Что можно обнаружить в хлоропластах
Хлоропласт
Содержание
Происхождение
Предполагают, что хлоропласты возникли из цианобактерий, так как являются двухмембранным органоидом, имеют собственную ДНК и РНК, полноценный аппарат синтеза белка (причем рибосомы прокариотического типа — 70S), размножаются бинарным делением, а мембраны тилакоидов похожи на мембраны прокариот (наличием кислых липидов) и напоминают соответствующие органеллы у цианобактерий.
См. также
Примечания
Комментарии
Источники
Полезное
Смотреть что такое «Хлоропласт» в других словарях:
хлоропласт — хлоропласт … Орфографический словарь-справочник
ХЛОРОПЛАСТ — ХЛОРОПЛАСТ, микроскопическое образование зеленого цвета в растительной клетке, внутри которого осуществляется ФОТОСИНТЕЗ. Хлоропласт заключен в оболочку, образованную из двух мембран, и содержит внутренние мембраны, что увеличивает поверхность,… … Научно-технический энциклопедический словарь
хлоропласт — пластида, органелла Словарь русских синонимов. хлоропласт сущ., кол во синонимов: 2 • органелла (11) • … Словарь синонимов
хлоропласт — Пластида растений, содержащая хлорофилл, в которой происходит фотосинтез; на внутримембранном матриксе Х. расположены граны, соединенные тилакоидами, в которых локализованы пигменты; Х. содержат рибосомы, ферменты, крахмальные зерна, а также ДНК … Справочник технического переводчика
хлоропласт(ы) — Специализированные хлорофилл содержащие органеллы (пластиды) в клетках эукариот, места фотоситеза у растений [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN chloroplast … Справочник технического переводчика
хлоропласт — chloroplastas statusas T sritis augalininkystė apibrėžtis Chlorofilo turinti augalo ląstelės plastidė, kurioje vyksta fotosintezė. atitikmenys: angl. chloroplast rus. хлоропласт … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas
Хлоропласт — м. см. хлоропласты Толковый словарь Ефремовой. Т. Ф. Ефремова. 2000 … Современный толковый словарь русского языка Ефремовой
хлоропласт — хлоропласт, хлоропласты, хлоропласта, хлоропластов, хлоропласту, хлоропластам, хлоропласт, хлоропласты, хлоропластом, хлоропластами, хлоропласте, хлоропластах (Источник: «Полная акцентуированная парадигма по А. А. Зализняку») … Формы слов
хлоропласт — хлоропл аст, а … Русский орфографический словарь
Хлоропласты: роль в процессе фотосинтеза и структура
Фотосинтез происходит в эукариотических клеточных структурах, называемых хлоропластами. Хлоропласт – это тип органеллы растительных клеток, известный как зеленые пластиды. Пластиды помогают хранить и собирать необходимые вещества для производства энергии. Хлоропласт содержит зеленый пигмент, называемый хлорофиллом, который поглощает световую энергию для процесса фотосинтеза. Следовательно, название хлоропласт указывает на то, что эти органеллы представляют собой хлорофиллсодержащие пластиды.
Подобно митохондриям, хлоропласты имеют свою собственную ДНК, ответственны за производство энергии и воспроизводятся независимо от остальной части клетки посредством процесса деления, подобного бактериальному бинарному делению. Они также ответственны за производство аминокислот и липидных компонентов, необходимых для производства хлоропластов. Хлоропласты также встречаются в клетках других фотосинтезирующих организмах, таких как водоросли.
Хлоропласт: структура
Хлоропласты обычно встречаются в охранных клетках, расположенных в листьях растений. Охранные клетки окружают крошечные поры, называемые устьицами, открывая и закрывая их, чтобы обеспечить необходимый для фотосинтеза газообмен. Хлоропласты и другие пластиды развиваются из клеток, называемых пропластидами, которые являются незрелыми, недифференцированными клетками, развивающимися в разные типы пластид. Пропластид, развивающийся в хлоропласт, осуществляет этот процесс только при свете. Хлоропласты содержат несколько различных структур, каждая из которых имеет специализированные функции. Основные структуры хлоропласта включают:
Хлоропласт: фотосинтез
При фотосинтезе энергия солнечного света преобразуется в химическую энергию. Химическая энергия хранится в виде глюкозы (сахара). Двуокись углерода, вода и солнечный свет используются для производства глюкозы, кислорода и воды. Фотосинтез происходит в два этапа: световая фаза и темновая фаза.
