескопов поймали звезду, блуждающую слишком близко к черной дыре. Звезда была растянута и разорвана, в результате чего ее часть упала за горизонт событий, а остальная часть была отброшена в космос.
Если преодолеть горизонт событий, можно достичь гравитационной сингулярности
В отличие от падения в звёздную черную дыру, ваш опыт погружения в сверхмассивную или реликтовую черную дыру будет чуть менее кошмарным. Хотя конечный результат, ужасная смерть, все равно останется единственным сценарием. Однако в теории вы сможете пройти весь путь до горизонта событий и сумеете достичь сингулярности, пока еще живы. Если вы продолжите падение к горизонту событий, вы в конечном итоге увидите, как звездный свет сжимается до крошечной точки позади вас, меняя цвет на синий из-за гравитационного синего смещения. И затем… будет тьма. Ничего. Изнутри горизонта событий никакой свет из внешней Вселенной не сможет попасть к вашему кораблю. Как и вы больше не сможете вернуться обратно.
Так что Мэтью Макконахи очень повезло, что все в фильме было спецэффектами.
18 интересных фактов о черных дырах
В последние годы физики обнаружили много неизвестных фактов о черных дырах. Некоторые открытия заложили основу для будущего, в то время как некоторые все еще поражают воображение исследователей. Вот 18 самых интригующих фактов и теорий черных дыр, которые вы должны знать.
1. Черная дыра была открыта Карлом Шварцшильдом в 1916 году
Карл Шварцшильд | Изображение предоставлено: Викимедиа
Хотя объекты с интенсивными гравитационными полями (из которых свет не может уйти) рассматривались в 18 веке, именно Карл Шварцшильд дал первое современное решение общей теории относительности в 1916 году, характеризующее черную дыру.
В 1958 году Дэвид Финкельштейн опубликовал свою интерпретацию как область пространства, из которой ничто не может вырваться. Американский физик-теоретик Джон Уилер затем связал термин «черная дыра» с объектами с гравитационным коллапсом, предсказанным в начале 20-го века.
Он использовал термин «черная дыра» во время презентации, которую он дал в Институте космических исследований имени Годдарда НАСА в 1967 году.
2. Их нельзя наблюдать непосредственно
Первое фото Черной дыры
Первое в мире изображение черной дыры в ядре эллиптической галактики Мессье 87
Поскольку свет не может избежать массивного гравитационного притяжения черной дыры, вы не можете непосредственно наблюдать его. Тем не менее вы можете увидеть, как его гравитация влияет на близлежащие небесные тела и газ.
Астрономы изучают звезды, чтобы увидеть, вращаются ли они вокруг черной дыры. Когда звезда и черная дыра находятся близко друг к другу, испускается излучение, которое обычно фиксируется космическими телескопами и спутниками.
В 2019 году ученые сняли первое в мире изображение черной дыры, расположенной на расстоянии 500 миллионов триллионов километров. Он был сфотографирован сетью 8 телескопов по всему миру. Эта сверхмассивная черная дыра имеет ширину в 40 миллиардов километров и в 6,5 миллиардов раз больше массы Солнца.
3. Типы черных дыр
Звездные черные дыры: это маленькие черные дыры с массами от 5 до нескольких десятков масс Солнца. Они образованы гравитационным коллапсом большой звезды.
Сверхмассивные черные дыры: самые большие черные дыры с массами от сотен тысяч до миллиардов солнечных масс. Их происхождение остается открытой областью исследования.
Промежуточные черные дыры значительно более массивны, чем звездные черные дыры, но меньше, чем сверхмассивные черные дыры. Наиболее убедительные доказательства таких небесных тел получены от некоторых активных галактических ядер с низкой светимостью.
4. Черная дыра имеет три слоя
Черная дыра имеет три слоя: сингулярность, внешний и внутренний горизонт событий.
Центр черной дыры называется сингулярностью. Это область, где вся масса сжимается до почти нулевого объема. Таким образом, особенность имеет почти бесконечную плотность и порождает огромную гравитационную силу.
5. Черная дыра может быть размером до 0,1 миллиметра
Черная дыра может иметь массу, столь же малую, как луна Земли, и огромную, в десять миллиардов раз превышающую массу Солнца.
Его масса пропорциональна размеру горизонта событий, который измеряется как радиус Шварцшильда. Это радиус, при котором скорость выхода равна скорости света.
Более того, ни одна черная дыра не является бесконечно маленькой. Минимальная масса выше или равна массе Планка, которая составляет около 22 микрограммов.
