Что может сделать волна
masterok
Мастерок.жж.рф
Хочу все знать
Вроде бы банальный вопрос, но есть некоторые интересные нюансы.
Волны возникают по разным причинам: из-за ветра, прохождения судна, падения в воду какого-либо предмета, притяжения Луны, землетрясения, извержения подводного вулкана или схода оползня. Но если от проходящего судна или падения предмета они вызываются вытеснением жидкости, притяжение Луны и Солнца способствует появлению приливных волн, а землетрясение может вызвать цунами, с ветром сложнее.
Вот как это происходит.
Здесь дело в движении воздуха — в нем существуют беспорядочные вихри, маленькие у поверхности и большие вдалеке. При прохождении их над водоемом давление уменьшается, и на его поверхности образуется выпуклость. Ветер начинает давить сильнее на ее наветренный склон, что приводит к разнице давлений, а из-за нее движение воздуха начинает «закачивать» энергию в волну. При этом скорость волны пропорциональна ее длине, то есть чем больше длина, тем больше скорость. Связаны между собой высота волны и ее длина. Поэтому, когда ветер разгоняет волну, скорость ее увеличивается, следовательно, увеличивается длина и высота. Правда, чем ближе скорость волны к скорости ветра, тем меньше энергии может ветер отдать волне. Если же их скорости равны, ветер вовсе не передает волне энергию.
Теперь разберемся, как вообще образуются волны. За их формирование отвечают два физических механизма: сила тяжести и сила поверхностного натяжения. Когда часть воды поднимается, сила тяжести старается вернуть ее обратно, а когда опускается, вытесняет соседние частицы, которые тоже пытаются вернуться обратно. Силе поверхностного натяжения все равно, в какую сторону прогнута поверхность жидкости, она действует в любом случае. В результате частицы воды колеблются подобно маятнику. От них «заражаются» соседние участки, и возникает поверхностная бегущая волна.
Энергия волн хорошо передается только в том направлении, в каком частицы могут свободно перемещаться. На поверхности это делать проще, чем на глубине. Все потому, что воздух не создает никаких ограничений, в то время как на глубине частицы воды находятся в весьма стесненных условиях. Причина — плохая сжимаемость. Из-за нее волны могут перемещаться на большие расстояния по поверхности, но очень быстро затухают вглубь.
Важно, что во время волны частицы жидкости почти не двигаются. На большой глубине траектория их движения имеет форму окружности, на малой — вытянутого горизонтального эллипса. Благодаря этому корабли в гавани, птицы или кусочки дерева качаются на волнах, фактически не перемещаясь по поверхности.
Особый вид поверхностных волн составляют так называемые волны-убийцы — гигантские одиночные волны. Почему они возникают, так до сих пор и неизвестно. Они редко встречаются в природе, и их нельзя смоделировать в лабораторных условиях. Тем не менее большинство ученых считает, что волны-убийцы образуются из-за резкого уменьшения давления над поверхностью моря или океана. Но более тщательное их изучение впереди.
Волны в физике — что это такое, виды, характеристики, примеры
Каждый день вас окружает множество волн. В этой статье вы узнаете, что это такое и какими свойствами они обладают.
Простое объяснение волн с точки зрения физики
В качестве концепции вы можете представить волну как форму с последовательными восходящими и нисходящими частями. К этой категории относится, например, волна воды.
Однако эти части, поднимающиеся и опускающиеся вверх и вниз, не являются случайными по форме и расположению, а следуют очень определенной схеме. Этот паттерн показывает, как частицы среды, в которой распространяется волна, колеблются вверх и вниз. Частицы «возмущаются» волной определенным образом.
Определение: под волной можно представить возмущение в среде, которое движется с фиксированной формой и постоянной скоростью.
На рисунке 1 показано, например, как такое возмущение в виде холма движется по веревке слева направо. Во время движения частицы веревки поднимаются вверх от переднего конца возмущения и тянутся вниз от заднего конца.
