Что может нарушить нормальный процесс гаметогенеза

Причины генетического бесплодия

Что может нарушить нормальный процесс гаметогенеза. Смотреть фото Что может нарушить нормальный процесс гаметогенеза. Смотреть картинку Что может нарушить нормальный процесс гаметогенеза. Картинка про Что может нарушить нормальный процесс гаметогенеза. Фото Что может нарушить нормальный процесс гаметогенеза

Согласно оценкам экспертов Всемирной организации здравоохранения, около 50 миллионов супружеских пар во всем мире (что составляет примерно 7% от их общего количества) не могут завести ребенка из-за мужского и/или женского бесплодия. На данный момент считается, что в 50% случаев причиной являются генетические нарушения.

Современная наука достигла больших успехов в изучении причин генетического бесплодия, особенно с появлением метода секвенирования нового поколения (next generation sequencing, NGS), позволяющего быстро и с минимальными трудозатратами «читать» последовательность ДНК. Тем не менее, этот вопрос остается сложным, и в имеющихся на данный момент знаниях остается еще немало пробелов.

Существует множество генов, влияющих на мужскую и женскую репродуктивную функцию. Например, в одних только яичках мужчины экспрессируется около 2300 генов. Наука продолжает развиваться, и список доступных анализов ежегодно пополняется новыми генетическими тестами.

Генетические изменения, способные приводить к невозможности зачатия и вынашивания беременности, бывают разными:

Хромосомные аномалии

Хромосомные нарушения представляют большой интерес в аспекте вопросов бесплодия, так как они ответственны более чем за половину всех выкидышей в первом триместре беременности. В большинстве случаев хромосомные аномалии не наследуются – они возникают случайно в половых клетках или клетках эмбриона. При этом происходят выкидыш, мертворождение, либо ребенок рождается с серьезными пороками развития.

В каждой клетке человеческого тела содержится 46 хромосом. В яйцеклетке и сперматозоиде их по 23 – соответственно, ребенок получает половину набора от матери и половину от отца. Состояние, при котором меняется количество хромосом, называется анеуплоидией. Некоторые примеры, связанные с бесплодием:

Помимо изменений количества хромосом, встречаются нарушения их структуры – аберрации.

Их основные разновидности:

Моногенные заболевания

Моногенные заболевания характеризуются возникновением мутации в одном гене, отвечающем за синтез определенного белка. Эти патологии передаются от родителей детям, причем типы наследования бывают разными.

В настоящее время известно много моногенных мутаций, связанных с бесплодием. Их список постоянно пополняется.

Мультифакториальные заболевания

Мультифакториальные, или полигенные заболевания имеют сложный патогенез. В их развитии принимают участие генетические нарушения (как наследственные, так и приобретенные), образ жизни, воздействия внешней среды. На «неправильные» гены накладываются такие факторы, как особенности питания, уровень физической активности, экологическая обстановка, вредные привычки, стрессы, прием различных лекарственных препаратов и пр.

Типичные примеры мультифакториальных заболеваний – сахарный диабет и сердечно-сосудистые патологии. Среди причин женского бесплодия важное значение имеют следующие заболевания:

Эпигенетические изменения

Эпигенетические изменения возникают в результате различных процессов, когда последовательность ДНК остается нормальной, но меняется активность генов. Например, это происходит в результате метилирования – прикрепления особых метильных групп к определенным участкам ДНК. Некоторые научные исследования показали, что эпигенетические механизмы играют роль в развитии бесплодия.

Что может нарушить нормальный процесс гаметогенеза. Смотреть фото Что может нарушить нормальный процесс гаметогенеза. Смотреть картинку Что может нарушить нормальный процесс гаметогенеза. Картинка про Что может нарушить нормальный процесс гаметогенеза. Фото Что может нарушить нормальный процесс гаметогенеза

В каких случаях рекомендуется пройти генетическое тестирование?