6. Черные дыры вращаются вокруг оси
Когда звезда падает в очень маленькое пространство, она все еще сохраняет всю эту массу. Чтобы сохранить момент импульса, скорость вращения черной дыры увеличивается.
Поскольку черная дыра вращается, ее масса заставляет вращаться и близлежащее пространство-время. Этот регион называется эргосферой. Это регион (за пределами горизонта событий), где происходят различные интересные эффекты.
Чем меньше горизонт событий, тем быстрее он вращается. Однако существует ограничение скорости, с которой черная дыра может вращаться [не раскрывая свою сингулярность остальной Вселенной].
Самая тяжелая звездная черная дыра (GRS 1915+105) в Млечном Пути вращается 1150 раз в секунду. А в галактике NGC 1365 есть черная дыра, которая вращается со скоростью 84% скорости света. Он достиг предела космической скорости и не может вращаться быстрее.
7. Они производят звук
Наблюдение Чандрой скопления галактик Персей выявило волнообразные особенности, которые кажутся звуковыми волнами | Предоставлено: НАСА.
В 2003 году астрономы, использующие рентгеновскую обсерваторию Чандра НАСА, обнаружили звуковые волны от сверхмассивной черной дыры, расположенной в 250 миллионах световых лет от Земли.
Когда черная дыра втягивает что-то, ее горизонт событий заряжает частицу близко к скорости света, производя звук. Космические телескопы улавливают звуковые волны, которые уже прошли миллионы световых лет от их источника (черной дыры).
Но звук не может распространяться в вакууме, тогда как мы слышим черные дыры? На самом деле, космическое пространство не полный вакуум. Он состоит из нескольких атомов водорода (плюс другие газы) на кубический метр, которые служат средой для очень низкочастотных звуковых волн.
8. Черные дыры искажают пространство и время
Из-за сильного гравитационного воздействия черная дыра может исказить пространство-время в ближнем соседстве. Согласно общей теории относительности, чем ближе вы к черной дыре, тем медленнее проходит время.
Вращающаяся черная дыра порождает странный эффект, называемый перетаскиванием кадра. В этом случае пространство и время, близкие к черной дыре, фактически тянутся вокруг нее. Космос тянется так сильно, что невозможно двигаться в противоположном направлении. Это бесконечный регресс искажений, когда нет возможности двигаться вперед.
В целом, классические законы физики в том виде, в каком мы их знаем, перестают действовать внутри горизонта событий, на самом деле невозможно представить что-либо с бесконечной плотностью и нулевым объемом.
Если бы вы упали в черную дыру, ваше тело растянулось бы в длинную, похожую на спагетти нить.
Эта разница заставит вас почувствовать, что что-то разрывает вас на части, растягивает с головы до ног. Чем ближе ваша голова к черной дыре, тем быстрее она движется. Но нижняя половина вашего тела находится дальше и поэтому не движется к центру так быстро.
Когда приливная сила превышает молекулярные силы, которые связывают вашу плоть, ваше тело разорвется на две части, и эти две части разорвутся на две другие части, и так далее. Вы были бы вытеснены через ткань пространства-времени, как зубная паста через трубку.
10. Черные дыры не засасывают
Все внутри горизонта событий рушится до одномерной сингулярности
Люди обычно думают о черной дыре как о космическом вакууме, который высасывает вещество со всего вокруг. Это распространенное заблуждение. Черные дыры похожи на любое другое небесное тело, но имеют огромное гравитационное влияние на пространство в их окрестностях. Это гравитационное притяжение просто заставляет вещество вокруг них быстро ускоряться.
Даже если вы замените наше Солнце черной дырой равной массы, Земля не упадет. У черной дыры будет то же гравитационное поле, что и у Солнца. Земля и другие планеты будут продолжать вращаться вокруг черной дыры, когда она вращается вокруг Солнца сегодня.
А поскольку Солнце недостаточно велико, оно никогда не превратится в черную дыру.
11. Сверхмассивные черные дыры существуют в центрах большинства галактик
Рентгеновское изображение Стрельца А | Предоставлено: НАСА.
Исследователи полагают, что в ядре большинства галактик, включая Млечный Путь, есть сверхмассивная черная дыра. Эти большие черные дыры фактически удерживают галактики вместе в космосе.