Рис. 1. Волна как возмущение в веревке
От света, который вам нужен, чтобы видеть, до звука, который вам нужен, чтобы слышать, до интернет-сигнала, который вам нужен для работы в Интернете, — все это волны. Как видите, волны — неотъемлемая часть жизни человека.
Виды волн
В этом подразделе мы рассмотрим различные виды волн и то, к какой области теоретической физики они относятся.
Поперечные и продольные волны
Например, в волне воды, которая движется слева направо, отдельные частицы воды колеблются вверх и вниз. Поэтому движение частиц перпендикулярно движению волны. Эти типы волн называются поперечными и могут быть поляризованными.
Звуковые волны (также называемые для краткости звуком), которые позволяют вам слышать, являются примером продольных волн. В продольных волнах частицы вовлеченной среды колеблются в направлении движения волны. Поэтому движение частиц параллельно движению волн.
Рис. 2. Поперечная волна и продольная волна
Волны в физике
Следующий список дает вам представление о том, с какими волнами вам, возможно, придется иметь дело в той или иной области физики:
Волна — это тип возмущения, которое распространяется с фиксированной формой. В этом разделе мы рассмотрим его свойства и поведение. Мы рассмотрим следующие моменты немного подробнее:
Характеристики волн
Чтобы описать характеристики, рассмотрим частный случай синусоидальных волн. В синусоидальных волнах восходящие и нисходящие части повторяют форму синусоидальной кривой.
Из этой схемы (паттерна) (рисунок 3) мы выделили следующий фрагмент: кривая начинается с нуля, идет к самой низкой точке, затем возвращается к нулю, продолжается до самой высокой точки и, наконец, возвращается к нулю.
Рис. 3. Синусоидальная волна
Амплитуда.
Расстояние по вертикали между высокой или низкой точкой и нулевой точкой называется амплитудой. Амплитуда обеспечивает барьер, внутри которого задерживаются восходящие и нисходящие части волны.
Например, если амплитуда водной волны составляет 2 метра, это означает, что при движении морской волны частицы воды поднимаются на максимальную высоту 2 метра.
Частота и длина волны.
Вы также можете представить себе синусоидальную волну следующим образом: мы копируем выбранный кусок и вставляем его бесконечное количество раз как слева, так и справа от него. Таким образом, этот выбранный фрагмент уже определяет поведение волны. Термин для этого — период.
Мы можем охарактеризовать этот период двумя способами:
Важно знать! Расстояние по горизонтали между двумя последовательными максимумами (самая высокая точка) или минимумом (самая низкая точка) часто называется длиной волны.
Рис. 4. Характеристики волн
Скорость распространения волны.
Длина волны и частота волны тесно связаны между собой.
Важно знать! Скорость распространения волны = длина волны * частота волны.
Например, если вы раскачиваете веревку вверх и вниз, создавая «веревочную волну», скорость распространения говорит вам о том, как быстро удаляется от вас высокая точка (или любой другой участок) волны.
Отражение, преломление и дифракция волн.
Если волна попадает в другую среду, могут произойти следующие два явления:
Например, когда свет от солнца попадает на поверхность воды, среда меняется с воздуха на воду. Это приводит к тому, что часть света отражается, а часть преломляется. Это также является причиной того, что вы можете увидеть солнце, например, в луже воды.
Теперь для того, чтобы что-то произошло, волна не обязательно должна попасть на новый носитель. Если внутри текущей среды поместить препятствие, например, в виде стены с одним прямоугольным проходом, то может возникнуть явление дифракции (см. рисунок 5). Проще говоря, дифракция описывает явление, когда волна после прохождения не движется по прямой линии.
Рис. 5. Отражение, преломление и дифракция волн
Суперпозиция волн.
До сих пор мы рассматривали только одну волну. Но что происходит, когда две (или более) волны сталкиваются? Возникает явление, которое называется суперпозицией волн. Однако эта суперпозиция не возникает каким-то образом, а следует определенному принципу, который мы знаем под названием «принцип суперпозиции».