Световая фаза фотосинтеза протекает только при наличии света и происходит внутри хлоропластовой граны. Первичным пигментом, используемым для преобразования световой энергии в химическую, является хлорофилл а. Другие пигменты, участвующие в поглощении света, включают хлорофилл b, ксантофилл и каротин. Во время световой фазы, солнечный свет преобразуется в химическую энергию в виде АТФ (молекулы, содержащей свободную энергию) и НАДФ (молекула, несущая электроны высокой энергии).
И АТФ, и НАДФ используются во время темновой фазы для получения сахара. Темновая фаза фотосинтеза, также известная как этап фиксации углерода или цикл Кальвина. Реакции на этой стадии возникают в строме. Строма содержит ферменты, которые облегчают серию реакций, использующих АТФ, НАДФ и углекислый газ для получения сахара. Сахар может храниться в виде крахмала, используемого во время дыхания или при производстве целлюлозы.
Хлоропласты: определение, строение, функции
Хлоропласты – это уникальные структуры, обнаруженные в растительных клетках, которые специализируются на преобразовании солнечного света в энергию, которую растения могут использовать. Этот процесс называется фотосинтезом.
Хлоропласты считаются органеллами в клетках растений. Органеллы – это специальные структуры в клетках, которые выполняют конкретные функции. Основная функция хлоропласта – фотосинтез. Другие функции хлоропластов включают борьбу с болезнями, накопление энергии для клетки и изготовление аминокислот. А подробнее о фотосинтезе читайте в учебнике по биологии за 9 класс В.И. Соболя.
Большинство хлоропластов овальной формы, но они могут быть и в форме звезды, чашки и ленты. Некоторые хлоропласты небольшие по сравнению с клеткой, тогда как другие могут занять большинство пространства внутри клетки.
Структура хлоропластов достаточно сложная. Внешняя часть хлоропласта защищена гладкой внешней мембраной, которая имеет избирательную проницаемость. Непосредственно во внешней мембране находится внутренняя мембрана, которая контролирует, какие молекулы могут проходить в хлоропласт и наружу. Внешняя мембрана, внутренняя мембрана и жидкость между ними составляют оболочку хлоропласта.
Тело хлоропласта состоит из гидрофильной белковой массы – стромы или матрикса. Это жидкость внутри хлоропласта, где плавают другие структуры, такие как тилакоиды. Строма пронизана системой двохмембранних пластин – ламелей, которые располагаются параллельными рядами. Парные ламели сливаются концами и образуют замкнутое кольцо – мешочек, который называется диском.
Пигменты придают хлоропласту и растению свою окраску. Самый распространенный пигмент – хлорофилл, который придает растениям зеленый цвет. Хлорофилл помогает поглощать энергию от солнечного света. Хлоропласты также имеют собственную ДНК и рибосомы для изготовления белков с РНК.
Хлоропласты используют фотосинтез для преобразования солнечного света в пищу. Хлорофилл захватывает энергию от света и накапливает ее в специальной молекуле под названием АТФ (аденозинтрифосфат). Позже АТФ сочетается с углекислым газом и водой для получения сахаров, таких как глюкоза, которую растение может использовать как пищу.
Интересные факты о хлоропластах:
В простых клетках, как у водорослей, может быть только один-два хлоропласты. Однако сложные растительные клетки могут содержать сотни.
Хлоропласты иногда могут передвигаться внутри клетки, чтобы расположиться там, где они лучше могут поглощать солнечный свет.
«Хлоро» в хлоропласте произошло от греческого слова chloros (означает зеленый).
Наиболее обильным белком в хлоропластах является белок Рубиско. Рубиско, пожалуй, самый распространенный белок в мире.
Клетки человека и животных не нуждаются в хлоропластах, поскольку мы получаем свою энергию от пищи и ее переваривания, а не через фотосинтез.
Ученые подсчитали, что в одном квадратном миллиметре листа есть около 500 000 хлоропластов.
На самом деле есть разные цвета хлорофилла. Хлорофилл А – зеленый, это самый распространенный тип. Хлорофилл С – золотистого или коричневого цвета.
Нужно выполнить домашнее задание по биологии? Ищите все готово в разделе «ГДЗ и решебники по биологии за 9 класс».