Стрелец А, черная дыра, расположенная в центре Млечного Пути, в 4 миллиона раз массивнее Солнца. На расстоянии всего 26 000 световых лет от Земли Стрелец А является одной из очень немногих черных дыр во Вселенной, где астрономы могут фактически наблюдать поток материи поблизости.
12. Во Вселенной есть бесчисленные черные дыры
Одна наша галактика состоит из более чем 100 миллионов звездных черных дыр, плюс сверхмассивный Стрелец А в ее ядре. Почти 100 миллиардов галактик, каждая из которых имеет ядро сверхмассивного монстра и 100 миллионов черных дыр звездной массы (в то время как другие типы еще изучаются), это все равно что пытаться подсчитать количество песчинок на Земле.
13. Любой объект может быть превращен в черную дыру
Звезды не единственные вещи, которые в конечном итоге превращаются в черные дыры. Теоретически вы можете превратить все в черную дыру.
Например, если вы уменьшите размер Солнца до 6 километров в поперечнике, сохраняя при этом всю его массу, он станет черной дырой. Его плотность достигнет астрономических уровней, которые сделают гравитационную силу невероятно сильной.
Та же теория может быть применена к Земле и любому другому объекту, такому как мобильный телефон, автомобиль или даже ваше собственное тело. Однако мы не знаем такой техники, которая может уменьшить объем до бесконечно малой точки, сохраняя при этом 100 процентов массы объекта.
14. Со временем они испаряются
В 1974 году Стивен Хокинг предположил, что черные дыры излучают небольшое количество фотонных частиц, что заставляет их постепенно терять массу и исчезать со временем. Этот процесс испарения называется «излучение Хокинга».
Излучение черного тела происходит за счет квантовых эффектов вблизи горизонта событий. Поскольку процесс невероятно медленный, только самые маленькие черные дыры успели бы полностью испариться в течение 13,8 миллиардов лет (эпоха Вселенной).
15. Сверхмассивные черные дыры определяют количество звезд в галактике
Существует сбалансированная связь между деятельностью черных дыр и количеством звезд. Слишком много звезд сделало бы галактику слишком горячей, чтобы жизнь могла эволюционировать, тогда как недостаточное количество звезд может помешать формированию жизни.
Новое исследование показывает, как сверхмассивные черные дыры регулируют звездообразование в массивных галактиках. История звездообразования в близлежащих массивных галактиках зависит от массы центральной сверхмассивной черной дыры.
16. Они являются гигантским источником энергии
Черные дыры создают энергию более эффективно, чем маленькие звезды, такие как Солнце.
Поскольку гравитационное влияние очень сильно вблизи горизонта событий, вещество, ближайшее к краю горизонта событий, вращается намного быстрее, чем вещество на внешнем горизонте событий (внешний слой черной дыры).
Вещество движется так быстро, что нагревается до миллионов градусов по Цельсию, превращая массу в энергию в форме излучения (известного как излучение черного тела).
Исследователи даже исследовали, возможно ли физически использовать этот вид энергии для строительства электростанций или космических кораблей.
17. Черные дыры могут создать новые вселенные
Это может показаться странным, но некоторые физики считают, что черные дыры могут открыть новые миры. Наша вселенная, возможно, родилась внутри черной дыры, и черные дыры в нашей вселенной могут порождать новые собственные вселенные.
Чтобы понять, как это работает, представьте себе нашу нынешнюю Вселенную: все, на что вы смотрите, стало возможным благодаря ряду событий, произошедших в прошлом, и определенным условиям, которые объединились для создания жизни.
Если вы внесете изменения в эти условия / события хотя бы на небольшое количество, все будет по-другому. Теоретически, сингулярность может изменить эти условия, создав новую, слегка измененную вселенную.
18. Информация может спастись от черной дыры
Что происходит с информацией о частицах, проходящих через черные дыры? Физики пытались ответить на этот вопрос десятилетиями.
Законы квантовой физики утверждают, что информация не может быть уничтожена окончательно. Однако, если информация не может вырваться из черной дыры, то, по сути, она была уничтожена. Это, кажется, нарушает правила квантовой механики.
По словам Стивена Хокинга, информация никогда не попадает в черную дыру.
Когда объект входит в черную дыру, его информация захватывается и сохраняется на горизонте событий. Хотя объект может быть разрушен внутри черной дыры, информация останется размытой на горизонте событий.
Информация может сбежать вместе с излучением Хокинга, но в бесполезной и хаотичной форме. На самом деле, это может произойти в другой вселенной. Хокинг предположил, что черные дыры не являются вечными тюрьмами, которые они когда-то считали.