Чтобы объяснить принцип суперпозиции в случае волн, давайте снова рассмотрим синусоидальные волны. Каждая точка на синусоиде дает вам значение, которое является мерой силы отклонения частиц.
Принцип суперпозиции простыми словами: в каждой точке пространства, где встречаются две волны, вы складываете значения двух синусоид. Итог этого сложения дает результирующую волну.
В соответствии с принципом суперпозиции различные явления могут наблюдаться в суперпозиции. К ним относятся, в частности:
Музыкальные инструменты создают стоячие волны посредством суперпозиции. Эти стоячие волны, в свою очередь, вибрируют в окружающем воздухе, создавая звуковые волны, которые доходят до ваших ушей и в конечном итоге позволяют вам услышать музыку.
Механические волны и электромагнитные волны
В этом разделе мы рассмотрим конкретные примеры механических и электромагнитных волн.
Механические волны
Волны, для распространения которых необходима среда, называются механическими волнами. Без среды механические волны не могут распространяться. В идеальном вакууме, например, звуковая волна не может распространяться.
Когда возникает механическая волна, периодическое движение одной частицы среды передается соседним частицам по мере того, как волна движется через среду. Частицы определенным образом «механически» связаны друг с другом.
Самым важным примером механической волны является звук. Звук окружает вас каждый день, будь то разговор с друзьями или прослушивание музыки. Звуковые волны позволяют вам слышать. Они возникают в результате вибрации частиц воздуха.
Электромагнитные волны
Электромагнитные волны не нуждаются в среде для распространения. Если для их распространения не нужна среда, то что тогда колеблется? Электромагнитная волна состоит из электрического и магнитного полей. И именно эти поля колеблются вверх и вниз.
Помните! Периодически изменяющееся электрическое поле приводит к возникновению магнитного поля, которое также периодически изменяется, и наоборот, — таким образом происходит генерация электромагнитной волны.
Например, свет солнца — это электромагнитная волна. Это означает, что электромагнитные волны, помимо всего прочего, отвечают за то, что вы можете что-то видеть. Но вам также нужны электромагнитные волны, чтобы иметь возможность совершать телефонные звонки или пользоваться Интернетом.
Волны
Волна (Wave, surge, sea) — образуется благодаря сцеплению частиц жидкости и воздуха; скользя по гладкой поверхности воды, поначалу воздух создаёт рябь, а уже затем, действует на ее наклонные поверхности, развивает постепенно волнение водной массы. Опыт показал, что водяные частицы не имеют поступательного движения; перемещается только вертикально. Морскими волнами называют движение воды на морской поверхности, возникающее через определённые промежутки времени.
Высшая точка волны называется гребнем или вершиной волны, а низшая точка — подошвой. Высотой волны называется расстояние от гребня до её подошвы, а длина это расстояние между двумя гребнями или подошвами. Время между двумя гребнями или подошвами называется периодом волны.
Содержание
Основные причины возникновения
В среднем высота волны во время шторма в океане достигает 7-8 метров, обычно может растянуться в длину — до 150 метров и до 250метров во время шторма.
Волны, наблюдаемые и в других водных пространствах, могут быть двух родов:
1) Ветровые, созданные ветром, принимающие по прекращении действия ветра установившийся характер и называемые установившимися волнами, или зыбью; Ветровые волны создаются вследствие воздействия ветра (передвижение воздушных масс) на поверхность воды, то есть нагнетания. Причина колебательных движений волн становится легко понятна, если заметить воздействие того же ветра на поверхность пшеничного поля. Хорошо заметна непостоянность ветровых потоков, которые и создают волны.
2) Волны перемещения, или стоячие волны, образуются в результате сильных толчков на дне при землетрясениях или возбужденные, например, резким изменением давления атмосферы. Данные волны носят также название одиночных волн.