Обычно врачи направляют пациентов на консультации к клиническим генетикам в следующих случаях:

Генетик собирает семейный анамнез, анализирует родословную и при необходимости назначает анализы. Для диагностики причин генетического бесплодия применяют разные методы: цитогенетический анализ, полимеразную цепную реакцию (ПЦР), флуоресцентную гибридизацию in situ (FISH), микрочипирование, секвенирование нового поколения.

Чтобы выявить распространенные аномалии у плода, на 16–20-й неделях беременности проводят тройной тест. По показаниям выполняют различные инвазивные исследования. Более современный и точный метод диагностики – неинвазивное пренатальное тестирование (НИПТ), во время которого изучают ДНК плода в крови матери.

Если у одного или обоих партнеров из пары, страдающей бесплодием, выявляют генетические нарушения, в ряде случаев могут помочь различные методы лечения или вспомогательные репродуктивные технологии (ЭКО, ИКСИ). Но иногда проблему не удается решить. В таких ситуациях врач предложит рассмотреть возможность использования донорских яйцеклеток или сперматозоидов.

С возрастом репродуктивные возможности уменьшаются, а в клетках накапливаются мутации, которые могут помешать наступлению и вынашиванию беременности, вызвать тяжелые патологии у ребенка. Поэтому женщинам, которые планируют забеременеть после 35 лет, стоит подумать о возможности сохранить свои яйцеклетки в криобанке. В дальнейшем ими можно воспользоваться в любое время – это будет своего рода «страховка» репродуктивной функции.

Если вы решили сохранить собственные половые клетки или воспользоваться донорскими, важно подобрать надежный банк половых клеток. На данный момент Репробанк является одним из крупнейших на территории России и СНГ. Наше криохранилище оснащено новейшим оборудованием, а в каталоге представлено большое количество доноров, среди которых любая пара наверняка сможет подобрать подходящего.

Что может нарушить нормальный процесс гаметогенеза. Смотреть фото Что может нарушить нормальный процесс гаметогенеза. Смотреть картинку Что может нарушить нормальный процесс гаметогенеза. Картинка про Что может нарушить нормальный процесс гаметогенеза. Фото Что может нарушить нормальный процесс гаметогенеза

Зиновьева Юлия Михайловна

Ведёт генетическое обследование доноров Репробанка, осуществляет подбор доноров для пар, имеющих ранее рождённых детей с установленной генетической патологией.

Источник

Лечение нарушений сперматогенеза

Врачи «АльтраВиты» успешно занимаются решением проблем, связанных непосредственно с нарушением репродуктивной функции мужчин, страдающих патологиями спермообразования. В арсенале андрологов клиники различные современные методы диагностики и устранения бесплодия. Чем раньше пациенты обращаются за медицинской помощью, тем результативнее будет лечение.

Что может нарушить нормальный процесс гаметогенеза. Смотреть фото Что может нарушить нормальный процесс гаметогенеза. Смотреть картинку Что может нарушить нормальный процесс гаметогенеза. Картинка про Что может нарушить нормальный процесс гаметогенеза. Фото Что может нарушить нормальный процесс гаметогенеза

Процесс формирования, созревания и развития сперматозоидов (мужских гамет) называется сперматогенезом. Происходит он при гормональной регуляции с участием веществ, вырабатывающихся аденогипофизом: фоллитропина (ФСГ) и лютеотропина (ЛГ). Данные гормоны стимулируют выработку андрогена тестостерона, вместе с которым влияют на сперматогенез.

Выработка мужских гамет начинается в пубертате (с 12 лет), продолжается до старости. Клетки вырабатываются в семенных канальцах на протяжении примерно 75 дней — продолжительность одного цикла сперматогенеза.

Синтез сперматозоидов чувствителен к воздействию эндогенных и экзогенных факторов. От негативного воздействия ухудшаются характеристики семенной жидкости, снижается качество, отклоняются от нормы количественные показатели. Последствием является снижение фертильности и бесплодие.