Химический состав хлоропластов
Растущий интерес к структуре и химизму субмикроскопических органоидов клетки, особенно хлоропластов, связан с бурным развитием биохимии и совершенствованием методов электронной микроскопии. Исследования последних лет раскрыли химический состав хлоропластов и их роль в различных процессах обмена веществ, которая не ограничивается фотосинтезом.
Изучение химического состава хлоропластов связано с очень большими трудностями: их химический состав чрезвычайно сложен и весьма изменчив; для биохимических анализов необходимо изолировать из клеток довольно большие количества хлоропластов в чистом, неповрежденном виде. С этой целью в настоящее время широко используется дифференциальное (дробное) центрифугирование тканей, тонко размельченных до однородного состояния специальными методами. Однако этим способом пока не удается получать хлоропласта в абсолютно неповрежденном (интактном) состоянии. Часто, помимо неповрежденных хлоропластов, выделяются и их фрагменты различного размера, вплоть до гран. Кроме этого, некоторые вещества хлоропластов могут переходить в среду, из которой они изолируются. В первую очередь это касается веществ матрикса и некоторых других легкоподвижных, растворимых соединений. С другой стороны, в любом случае возможна адсорбция на поверхности хлоропластов веществ из цитоплазмы.
Биохимические исследования пластид у большого числа растений показали, что хлоропласта представляют собой образования морфологически и химически очень сложные. Хлоропласта богаты водой, причем количество ее — весьма изменчивый показатель и в большой мере зависит от вида растения и условий водного режима. А. С. Вечер установил, что хлоропласта шпината при нормальном водоснабжении имеют в среднем до 75,4% воды, в то время как при недостатке влаги в почве их оводненность снижается до 68—58%. У люцерны при хорошем водном режиме хлоропласта содержат 65,4% воды, т. е. на 10% меньше, чем у шпината в аналогичных условиях, или примерно такое же количество, какое имеется у шпината при водном дефиците.
В сухом веществе хлоропластов, как показывают данные химических анализов, в среднем 35—55% белка, 20—30% липидов, 9—10% хлорофилла и около 4,5% каротиноидов. Эти столь значительные колебания обусловливаются, с одной стороны, видовыми и возрастными особенностями растений, а с другой — воздействием факторов внешней среды. Отчасти они могут зависеть и от метода выделения хлоропластов.
Разнообразные по своей химической природе белки входят в состав сложных комплексов с липидами, пигментами, углеводами и другими веществами. Большинство белков, до 80% от общего количества, связано с липидами в форме липопротеидов. На протяжении жизни растения изменениям подвергается как общее количество белков, так и их аминокислотный состав. По данным О. П. Осиповой, в фазу цветения фасоли хлоропласта содержат протеина 42,6% (на сухую массу), а в фазу созревания семян — 48,1%.
Нарушения в структуре хлоропластов под влиянием условий произрастания также отражаются на количественном и качественном составе белка, что хорошо можно видеть на примере этиолированных растений, отличающихся от нормальных растений меньшим содержанием общего белка и другим соотношением аминокислот. Следует подчеркнуть, что снижение количества протеина является обратимым. В связи с этим позеленение этиолированных растений при переносе их на свет сопровождается накоплением белка в хлоропластах при одновременном увеличении их размеров и восстановлении гранулярной структуры. В частности, в пластидах этиолированных листьев цикория значительное повышение содержания этого компонента можно отметить уже через 4 часа после их освещения.
Пластиды богаты белками, относящимися к группе ферментов. Согласно Н. М. Сисакяну, хлоропласта — это не только место синтеза ферментов, но и, говоря образно, их «депо», ибо здесь сосредоточены прежде всего все ферментные системы, обеспечивающие процесс фотосинтеза. Кроме того, здесь же находятся ферменты, участвующие в синтезе и превращениях различных веществ (белков, нуклеиновых кислот, липидов, углеводов, пигментов и некоторых соединений). Столь большое разнообразие ферментных систем указывает на то, что роль хлоропластов не ограничивается лишь непосредственной связью их с фотосинтезом.
Что же касается хромопластов и лейкопластов, то они играют гораздо более скромную роль в биохимическом отношении в связи с тем, что обладают гораздо меньшим набором ферментов.
Важнейшей составной частью пластид являются липиды, которых в хлоропластах намного больше, чем в цитоплазме, где липидов лишь 2—3%. Характерная особенность липидов хлоропластов — высокое содержание ненасыщенных жирных кислот (линоленовой кислоты — 70% и выше, а линолевой кислоты — до 29%).