В отличие от приливов, отливов и течений волны в не перемещают массы воды. Волны идут, но вода остается на месте. Лодка, которая качается на волнах, не уплывает вместе с волной. Она сможет немного переместиться по наклонной, только благодаря силе земной гравитации. Частицы воды в волне движутся по кольцам. Чем дальше эти кольца от поверхности, тем меньше они становятся и, наконец, исчезают совсем. Находясь в субмарине на глубине 70-80 метров, вы не ощутите действие морских волн даже при самом сильном шторме на поверхности.
Виды морских волн
Волны могут проходить огромные расстояния, не изменяя формы и практически не теряя энергии, долго после того, как вызвавший их ветер утихнет. Разбиваясь о берег, морские волны высвобождают огрмную энергию, накопленную за время странствия. Сила непрерывно разбивающихся волн по-разному изменяет форму берега. Разливающиеся и накатывающиеся волны намывают берег и поэтому называются конструктивными. Волны, обрушивающиеся на берег, постепенно разрушают его и смывают защищающие его пляжи. Поэтому они называются деструктивными.
Низкие, широкие, закругленные волны вдали от берега называются зыбью. Волны заставляют частички воды описывать кружки, кольца. Размер колец уменьшается с глубиной. По мере приближения волны к покатому берегу частицы воды в ней описывают все более сплющенные овалы. Приближаясь к берегу, морские волны больше не могут замкнуть свои овалы, и волна разбивается. На мелководье частицы воды больше не могут замкнуть свои овалы, и волна разбивается. Мысы образованы из более твердой породы и разрушаются медленнее, чем соседние участки берега. Крутые, высокие морские волны подтачивают скалистые утесы у основания, образуя ниши. Утесы порой обрушиваются. Сглаженная волнами терраса — это все, что остается от разрушенных морем скал. Иногда вода поднимается по вертикальным трещинам в скале до вершины и вырывается на поверхность, образуя воронку. Разрушительная сила волн расширяет трещины в скале, образуя пещеры. Когда волны подтачивают скалу с двух сторон, пока не соединятся в проломе, образуются арки. Когда верх арки падает в море, остаются каменные столбы. Их основания подтачиваются, и столбы обрушиваются, образуя валуны. Галька и песок на пляже — это результат эрозии.
Деструктивные волны постепенно размывают берег и уносят песок и гальку с морских пляжей. Обрушивая всю тяжесть своей воды и смытого материала на склоны и обрывы, волны разрушают их поверхность. Они вжимают воду и воздух в каждую трещину, каждую расщелину, часто с энергией взрыва, постепенно разделяя и ослабляя скалы. Отколовшиеся обломки скал используются для дальнейшего разрушения. Даже самые твердые скалы постепенно уничтожаются, и суша на берегу изменяется под действием волн. Волны могут разрушать морской берег с поразительной быстротой. В графстве Линкольншир, в Англии, эрозия (разрушение) надвигается со скоростью 2 м в год. С 1870 г., когда был построен самый большой в США маяк на мысе Гаттерас, море смыло пляжи на 426 м в глубину побережья.
Цунами
Цунами — это волны огромной разрушительной силы. Они вызываются подводными землетрясениями или извержениями вулканов и могут пересекать океаны быстрее, чем реактивный самолет: 1000 км/ч. В глубоких водах они могут быть ниже одного метра, но, приближаясь к берегу, замедляют свой бег и вырастают до 30-50 метров, прежде чем обрушиться, затопляя берег и сметая все на своем пути. 90% всех зарегистрированных цунами отмечено в Тихом океане.
Наиболее распространённые причины.