Наиболее распространенные виды патологий спермы и гамет:

При отклонениях в спермограмме для уточнения диагноза врач назначает дополнительное обследование:

Лечение

Если лечение неэффективно, то подбирается подходящий вариант репродуктивных технологий, который даст максимальный результат. Наиболее эффективно в устранении бесплодия экстракорпоральное оплодотворение. При снижении численности спермиев фертильность повышают методом контролируемой стимуляции женских половых желез с проведением ИКСИ. Процедура ПИКСИ позволяет отобрать здоровый активный сперматозоид без дефектов для оплодотворения яйцеклетки.

В тяжелых случаях при отсутствии фертильного эякулята рекомендуется использовать донорский биоматериал в программе ЭКО.

Недостаточная жизнеспособность и низкое количество мужских гамет не исключает зачатия. Поэтому, если партнерша не может забеременеть вследствие патологических изменений сперматогенеза партнера — это не приговор. Пара может обратиться в клинику «АльтраВита», сделать диагностику на инновационном оборудовании, получить профессиональную консультацию репродуктолога, андролога, пройти успешное лечение. Главное, не пропустить фертильный возраст и воспользоваться помощью специалистов своевременно.

Источник

Что может нарушить нормальный процесс гаметогенеза

Подробное решение параграф § 33 по биологии для учащихся 10 класса, авторов Каменский А.А., Криксунов Е.А., Пасечник В.В. 2014

1. В каких железах развиваются гаметы?

Ответ. Формирование половых клеток (гаметогенез) происходит в половых железах. Развитие женских гамет (яйцеклеток) происходит в яичниках и носит название овогенеза (лат. ovum яйцо + genesis происхождение). Мужские гаметы (сперматозоиды) формируются в семенниках в процессе сперматогенеза.

2. Каков набор хромосом в гаметах?

Ответ. Гаметы образуются в результате мейоза. Каждая гамета имеет гаплоидный (одинарный) набор генетического материала в виде хроматид.

Вопросы после § 33

1. Где формируются половые клетки у животных?

Ответ. Процесс образования половых клеток называют гаметогенезом (от гамета и греч. генезис — рождение). У животных гаметы образуются в половых органах: в семенниках у самцов и яичниках у самок.

2. От чего, как правило, зависит размер яйцеклеток?

Ответ. Размер яйцеклеток зависит от наличия или отсутствия в них запаса питательных веществ. Яйцеклетки, содержащие много желтка (например, у птиц), имеют размеры от нескольких миллиметров до 15 см. Яйцеклетки, почти не содержащие запаса питательных веществ, значительно мельче. В свою очередь, количество желтка определяется тем, развивается ли оплодотворенная яйцеклетка самостоятельно, либо заботу о зародыше берет на себя материнский организм. В последнем случае какой-либо значительный запас питания не нужен (у плацентарных млекопитающих размер яйцеклеток составляет всего 0,1-0,3 мм).

3. На какие фазы подразделяется гаметогенез?

Ответ. Сперматогенез подразделяется на фазы: 1)размножения; 2)роста; 3)созревания и 4)формирования. В оогенезе различают фазы: 1)размножения; 2)роста и 3) созревания.

4. Каковы особенности строения сперматозоида?

Ответ. Обычно сперматозоиды – очень мелкие клетки. Например, длина головки сперматозоида человека всего 4,5–5,5 мкм. Он состоит из головки, которая почти полностью занята ядром с гаплоидным набором хромосом; шейки, в которой находится структура, сходная по строению с центриолями, и митохондрии; хвоста, образованного микротрубочками и обеспечивающего подвижность всего сперматозоида. В передней части головки сперматозоида находится видоизменённый комплекс Гольджи, называемый акросомой. В ней запасается особый фермент, который необходим для растворения оболочки яйцеклетки, без чего невозможно оплодотворение.

5. Когда и где заканчивается митоз при созревании яйцеклетки?