Значительная часть липидов хлоропластов находится в комплексе с белковыми компонентами. По мере старения растения их связь с протеидным комплексом меняется, в результате чего совершенно иным становится соотношение свободной и связанной форм липидов: содержание свободных липидов с возрастом повышается, а связанных, наоборот, снижается.
Обязательными компонентами липидной фракции являются фотосинтетические пигменты, такие как хлорофиллы а и б, каротиноиды, фикобилины и др. Недавно в хлоропластах обнаружены растворимые в липидах пластохинон и витамин К. Интересно отметить, что не все витамины концентрируются в хлоропластах. Витамины К и Е, а также провитамины А и D практически полностью сосредоточены в хлоропластах, а воднорастворимые витамины группы В и витамин С гораздо в больших количествах находятся в цитоплазме. В состав хлоропластов входят и нуклеиновые кислоты (ДНК и РНК). Количество РНК в хлоропластах, колеблясь от 0,3 до 4% (на сухую массу), зависит от вида и физиологического состояния растения. Немалое значение при этом имеют возрастные изменения организма, приводящие к резкому падению содержания РНК. Обычно в хлоропластах молодых листьев РНК в 2—3 раза больше, чем в пластидах старых листьев.
В хлоропластах обнаружены различные зольные элементы (называются так потому, что они остаются в виде золы после сжигания растений). Их распределение в пластидах и листьях весьма различно, что можно проиллюстрировать данными таблицы.
Содержание зольных элементов в листьях и в хлоропластах (по А. С. Вечеру)
Функциональные особенности
Строение хлоропласта изучается школьниками в 6 классе на уроках биологии. К особенностям клеток относится наличие в строме рибосомы, ДНК, РНК. В мембране присутствует вещество, способное придать растениям соответствующий цвет. Для хлорофилла характерен зеленый оттенок, а для каротиноида:
Значение хлорофилла для растений заключается в возможности осуществления процесса фотосинтеза. С учётом строения биологи выделяют 4 типа хлорофилла: a, b, c, d. Первые два содержатся в растениях на суше и зеленых водорослях. Типы a и c считаются растительными компонентами диатомовых, d и a — красных водорослей.
Для хлорофилла характерно поглощение солнечной энергии с последующей передачей иным молекулам. Разрушение зеленого вещества наблюдается в конце жизненного цикла органоида в результате резкого изменения светового дня и значения температуры. Часть хлоропластов превращается в хромопласты. Это приводит к изменению внутренней информации, пожелтению и опадению листьев.
Принципы классификации
Пластиды делятся на три вида: лейкопласты (бесцветные), хлоропласты (окрашенные в зеленый цвет), хромопласты (имеют разные оттенки). На протяжении жизни клетки способны превращаться друг в друга. Лейкопластам свойственно переходить в хлоропласты, а последние за счёт появления бурых и прочих пигментов — в хромопласты, пластоглобулы.
Внешне зеленые вещества покрыты липидной и белковой мембранами. Полужидкая строма с тилакоидами (компартменты, ограниченные мембраной) считается основным веществом, в состав которого входят граны с каналами. Первые компоненты представлены в виде плоских круглых мешочков, расположенных перпендикулярно поверхности двухмембранных органоидов (ДО).
Уникальность их структуры заключается в хранении зеленого пигмента (хлорофилл). Главная функция хлоропластов связана с участием в фотосинтетическом явлении. В их состав входят жиры, зерна (митохондрия, пропластида), крахмал.
На долю липидов приходится до 30%. Они представлены тремя группами:
К другим компонентам, входящим в состав хлоропласта, относятся углеводы. Они представлены в виде продуктов фотосинтеза. До 25% приходится на долю минералов. Ферменты могут выполнять двойную функцию: катализацию различных реакций, обеспечение биосинтеза белков.
Внутренняя структурированность хлоропластов зависит от функциональных нагрузок, физиологического состояния. Молодые клетки размножаются за счет деления, а зрелые обладают выраженной системой гран. Если они стареют, происходит разрыв тилакоидов, распадается хлорофилл. Осенью деградация приводит к появлению хромопластов.