Около 80% случаев зарождения цунами являются подводные землетрясения. При землетрясении под водой происходит взаимное смещение дна по вертикали: часть дна опускается, а часть приподнимается. На поверхности воды происходят колебательные движения по вертикали, стремясь вернуться к исходному уровню, — среднему уровню моря, — и порождает серию волн. Далеко не каждое подводное землетрясение сопровождается цунами. Цунамигенным (то есть порождающим волну цунами) обычно является землетрясение с неглубоко расположенным очагом. Проблема распознавания цунамигенности землетрясения до сих пор не решена, и службы предупреждения ориентируются на магнитуду землетрясения. Наиболее сильные цунами генерируются в зонах субдукции. Также, необходимо чтобы подводный толчок вошёл в резонанс с волновыми колебаниями.
Оползни. Цунами такого типа возникают чаще, чем это оценивали в ХХ веке (около 7 % всех цунами). Зачастую землетрясение вызывает оползень и он же генерирует волну. 9 июля 1958 года в результате землетрясения на Аляске в бухте Литуйя возник оползень. Масса льда и земных пород обрушилась с высоты 1100 м. Образовалась волна, достигшая на противоположном берегу бухты высоты более 524 м. Подобного рода случаи достаточно редки и, не рассматриваются в качестве эталона. Но намного чаще происходят подводные оползни в дельтах рек, которые не менее опасны. Землетрясение может быть причиной оползня и, например, в Индонезии, где очень велико шельфовое осадконакопление, оползневые цунами особенно опасны, так как случаются регулярно, вызывая локальные волны высотой более 20 метров.
Вулканические извержения составляют примерно 5% всех случаев цунами. Крупные подводные извержения обладают таким же эффектом, что и землетрясения. При сильных вулканических взрывах образуются не только волны от взрыва, но вода также заполняет полости от извергнутого материала или даже кальдеру, в результате чего возникает длинная волна. Классический пример — цунами, образовавшееся после извержения Кракатау в 1883 году. Огромные цунами от вулкана Кракатау наблюдались в гаванях всего мира и уничтожили в общей сложности более 5000 кораблей, погибло около 36 000 человек.
Признаки появления цунами.
Волны-убийцы
Волны-убийцы (Блужда́ющие во́лны, волны-монстры, freak wave — аномальная волна) — гигантские волны, возникающие в океане, высотой более 30 метров, обладают несвойственным для морских волн поведением.
Еще каких-то 10-15 лет назад ученые считали истории моряков об исполинских волнах-убийцах, которые возникают из ниоткуда и топят корабли, всего лишь морским фольклором. Долгое время блуждающие волны считались выдумкой, так как они не укладывались ни в одну существовавшую на то время математические модели расчётов возникновения и их поведения, потому как волны высотой более 21 метра в океанах планеты Земля не могут существовать.
Одно из первых описаний волны-монстра относится к 1826 году. Её высота была более 25 метров и заметили её в Атлантическом океане недалеко от Бискайского залива. Этому сообщению никто не поверил. А в 1840 году мореплаватель Дюмон д’Юрвиль рискнул явиться на заседание Французского географического общества и заявить, что своими глазами видел 35-метровую волну. Присутствующие подняли его на смех. Но историй о громадных волнах-призраках, которые появлялись внезапно посреди океана даже при небольшом шторме, и своей крутизной походили на отвесные стены воды, становилось все больше.
Исторические свидетельства «волн-убийц»
Однако 1 января 1995 года на нефтяной платформе «Дропнер» в Северном море у побережья Норвегии была впервые приборно зафиксирована волна высотой в 25,6 метров, названная волной Дропнера. Проект «Максимальная волна» позволил по-новому посмотреть на причины гибели сухогрузов судов, которые перевозили контейнеры и другие немаловажные грузы. Дальнейшие исследования зафиксировали за три недели по всему земному шару более 10 одиночных гигантских волн, высота которых превышала 20 метров. Новый проект получил название Wave Atlas (Атлас волн), в котором предусматривается составление всемирной карты наблюдавшихся волн-монстров и её последующую обработку и дополнение.