Ответ. Первая фаза гаметогенеза называется фазой размножения. Во время этой фазы первичные половые клетки многократно делятся митозом, сохраняя диплоидный набор хромосом в ядрах. Таким образом, увеличивается количество будущих гамет, образуются незрелые половые клетки (клетки-предшественницы).Завершается в фазу роста.

6. Что такое направительные тельца? В чём смысл их образования?

Ответ. При созревании яйцеклеток мейотическое деление протекает следующим образом: цитоплазма распределяется между дочерними клетками неравномерно. При этом только одна из образовавшихся четырёх клеток становится жизнеспособной яйцеклеткой, а три остальные дочерние клетки превращаются в так называемые направительные тельца с минимальным содержанием питательных веществ, которые затем разрушаются. Смысл образования направительных телец заключается в уменьшении количества зрелых, способных к оплодотворению яйцеклеток. И в результате зрелая яйцеклетка имеет достаточное количество питательных веществ.

7. Что может нарушить нормальный процесс гаметогенеза?

Ответ. В момент деления половые клетки особенно чувствительны к действию различных вредных факторов: радиации, химических веществ (алкоголь, наркотики, яды и т. п.). Доза радиации, не вызывающая заметных изменений в организме, может привести к значительным повреждениям гамет. Особенно опасны неблагоприятные воздействия для яйцеклеток. Ведь эти клетки начинают формироваться ещё в эмбрионе, и их запас не может пополняться в течение жизни. Поэтому с каждым повреждающим воздействием на яйцеклетки увеличивается вероятность появления генетических отклонений у потомства.

Источник

Нарушение сперматогенеза и исходы вспомогательных репродуктивных технологий при различных формах гипогонадизма

С.Х. Аль-Шукри, С.Ю. Боровец, В.А.Торопов

Кафедра урологии Первого Санкт-Петербургского государственного медицинского университета им. акад. И.П. Павлова

В статье представлен обзор отечественной и зарубежной литературы о гормональной регуляции сперматогенеза, эндокринных нарушениях, приводящих к гипогонадизму, результативности вспомогательных репродуктивных технологий при синдромах Клайнфельтера, Каллмана и синдроме тестикулярной феминизации (синдроме резистентности к андрогенам).

Ключевые слова: гипогонадизм; синдром Клайнфельтера; синдром Каллмана; синдром тестикулярной феминизации.

Введение Бесплодие диагностируют у 10–15% супружеских пар, примерно в половине наблюдений оно обусловлено нарушениями репродуктивной функции мужчины. Распространенность азооспермии в популяции всех мужчин составляет 1%, среди бесплодных мужчин — 10–15%. Гипогонадизм (гипери гипогонадотропный) нередко сопровождается необструктивной азооспермией (НОА).

Гормональная регуляция сперматогенеза

Процесс сперматогенеза инициируют и регулируют гормоны гипоталамо-гипофизарно-гонадной оси. Гонадотропин-рилизинг-гормон (ГНРГ) выделяется гипоталамусом в пульсирующем ритме и воздействует на гипофиз, стимулируя секрецию лютеинизирующего гормона (ЛГ) и фолликулостимулирующего гормона (ФСГ). При этом ФСГ преимущественно воздействует на клетки Сертоли, а ЛГ — на клетки Лейдига тканей яичка. На зародышевых клетках рецепторы к тестостерону не обнаруживаются, и андрогены, секретируемые клетками Лейдига, действуют через рецепторы клеток Сертоли; тестостерон, образующийся в клетках Лейдига, ингибин и эстрогены, получившиеся в результате ароматизации тестостерона, действуют в клетках Сертоли и в свою очередь воздействуют на гипоталамус, регулируют секрецию гонадотропинов по механизму отрицательной обратной связи [1]. У человека развитие сперматогоний, мейоз и процесс отделения сперматид от клеток Сертоли (спермиация) главным образом контролируют ФСГ и тестостерон [2]. Популяция клеток Сертоли формируется к раннему постнатальному периоду и является важнейшей составляющей сперматогенеза у взрослых мужчин. Для процесса спермиации необходимо наличие определенной популяции клеток Сертоли, которая формируется к пубертатному возрасту (11–13 лет) [3].