Главная роль хлоропластов в фотосинтезе обеспечена их способностью пассивно двигаться в клетках, увлекаемых током цитоплазмы. Веществу свойственно собирать свет и активно перемещаться с одного места на другое. При интенсивном свете оно поворачивается ребром к яркому солнцу, выстраиваясь вдоль стенок, которые параллельны лучам.
Если освещение слабое, схема движения хлоропластов следующая: они перемещаются на стенки, обращённые к солнцу, поворачиваясь наибольшей поверхностью. Когда освещение среднее, клетки занимают соответствующее положение. От условий освещения зависит то, какие пигменты хлоропластов появятся.
Для пластид и митохондрий свойственна полуавтономная степень. Кроме фотосинтеза, в первых компонентах происходит биосинтез белка. Так как они содержат в себе ДНК, поэтому принимают активное участие в наследственном комплексе: передача признаков, цитоплазматические свойства.
Описание хромопластов
К пластидам высших растений относятся хромопласты. Они имеют незначительные размеры. Для внутриклеточных органелл характерен разный окрас: красный, желтый, коричневый. Он придает соответствующий цвет осенью, плодам и цветкам, что необходимо для привлечения опылителей и животных, разносящих семена продолжительные расстояния.
Структура ткани похожа на иные пластиды. Внутренняя оболочка развита слабее внешней. У некоторых представителей она может отсутствовать. В каротиноидах (жирорастворимые пигменты) происходит накапливание кристаллов. Для определения точных функций вещества изучается таблица с формами хромопластов:
Их роль в жизни растений до конца не выяснена. Ученые предполагают, что пигменты участвуют в окислительных и восстановительных процессах, необходимых для размножения и физиологического развития клеток.
Строение лейкопластов
В органоидах этого типа накапливаются питательные компоненты. Лейкопласты имеют 2 оболочки: внутреннюю и внешнюю. На свету им свойственно превращаться в хлоропласты, но в привычном состоянии органоиды бесцветны. Основная их форма — шаровидная. Размещены они в мягких частях растений:
С учетом накапливаемого вещества лейкопласты классифицируются на следующие виды: амилопласты, элайопласты, протеинопласты. В первую группу входят органоиды с крахмалом, находящиеся в каждом растении. Если лейкопласт полностью заполнен крахмалом, он называется крахмальным зерном. Для элайопластов характерно продуцирование и запас жиров, а для протеинопластов — скопление белковых веществ.
Лейкопласты обладают ферментной субстанцией, что способствует ускоренному протеканию химических реакций. В отрицательном жизненном периоде, когда не происходит фотосинтез, они расщепляют полисахариды на простые углеводы. Так как в луковицах содержится много органоидов, поэтому им свойственно переносить длительную засуху, жару, низкую температуру. После выполнения своих функций они становятся хромопластами.
Симбиотическая теория
Чтобы выяснить механизм появления пластид, митохондрий и других органоидов, рассматривается теория эндосимбиоза. Ее суть заключается в совместной и взаимовыгодной жизни органеллы с клеткой. Впервые теорию предложил Шимпер в 1883 году. В 1867 ученые работали над двойственной природой лишайников.
Биолог Фамицын, учитывая теорию Шимпера, предположил, что хлоропласты, как лишайники и водоросли, относятся к симбионтам. Ученые доказали, что митохондрии — аэробные бактерии, которые не размножаются за пределами клеток. Общие свойства, характерные для митохондрий и пластид:
В ДНК пластид и митохондрий, в отличие от аналогичных структур прокариот, нет интронов. А в ДНК хлоропластов закодирована информация о некоторых белках, остальные данные находятся в ядре клетки. В результате эволюции часть генетического материала из генома перешло в ядро, поэтому хлоропласты и митохондрии не размножаются независимо.
Археи и бактерии не склонны к фагоцитозу. Они питаются только осмотрофно. Множественные биологические и химические исследования указывают на химерную сущность бактерий. Ученые не выяснили, как сливаются организмы из нескольких доменов. В условиях современности выявлены организмы, которые содержат в себе другие клетки в качестве эндосимбионтов. Они отличаются от первичных эукариотов тем, что не интегрируются в одно целое, не имеют своей индивидуальности.
Интересным организмом считается Mixotricha paradoxa. Чтобы двигаться, она использует 250 000 бактерий, которые фиксируются на ее поверхности. Митохондрии у этого организма вторично потеряны. Внутри находятся сферические аэробные микроорганизмы, которые заменяют органеллы.