Существует несколько гипотез о причинах возникновения экстремальных волн. Многие из них лишены здравого смысла. Наиболее простые объяснения построены на анализе простой суперпозиции волн разной длины. Оценки, однако, показывают, что вероятность экстремальных волн в такой схеме оказывается слишком мала. Другая заслуживающая внимания гипотеза предполагает возможность фокусировки волновой энергии в некоторых структурах поверхностных течений. Эти структуры, однако, слишком специфичны для того, чтобы механизм фокусировки энергии мог объяснить систематическое возникновение экстремальных волн. Наиболее достоверное объяснение возникновения экстремальных волн должно основываться на внутренних механизмах нелинейных поверхностных волн без привлечения внешних факторов.
Интересно, что такие волны могут быть как гребнями, так и впадинами, что подтверждается очевидцами. Дальнейшее исследование привлекает эффекты нелинейности в ветровых волнах, способные приводить к образованию небольших групп волн (пакетов) или отдельных волн (солитонов), способных проходить большие расстояния без значительного изменения своей структуры. Подобные пакеты также неоднократно наблюдались на практике. Характерными особенностями таких групп волн, подтверждающими данную теорию, является то, что они движутся независимо от прочего волнения и имеют небольшую ширину (менее 1 км), причем высоты резко спадают по краям.
Впрочем, полностью прояснить природу аномальных волн пока не удалось.
Интересные факты о волнах
Морей и океанов без волн, как известно, не бывает, даже в спокойную погоду водная масса непрерывно находится в движении и происходит вращение воды. В отличие от того времени, когда на Земле был только один океан Панталасса.
В океане шторма бушуют практически всегда, то в одной, то в другой его части. Зыбь от них преодолевает огромные расстояния, разбегаясь во все стороны, поэтому на океанские берега всегда обрушивается накат волн.
Что мы знаем об этом красивом явлении природы?
1. Волны способны путешествовать на невероятные расстояния: от шторма в Антарктике за две недели пересечь Тихий океан и дойти до Аляски.
2. Волны существуют как на поверхности, так и на глубине. Они носят название внутренних и могут возникать в морях, океанах и даже крупных озерах. Величина их достигает чудовищных размеров – до нескольких сотен метров в высоту и длину.
3. Цунами имеют столь разрушающую силу за счет невероятной скорости в 800 километров в час, как у современного пассажирского авиалайнера, стремительно обрушивая всю толщу воды — от самого дна до поверхности – на сушу. При этом гребни волн возле берега могут достигать всего лишь пять метров в высоту.
4. Древние греки обладали талантом «умасливать» непогоду, чтобы шторм не разрушил их суда. Мореплаватели выливали за борт несколько бочек рыбьего жира, тем самым уменьшая волны. Современные ученые нашли объяснение этому интересному факту: коэффициент поверхностного натяжения масляной пленки намного меньше, чем у воды, поэтому ветер поднимает не высокие волны, а всего лишь рябь.
5. В Солнечной системе не только на Земле рождаются волны. Выявили еще одно небесное тело – Титан, чья поверхность также имеет жидкость. Волны, пусть даже и полтора сантиметра высотой, были зарегистрированы в трех углеводородных морях этого спутника Сатурна: Море Кракена, Лигеи и Пунги.
6. Самая высокая волна покорилась человеку в 2011 году на португальском побережье. Американский серфер Гарретт Макнамар внес свое имя в Книгу рекордов Гиннесса, оседлав 24-метровый гребень. Но уже в 2013 году он сам же превзошел свой подвиг, прокатившись на 30-метровой волне.
7. Не только людям нравится кататься на волнах, с 1920-х годов существует такой необычный вид спорта, как собачий серфинг. Он родился на берегах Калифорнии и с 2006 года проводит свои соревнования на регулярной основе. У него даже есть свой абсолютный чемпион. Золотистый ретривер Рикошет (смотрите милейшую подборку о 10 породах собак, которые были выведены случайно) не только лихо рассекает по волнам, но и учит серфингу больных детей и людей с ограниченными возможностями.