В процессе сперматогенеза клетки Сертоли проходят стадию пролиферации, и многочисленными исследованиями in vivo и in vitro показано, что ФСГ является основным регулятором этого процесса. Известно, что популяция клеток Сертоли у взрослого мужчины неизменна и не зависит от колебаний уровня гормонов в постпубертатном периоде. Тем не менее при изучении мужчин с гипогонадотропным гипогонадизмом выяснили, что клетки Сертоли сохраняют пролиферативную активность и могут приобретать черты, свойственные незрелым клеткам Сертоли [4]. Численность зародышевых клеток определяется балансом между их апоптозом и пролиферацией. В препубертатном периоде происходит гибель 70% сперматогоний, которая необходима для формирования правильного соотношения между клетками Сертоли и зародышевыми клетками [5]. Ранее предполагали, что количество зародышевых клеток контролируют только клетки Сертоли, однако при пересадке зародышевых клеток крысы в яичко бесплодного самца мыши оказалось, что зародышевые клетки в отсутствие клеток Сертоли самостоятельно определяют время и этапность протекания сперматогенеза [5].

Клетки Лейдига вырабатывают тестостерон под действием ЛГ, последний оказывает биологическое действие на сперматогенез через андрогеновые рецепторы, расположенные на клетках Сертоли [6]. ФСГ оказывает свое действие через G-ассоциированные рецепторы к ФСГ, находящиеся на мембране клеток Сертоли. Взаимодействие ФСГ с рецептором клетки Сертоли активирует циклический аденозинмонофосфат, протеинкиназу, МАР-киназу, кальций, фосфатидилинозитол‑3киназу, фосфорилазу А2 [7] и другие сигнальные пути. Под влиянием ФСГ в клетках Сертоли повышается активность ароматазы, способствующей конверсии андрогенов в эстрогены, а также вырабатываются ингибин и активин. Ингибин является важной субстанцией для обеспечения процессов обратной связи в регуляции секреции ФСГ.

При изолированном поражении клеток Сертоли, возникающем после радиоили химиотерапии, дефицит ингибина сопровождается значительным повышением ФСГ, в то время как уровень ЛГ остается в пределах нормальных значений. ФСГ регулирует также количество андрогеновых рецепторов и андроген-связывающего глобулина, что крайне важно для регуляции сперматогенеза [8]. ФСГ необходим для поддержания высокой локальной концентрации андрогенов в семенных канальцах [9]. Блокада рецепторов к ФСГ у взрослых макак-резусов приводит к бесплодию. Бионейтрализация циркулирующего человеческого ФСГ снижает качество и количество сперматозоидов [10].

В течение всего периода сперматогенеза гаметы получают питание от клеток Сертоли, которые располагаются в пространстве от базальной мембраны до просвета семенного канальца. Клетки Сертоли секретируют необходимые электролиты и жидкость под действием ФСГ и тестостерона. Во взрослом состоянии ФСГ необходим для прогрессии прелептотеновых сперматоцитов и частично — пахитеновых. Острый дефицит ФСГ приводит к снижению количества прелептотеновых сперматоцитов даже в присутствии нормального уровня андрогенов. ФСГ принимает участие в спермиогенезе, вероятно регулируя степень адгезии между клетками Сертоли и сперматидами [11]. Показано, что после нейтрализации ФСГ прекращается образование сперматозоидов, что свидетельствует о роли ФСГ в спермиогенезе [12].

Тестостерон частично обеспечивает созревание сперматоцитов, играет важную роль в превращении округлых сперматид в удлиняющиеся. При культивации семенных канальцев человека в средах, лишенных ФСГ, отмечено существенное усиление фрагментации ДНК в первичных сперматоцитах и удлиняющихся/удлиненных сперматидах, что связывают с активацией процессов апоптоза [13]. На моделях животных доказано, что дефицит ФСГ запускает процесс апоптоза сперматогоний [14].

Известно, что ФСГ и тестостерон действуют как антиапоптотические факторы, регулируя каскад реакций, приводящий к активации генов апоптоза, в значительно меньшей степени эти гормоны регулируют процессы пролиферации. ФСГ способствует устранению апоптотических изменений в структуре сперматозоидов, вызванных бактериальной флорой, и повышает оплодотворяющую способность сперматозоидов [15].

Эндокринные нарушения при синдроме гипогонадизма

Синдром гипогонадизма у мужчин — это клинический и лабораторный синдром, обусловленный снижением секреции тестостерона клетками Лейдига. В зависимости от уровня поражения гипоталамо-гипофизарно-гонадной системы выделяют две основные формы гипогонадизма: гипергонадотропный (первичный) и гипогонадотропный (вторичный). Гипергонадотропный гипогонадизм у мужчин обусловлен снижением или полным отсутствием андрогенсекретирующей функции яичек вследствие их поражения патологическим процессом; гипогонадотропный гипогонадизм — снижением или полным выпадением гонадотропной стимуляции яичек. Обе формы гипогонадизма могут быть как врожденными, так и приобретенными, возникать до и после периода полового созревания. Основными причинами врожденного препубертатного первичного гипогонадизма являются хромосомные аномалии — синдром Клайнфельтера (СК), анорхизм, запоздалое лечение крипторхизма, а приобретенного — травмы, облучение или химиотерапия по поводу рака, а также другие токсические поражения яичек. Вторичный гипогонадизм является врожденным при синдроме Каллмана (аносмия в сочетании с отсутствием продукции гонадотропинов), а приобретенным — в случаях опухолей гипофиза и гипоталамуса [16, 17].

Гипогонадизм развивается при СК, анорхизме, ожирении и при других патологических состояниях, у 3–5 % мальчиков диагностируют анорхизм. Большую распространенность имеет возрастной гипогонадизм, который встречается у 10–15 % мужчин в возрасте от 30 до 40 лет, у 15–25 % мужчин — от 40 до 50 лет и более чем у 30–40 % мужчин — в возрасте старше 50 лет. При ожирении распространенность гипогонадизма также очень велика; его наблюдают при ожирении 1-й степени в 25–30 %, а при ожирении 3-й степени — в 90–100 % случаев.

Диагностика синдрома гипогонадизма, как правило, затруднений не вызывает. При сборе анамнеза оценивают состояние половых органов при рождении, наличие травм и/или операций на органах мошонки. Кроме того, уточняют динамику полового влечения, наличие адекватных и спонтанных эрекций, изучают длительность полового акта и наличие/отсутствие оргазма и семяизвержения. Производят осмотр скелетной мускулатуры, грудных желез, кожных покровов, оволосения, наружных половых органов с измерением объема яичек. При опросе пациента удобно использовать специально разработанные сексологические опросники основных симптомов гипогонадизма, которые обладают хорошей чувствительностью, но, к сожалению, весьма низкой специфичностью. Поэтому в любом случае необходима лабораторная диагностика гипогонадизма: определение в плазме крови содержания общего тестостерона (в норме — более 12 нмоль/л) и уровня гонадотропинов (ЛГ и ФСГ). Содержание этих гормонов исследуют в пробах крови, полученных в утренние часы, натощак. Концентрация общего тестостерона менее 8 нмоль/л, сниженный или повышенный уровень гонадотропинов в сочетании с выраженной клинической симптоматикой позволяют диагностировать гипогонадотропный или гипергонадотропный гипогонадизм. Когда клиническая симптоматика гипогонадизма выраженная, а уровень общего тестостерона находится в пределах 8–12 нмоль/л, необходимо определение глобулина, связывающего половые гормоны, с дальнейшим расчетом уровня свободного тестостерона (в норме — более 250 моль/л).

Анализ эякулята также дает косвенное, но достаточно полное представление об андрогенном статусе и состоянии секреции гонадотропных гормонов, что в большинстве случаев необходимо учитывать при назначении терапии, стимулирующей сперматогенез. При проведении дифференциальной диагностики причин гипогонадизма (травмы или опухоли яичка, опухоли гипоталамуса и гипофиза) выполняют ультразвуковое исследование органов мошонки, магнитно-резонансную томографию головного мозга — области турецкого седла. Важна диагностика осложнений гипогонадизма, в частности эректильной дисфункции, которая не только значительно снижает качество жизни мужчины, но и при наличии метаболических факторов риска является предиктором серьезных болезней сердечнососудистой системы [16]. Помимо нормального содержания в плазме крови ФСГ, ЛГ и тестостерона особое значение имеет чувствительность рецепторов к тестостерону, влияющая на его концентрацию в плазме крови.

Частными проявлениями первичного и вторичного гипогонадизма являются синдром резистентности к андрогенам, синдром Клайнфельтера, синдром Каллмана и др.

Эндокринные нарушения при синдроме резистентности к андрогенам

Недостаточность тестостерона в плазме крови или нарушение чувствительности органов-мишеней к тестостерону возникает вследствие мутации генов, которые контролируют синтез тестостерона или формирование рецепторов тестостерона на органах-мишенях. При этом развивается синдром резистентности к андрогенам, который также называют синдромом нечувствительности к андрогенам или синдромом тестикулярной феминизации (СТФ). В литературе это состояние также описано как синдром Морриса (полная форма), синдром Рейфенштейна (неполная форма тестикулярной феминизации вследствие нарушения развития вторичных мужских половых признаков). Ген рецептора андрогена (AR) локализован на Х-хромосоме (Хq11-12). Известно уже больше 400 различных мутаций гена AR. Частота заболевания составляет 1 :50000 новорожденных мальчиков. Отмечают, что мутации этого гена приводят к нарушению развития внутренних и наружных мужских половых органов. Отмечают гипоспадию и феминизацию при мужском кариотипе и наличие яичек в мошонке; инфертильность обусловлена олигоили азооспермией [18–20].

Синдром Морриса (СМ) является частым примером недостаточной дифференцировки пола, при котором при мужском кариотипе (46, ХY) у больного развивается женский фенотип. Под воздействием соответствующих генов, локализованных на Y-хромосоме, главным образом гена SRY, запускается каскад реакций, обеспечивающих дифференцировку индифферентных гонад в ткани яичек. В извитых семенных канальцах яичек соматические клетки Сертоли продуцируют антимюллеровский гормон (АМГ), а клетки Лейдига, располагающиеся между семенными канальцами, — андрогены (тестостерон). При отсутствии ответных реакций органов-мишеней на андрогены (из-за недостаточности тестостерона или нечувствительности клеток-мишеней к нему) нарушается развитие внутренних и наружных половых органов, происходит формирование фенотипа по мужскому типу, а дальнейшее формирование органов половой системы протекает по женскому типу. Пациенты с синдромом Морриса имеют женский фенотип с хорошо развитыми молочными железами, отсутствием вторичного лобкового и подмышечного оволосения: наружные гениталии развиты по женскому типу, гипопластичны, клиторомегалия, слепо заканчивающееся влагалище. Синтезируемый клетками Сертоли АМГ приводит к резорбции мюллеровых протоков, в связи с чем внутренние половые органы представлены яичками, расположенными в брюшной полости или в паховых грыжевых мешках, яички в процессе развития организма часто опускаются в большие половые губы.

Синдром Рейфенштейна характеризуется неполной тестикулярной феминизацией при кариотипе 46, ХY с частичной маскулинизацией, гипоспадией, гипогонадизмом, гинекомастией и азооспермией. При этом в биоптатах яичка выявляют единичные дифференцирующиеся половые клетки, гиперплазию клеток Лейдига и гиалиноз семенных канальцев. Таким пациентам важно установить точный диагноз в раннем возрасте и выбрать гражданский (паспортный) пол [18–20].

Эндокринные нарушения и результативность вспомогательных репродуктивных технологий при синдроме Клайнфельтера

Синдром Клайнфельтера диагностируют у 1 из 500 мальчиков [16, 17]. Практически у всех пациентов с данным синдромом имеет место бесплодие, поэтому всем пациентам с выраженными нарушениями сперматогенеза необходимо определять кариотип. Практически у всех больных классической формой СК при кариотипе 47, XXY выявляют азооспермию. Сперматозоиды в эякуляте обнаруживают крайне редко, в литературе описаны исключительно редкие случаи спонтанного отцовства [21].

В биоптатах яичка при СК отмечают значительное снижение общего количества половых клеток — выявляют отдельные сперматогонии в единичных семенных канальцах. К пубертатному периоду наблюдают усиленную пролиферацию интерстициальных клеток, дегенерацию и гиалинизацию семенных канальцев [21].

Ранее для постановки диагноза использовали простой и доступный метод — выявление телец Барра в соскобе эпителия щеки. Однако, поскольку этот метод часто дает ошибочные результаты и не заменяет обязательного в таких случаях хромосомного анализа, в настоящее время он имеет лишь историческое значение. Только анализ, проведенный на лимфоцитах, может доказать наличие СК по присутствию дополнительной Y-хромосомы. Иногда при хромосомном анализе обнаруживают неизмененный мужской кариотип, однако при проведении кариотипирования на кожных фибробластах или в биоптатах яичка отмечают мозаицизм (кариотип 47, XXY/46, XY).

Более чем у 80% больных с классическим кариотипом СК (47, XXY) отмечают первичный гипогонадизм, т. е. снижение секреции тестостерона при одновременном значительном повышении уровня гонадотропных гормонов в плазме крови — ЛГ и ФСГ. Нередко повышение содержания гонадотропинов в плазме крови при нормальной концентрации общего тестостерона является первым лабораторным проявлением СК.

Уровень эстрадиола при СК в среднем выше, чем у здоровых мужчин, что, скорее всего, объясняют избыточным количеством жировой ткани и повышением в ней активности фермента ароматазы, под действием которой усиливается процесс трансформации тестостерона в эстрадиол. Одновременное повышение в плазме крови концентрации глобулина, связывающего половые гормоны (ГСПГ), приводит к еще более выраженному снижению концентрации свободного тестостерона. У пациентов с СК во всех случаях наблюдают значительное повышение уровня ФСГ, что является наиболее точным гормональным маркером данной патологии [21].

Ранее считалось, что пациенты с немозаичной формой СК бесплодны и неспособны к зачатию. В настоящее время в связи с внедрением методов экстракорпорального оплодотворения и появлением данных о возможности присутствия зародышевых клеток в тканях яичка у больных с СК, данная концепция пересмотрена [21, 22]. Разработана и внедрена методика искусственного оплодотворения с использованием сперматозоидов, полученных при биопсии яичка, которые в отдельных случаях обнаруживают у больных с азооспермией. Для исключения наследования СК необходимо исследовать сперматозоиды, полученные при биопсии яичка от больного СК на наличие гаплоидного набора хромосом [21].

J. Schiff et al. описали результаты 54 процедур получения сперматозоидов из семенных канальцев тестикулярной ткани у 42 мужчин с СК методом микрохирургической экстракции (microdissection testicular sperm extraction, микроТЕSЕ) при 25-кратном интраоперационном оптическом увеличении [23]. Средний возраст пациентов на момент биопсии составил 32,8 года. Средний возраст женщин — 33,2 года. Средний объем яичек у мужчин с СК — 2,5 см3 с каждой стороны. Уровни ФСГ и тестостерона в плазме крови составляли в среднем 33,2 МЕ/л (в норме — 1,0–8,0 МЕ/л) и 9,8 нмоль/л (в норме — 8,2–27,2 нмоль/л). Пациентам с уровнем тестостерона в плазме крови

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *