Что такое распределение гаусса
Распределение Гаусса
Нормальное распределение, также называемое распределением Гаусса, — распределение вероятностей, которое играет важнейшую роль во многих областях знаний, особенно в физике. Физическая величина подчиняется нормальному распределению, когда она подвержена влиянию огромного числа случайных помех. Ясно, что такая ситуация крайне распространена, поэтому можно сказать, что из всех распределений в природе чаще всего встречается именно нормальное распределение — отсюда и произошло одно из его названий.
Нормальное распределение зависит от двух параметров — смещения и масштаба, то есть является с математической точки зрения не одним распределением, а целым их семейством. Значения параметров соответствуют значениям среднего (математического ожидания) и разброса (стандартного отклонения).
Стандартным нормальным распределением называется нормальное распределение с математическим ожиданием 0 и стандартным отклонением 1.
Содержание
Моделирование нормальных случайных величин
Простейшие, но неточные методы моделирования основываются на центральной предельной теореме. Именно, если сложить много независимых одинаково распределённых величин с конечной дисперсией, то сумма будет распределена примерно нормально. Например, если сложить 12 независимых базовых случайных величин, получится грубое приближение стандартного нормального распределения. Тем не менее, с увеличением слагаемых распределение суммы стремится к нормальному.
Использование точных методов предпочтительно, поскольку у них практически нет недостатков. В частности, преобразование Бокса — Мюллера является точным, быстрым и простым для реализации методом генерации.
Статистическая проверка принадлежности нормальному распределению
Поскольку нормальное распределение часто встречается на практике, то для него разработаны специальные статистические критерии проверки на «нормальность»:
Заключение
Нормальное распределение наиболее часто встречается в природе, нормально распределёнными являются следующие случайные величины:
Такое широкое распространение закона связано с тем, что он является предельным законом, к которому приближаются многие другие (например, биномиальный). Доказано, что сумма очень большого числа случайных величин, влияние каждой из которых близко к 0, имеет распределение, близкое к нормальному. Этот факт является содержанием предельной теоремы Ляпунова.
См. также
Полезное
Смотреть что такое «Распределение Гаусса» в других словарях:
РАСПРЕДЕЛЕНИЕ ГАУССА — син. термина распределение нормальное. Геологический словарь: в 2 х томах. М.: Недра. Под редакцией К. Н. Паффенгольца и др.. 1978 … Геологическая энциклопедия
распределение Гаусса — Gauso skirstinys statusas T sritis fizika atitikmenys: angl. Gauss distribution; gaussian distribution; Laplace Gauss distribution vok. Gauß Verteilung, f rus. Гауссово распределение, n; распределение Гаусса, n pranc. distribution de Gauss, f;… … Fizikos terminų žodynas
РАСПРЕДЕЛЕНИЕ ГАУССА — (Gaussian distribution) см. Частота распределения, значимость … Толковый словарь по медицине
Распределение Гаусса (Gaussian Distribution) — см. Частота распределения, значимость. Источник: Медицинский словарь … Медицинские термины
Континуальное распределение Гаусса — было введено в квантовой теории поля как расширение понятия распределения Гаусса для конечномерных векторов на континуальные пространства скалярных и векторных полей. Континуальное распределение активно используется в аппарате функциональных… … Википедия
ГАУССА РАСПРЕДЕЛЕНИЕ — (Гаусса закон распределения вероятностей) то же, что нормальное распределение … Большой Энциклопедический словарь
Гаусса распределение — (Гаусса закон распределения вероятностей), то же, что нормальное распределение. * * * ГАУССА РАСПРЕДЕЛЕНИЕ ГАУССА РАСПРЕДЕЛЕНИЕ (Гаусса закон распределения вероятностей), то же, что нормальное распределение (см. НОРМАЛЬНОЕ РАСПРЕДЕЛЕНИЕ) … Энциклопедический словарь
Гаусса распределение — [Gaussian distribution] см. Нормальное распределение … Экономико-математический словарь
Новичкам. Опционы и Гауссово (нормальное) распределение.
Продолжаем грызть тему опционов по книгам Саймона и Натенберга, сегодня добрались до темы волатильность.
Волатильность — это то, что отличает торговлю фьючерсами от опционов. Кто не знает как работает волатильность, по каким законам она живет, не сможет работать с опционами. Там, где волатильность, там есть и теория вероятности, а там, где теория вероятности — сидит определенный математический аппарат.
Именно в этой точке гуманитарий опускает руки, потому что не может разобраться как работать с моделью Блэка-Шоулза, не знает элементарных понятий из теории вероятности, не знает как работает Гауссово распределение.
Будем двигаться понемногу, сегодня разберемся именно с Гауссовым распределением, я покажу на пальцах что это такое и уже потом будем постепенно углубляться в модель Блэка-Шоулза (да-да, уважаемые новички, без понимания как работает эта модель вы будете терять деньги на опционном рынке).
Что же такое Гауссово распределение, оно же распределение Гаусса-Лапласа? Это такое распределение вероятностей, которое в одномерном случае задаётся функцией плотности вероятности, совпадающей с функцией Гаусса:
Важно знать следующие свойства функции плотности распределения Гаусса:
С вероятностью 68,2% случайная величина не отклонится от своего математического ожидания дальше, чем 1 сигма.
С вероятностью 95,4% случайная величина не отклонится от своего математического ожидания дальше, чем 2 сигма.
С вероятностью 99,7% случайная величина не отклонится от своего математического ожидания дальше, чем 3 сигма.
Что это такое и как с этим работать трейдеру?
Есть удивительный индикатор Боллинджера, который показывает среднюю, верхнюю и нижнюю границу диапазона изменения цены актива, по умолчанию там настроен параметр 2сигма. Таким образом, если бы рынок подчинялся распределению Гаусса, то с вероятностью 95,4% цена не должна выходить за границы диапазона. Но почему же иногда она выходит? Потому что нормальное распределение по Гауссу это всего лишь математическая модель, рынки же в основе своей живут не по распределению Гаусса, на рынках есть тренд и память. Именно поэтому о каком-то случайном блуждании цены говорить не приходится, но в то же время рынки очень часто живут также и по Гауссу, мы это видим во время боковиков, когда цена хаотично движется туда-сюда, но не выходит за границы диапазона. Это как раз частный случай хаотичного движения (пропал тренд).
Более простого изложения на практике «куполообразного» распределение вероятностей я нигде не видел ранее, именно этим меня и цепанула книга Натенберга. Респект автору, умеет он всё же нетривиальные вещи объяснить простым языком.
Случайное блуждание.
Возьмем для примера игру пинбол. Шарик катится вниз через частокол штырьков. Наткнувшись на штырек, он отклоняется вправо или влево с вероятностью 50%. После этого шарик попадает на новый уровень, где натыкается на другой штырек. Наконец, внизу он падает в одну из лунок.
Движение шарика через частокол штырьков называют случайным блужданием. Как только шарик попадает в этот частокол, никто не может повлиять на его траекторию, равно как и предсказать эту траекторию.
Если бросить достаточное количество шариков, то можно получить распределение, которое называется Гауссовым — большинство шариков попадает в центр игрового поля; чем дальше лунки расположены от центра, тем меньше шариков в них оказывается. Такое распределение называется еще нормальным или колоколообразным:
Если бросить бесконечно большое количество шариков, то распределение будет описываться колоколообразной кривой, изображенной на рисунке.
Низковолатильное распределение.
Теперь давайте слегка изменим условия игры, поставив вертикальные перегородки таким образом, что теперь, наткнувшись на штырек и отклонившись влево или вправо, шарик опустится до соприкосновения со следующим штырьком не на один, а на два уровня. Если бросить достаточное количество шариков, то получится распределение, представленное кривой на рисунке (низковолатильное распределение):
Поскольку боковые движения шариков ограничены, пик этой кривой будет выше, а ее хвосты будут более узкими, чем у кривой на предыдущем рисунке. Несмотря на изменения формы, это по-прежнему кривая нормального распределения, но с несколько иными характеристиками (для тех, кто владеет математическим аппаратом — параметр эксцесс отвечает за высоту пика).
Высоковолатильное распределение.
Наконец, мы можем поставить горизонтальные перегородки так, что, попадая на следующий уровень, шарик будет каждый раз отклоняться на два штырька влево или вправо. И снова, если бросить достаточное количество шариков, то получится распределение, представленное на рисунке:
У этой кривой, которая также отражает нормальное распределение вероятностей, пик намного ниже, а хвосты убывают намного медленнее, чем у кривых на предыдущих рисунках.
Для чего нам всё это нужно было?
Пусть боковые движения шарика символизируют повышательные и понижательные изменения цены базового актива, а движение вниз — течение времени. Если предположить, что цена Ri каждый день повышается или понижается на 2500 пунктов (шаг 1 страйка), то распределение значений цены через 15 дней будет представлено на рисунке с «колоколообразной» плотностью распределения вероятностей.
Если предположить, что цена Ri повышается на 2500 пунктов каждые 2 дня, то распределение будет похоже на рисунок «низковолатильного распределения».
А если предположить, что цена Ri за день растет или падает на 5000 пунктов (2 страйка), то распределение будет напоминать рисунок «высоковолатильного распределения».
Если сегодня Ri стоит 107 500, а срок действия опциона истекает через 15 дней, то как определить стоимость 112 500 колла?
Об этом в следующих сериях.
Если такие вот топики вам заходят — ставьте лайки, жмите колокольчик, пишите каменты.
Да сопутствует вам всем удача в опционном мире!
Открытие про Гауссово распределение, или тайна Иоганна Карла Фридриха Гаусса.
Ну так вот. Есть такая штука – Гауссово распределение. Оно очень часто встречается, оно повсюду.
Практически, куда ни плюнь – там гауссово распределение.
И это, между прочим, не метафора! Если начать куда-нибудь плевать, то плевки будут распределятъся именно по гауссу.
Поэтому не будет преувеличением сказать, что куда ни плюнь – там гауссово распределение.
Гаусово распределение, или оно еще называется „нормальное распределение“, описывается страшной формулой:
А график его выглядит как колокольчик, вот так:
Ну и возникает вопрос – почему совершенно разные процессы, такие как плевание в потолок, траектория ракеты,
или посещаемость избирательных участков (кроме, конечно, российских), описываются именно этой формулой?
Даже два вопроса возникает:
1. Какое общее свойство у всех этих процессов?
Ведь случайный процесс может быть любым, распределение может быть вообще произвольным.
Не может же так случайно получиться, что у кучи совершенно различных процессов распределение описывается
одной и той же формулой. Значит, должно быть у них какое-то общее свойство, которое именно этой формулой и
описывается.
Причем, это должно быть какое-то ОЧЕНЬ ПРОСТОЕ свойство, раз куча совершенно разных процессов им обладает.
Чтобы ответить на оба эти вопроса, возьмем да и построим это Гауссово распределение своими руками.
Но позже. Для начала поясним – о чем вообще речь. 🙂
Есть у нас какая-то величина, назовем ее X. Ну, например, температура в комнате в градусах Цельсия.
Она в течении дня принимает разные значения. Например, <18°, 19°, 18°, 18°, 19°, 20° >.
Все эти значения можно графически изобразить в виде «гистограммы“:
Или можно отображать значения горизонтальными черточками:
Это дело вкуса, обычно используются горизонтальные черточки.
Если X принимает нецелые значения, например, 18.2°, то их округляют до целых.
Вот все эти графики и называются “распределением величины X“. Они просто показывают – как часто X принимает то или иное значение.
Понятно, что распределение может быть любой формы. Но есть такие формы, которые встречаются часто, и у них есть свои названия.
Например: Гауссово (или нормальное) распределение, распределение Пуассона, равномерное распределение, распределение Ландау, и еще всякие разные.
Все они исследованы Гауссом, Пуассоном и Ландау соответственно, и их графики описаны аналитически, в виде формул.
Ну и вот интересно – почему это одни распределения встречаются чаще, чем другие.
Взять, например, равномерное распределение.
Равномерное распределение означает, что величина X распределена равномерно – все значения одинаково вероятны.
Формула у него предельно простая:
Казалось бы, это равномерное распределение должно быть самым распространенным.
Ан нет, не тут то было. Куда ни плюнь – все везде распределено по Гауссу, и описывается жуткой формулой.
Гаусс своими руками.
Чтобы понять – что такое Гауссово распределение, почему оно именно такое, и почему оно так часто встречается, возьмем да и построим этого Гаусса своими руками.
# Осторожно.
# Дальнейший текст содержит секретную информацию, не известную ни одному аспиранту,
# не говоря уже о профессорах и академиках
# Читая дальнейший текст, вы подписываетсесь под тем, что читаете его на свой страх и риск.
# Автор не несет никакой ответственности ни за что, и ниибет.
Теперь рисуем гистограмму. Наша X распределена вот так:
Возьмем другую случайную величину X1, которая точно так же распределена, и при этом НЕЗАВИСИМА от X.
Например, будем кидать еще одну монетку.
Добавим ее к нашему X и посмотрим как изменится распределение. Гистограмма суммы двух величин (X+X1) выглядит так:
Прикольно, да? У суммы края разъехались и появился пик в нуле.
Понятно, почему так получается.
Уже, наверное, понятно, что будет дальше. Добавим еще одну величину X2, так же распределенную:
Досыпeм туда еще случайных величин.
Сумма 20-ти случайных величин выглядит так:
Получился всеми любимый Гаусс, описываемый жуткой формулой.
(Для сравнения, красная линия показывает идеальный Гаусс, нарисованный по формуле.)
Вот и все, чистая арифметика.
Именно поэтому Гаусс так часто встречается.
И наоборот, если нечто распределено по Гауссу, то можно уверенно сказать,
что это нечто является сложным процессом, в который вовлечено много независимых факторов.
Правильный ответ такой – в сумме будет Гаусс. Когда слагаемых много, то эффект от суммирования перевешивает
индивидуальные особенности распределений, и в итоге получается Гаусс.
Например, возьмем X распределенный по Ландау
(вообще, у Ландау бесконечный хвост вправо, но я его отбросил и сдвинул все немного влево,
чтобы центр распределения оказался в нуле).
Вот такая штука получилась:
Ландау неудобно тем, что оно совсем несимметричное. Ну ничего.
Сложим два Ландау:
Ага! 🙂 Правый хвост поджался, уже похоже на Гаусс, но не совсем.
Теперь сложим сразу 100 Ландау:
Ну уже почти.
Возьмем 1000 Ландау:
Уверен, что ни один ученый из тех, кто пользуется Гауссианам, не знает что это такое.
Хотя, может и есть где-то пара специалистов по теории вероятностей, постигших тайну нормального распределения,
и по секрету передающих ее из поколения в поколение, кто знает.
Распределение Гаусса – это
Общие сведения
Если величина является суммой многих случайных слабо взаимозависимых величин, каждая из которых вносит малый вклад относительно общей суммы, то центрированное и нормированное распределение такой величины при достаточно большом числе слагаемых стремится к нормальному распределению.
Это следует из центральной предельной теоремы теории вероятностей. В окружающем нас мире часто встречаются величины, значение которых определяется совокупностью многих независимых факторов. Этот факт, а также то, что распределение считалось типичным, обычным, привели к тому, что в конце XIX века стал использоваться термин «нормальное распределение». Нормальное распределение играет заметную роль во многих областях науки, например в математической статистике и статистической физике.
Случайная величина, имеющая нормальное распределение, называется нормальной, или гауссовской, случайной величиной.
Моделирование нормальных случайных величин
Использование точных методов предпочтительно, поскольку у них практически нет недостатков. В частности, преобразование Бокса — Мюллера является точным, быстрым и простым для реализации методом генерации.
Вероятность
Вероятность, что подброшенная монета упадёт орлом вверх 50%, что при броске шестигранного кубика выпадет 4 – 16,7%, что завтра на кого-нибудь упадёт метеорит – 0.00000000294%. Это простые примеры, достаточно разделить количество желаемых событий на общее количество случаев и мы получаем вероятность события, но когда результаты эксперимента могут быть не только орлом или решкой (что эквивалентно да/нет), а большим набором данных. Например, вес батона хлеба, если мы возьмём в магазине 1000 буханок хлеба и взвесим каждую, то мы узнаем, что на самом деле батон не весит 400 грамм, результаты будут варьироваться в диапазоне 384-416 грамм (допуск разброса веса предусмотрен ГОСТом).
Плотность вероятности нормального распределения
В случае таблицы Вы имеете дело с дискретными данными, т.е. для каждого веса есть определённая вероятность, но в случае графика дело немного меняется, теперь мы говорим не о 1000 буханок, которые мы взвесили, а обо всех буханках в мире сразу! Зачем? Что бы не взвешивать все буханки. Имея закон распределения, который мы получили взвесив 1000 буханок (мы могли взвесить 100, 200, 500, сколько угодно), мы можем предположить, что сколько бы мы буханок не взяли, замерив их, мы получим ту же форму колокола. Используя термины статистики, все буханки хлеба – это генеральная совокупность, 1000 замеренных буханок – выборка.
Теперь, возьмём одну буханку хлеба, какова вероятность, что её вес будет между 390г и 400г?
Вероятность события между a и b:
Распределение вероятности – это функция, в которой для каждого события Х присваивается вероятность p, что событие произойдёт
Распределение Гаусса
Нормальное распределение получило своё название абсолютно справедливо: по статистике, большинство событий происходят именно с вероятностью нормального распределения, но что это значит? Это означает, например, что когда Вы видите на упаковке хлеба обозначение “Вес: 400±16г” – вес батона имеет нормальное распределение со средним значением 400г и стандартным отклонением 16г.
Таблица нормального распределения
Таблица нормального распределения – это затабулированные значения функции нормального распределения.
Для нахождения вероятности события Z0 можно воспользоваться таблицей нормального распределения ниже. На пересечении строк (n) и столбцов (m) находится значение вероятности n+m.
Z0 | 0.00 | 0.01 | 0.02 | 0.03 | 0.04 | 0.05 | 0.06 | 0.07 | 0.08 | 0.09 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 0.500 | 0.504 | 0.508 | 0.512 | 0.516 | 0.520 | 0.524 | 0.528 | 0.532 | 0.536 |
0.1 | 0.540 | 0.544 | 0.548 | 0.552 | 0.556 | 0.560 | 0.564 | 0.568 | 0.571 | 0.575 |
0.2 | 0.579 | 0.583 | 0.587 | 0.591 | 0.595 | 0.599 | 0.603 | 0.606 | 0.610 | 0.614 |
0.3 | 0.618 | 0.622 | 0.625 | 0.629 | 0.633 | 0.637 | 0.641 | 0.644 | 0.648 | 0.652 |
0.4 | 0.655 | 0.659 | 0.663 | 0.666 | 0.670 | 0.674 | 0.677 | 0.681 | 0.684 | 0.688 |
0.5 | 0.692 | 0.695 | 0.699 | 0.702 | 0.705 | 0.709 | 0.712 | 0.716 | 0.719 | 0.722 |
0.6 | 0.726 | 0.729 | 0.732 | 0.736 | 0.739 | 0.742 | 0.745 | 0.749 | 0.752 | 0.755 |
0.7 | 0.758 | 0.761 | 0.764 | 0.767 | 0.770 | 0.773 | 0.776 | 0.779 | 0.782 | 0.785 |
0.8 | 0.788 | 0.791 | 0.794 | 0.797 | 0.799 | 0.802 | 0.805 | 0.808 | 0.811 | 0.813 |
0.9 | 0.816 | 0.819 | 0.821 | 0.824 | 0.826 | 0.829 | 0.832 | 0.834 | 0.837 | 0.839 |
1 | 0.841 | 0.844 | 0.846 | 0.849 | 0.851 | 0.853 | 0.855 | 0.858 | 0.860 | 0.862 |
1.1 | 0.864 | 0.867 | 0.869 | 0.871 | 0.873 | 0.875 | 0.877 | 0.879 | 0.881 | 0.883 |
1.2 | 0.885 | 0.887 | 0.889 | 0.891 | 0.892 | 0.894 | 0.896 | 0.898 | 0.900 | 0.901 |
1.3 | 0.903 | 0.905 | 0.907 | 0.908 | 0.910 | 0.911 | 0.913 | 0.915 | 0.916 | 0.918 |
1.4 | 0.919 | 0.921 | 0.922 | 0.924 | 0.925 | 0.926 | 0.928 | 0.929 | 0.931 | 0.932 |
1.5 | 0.933 | 0.934 | 0.936 | 0.937 | 0.938 | 0.939 | 0.941 | 0.942 | 0.943 | 0.944 |
1.6 | 0.945 | 0.946 | 0.947 | 0.948 | 0.950 | 0.951 | 0.952 | 0.953 | 0.954 | 0.955 |
1.7 | 0.955 | 0.956 | 0.957 | 0.958 | 0.959 | 0.960 | 0.961 | 0.962 | 0.963 | 0.963 |
1.8 | 0.964 | 0.965 | 0.966 | 0.966 | 0.967 | 0.968 | 0.969 | 0.969 | 0.970 | 0.971 |
1.9 | 0.971 | 0.972 | 0.973 | 0.973 | 0.974 | 0.974 | 0.975 | 0.976 | 0.976 | 0.977 |
2 | 0.977 | 0.978 | 0.978 | 0.979 | 0.979 | 0.980 | 0.980 | 0.981 | 0.981 | 0.982 |
2.1 | 0.982 | 0.983 | 0.983 | 0.983 | 0.984 | 0.984 | 0.985 | 0.985 | 0.985 | 0.986 |
2.2 | 0.986 | 0.986 | 0.987 | 0.987 | 0.988 | 0.988 | 0.988 | 0.988 | 0.989 | 0.989 |
2.3 | 0.989 | 0.990 | 0.990 | 0.990 | 0.990 | 0.991 | 0.991 | 0.991 | 0.991 | 0.992 |
2.4 | 0.992 | 0.992 | 0.992 | 0.993 | 0.993 | 0.993 | 0.993 | 0.993 | 0.993 | 0.994 |
2.5 | 0.994 | 0.994 | 0.994 | 0.994 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 | 0.995 |
2.6 | 0.995 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 | 0.996 |
2.7 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 | 0.997 |
2.8 | 0.997 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 |
2.9 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.999 | 0.999 | 0.999 | 0.999 |
3 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
3.1 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 |
3.2 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 0.999 | 1.000 |
Таблица нормального распределения. Красным выделены часто используемые значения при выборе критической области |
Нормальное распределение. Построение графика в Excel. Концепция шести сигм
Наверное, не все знают, что в Excel есть встроенная функция для построения нормального распределения. Графики нормального распределения часто используются для демонстрации идей статистической обработки данных.
Функция НОРМРАСП имеет следующий синтаксис:
НОРМРАСП (Х; среднее; стандартное_откл; интегральная)
Х — аргумент функции; фактически НОРМРАСП можно трактовать как y=f(x); при этом функция возвращает вероятность реализации события Х
Среднее (µ) — среднее арифметическое распределения; чем дальше Х от среднего, тем ниже вероятность реализации такого события
Стандартное_откл (σ) — стандартное отклонение распределения; мера кучности; чем меньше σ, тем выше вероятность у тех Х, которые расположены ближе к среднему
Например, для µ=0 имеем:
Теперь, наверное, вам будет лучше понятен смысл выражения «качество шести сигм». Оно означает, что производство налажено таким образом, что случайная величина Х (например, диаметр вала) находясь в диапазон µ ± 6σ, всё еще удовлетворяет техническим условиям (допускам). Это достигается за счет значительного уменьшения сигмы, то есть случайная величина Х очень близка к нормативному значению µ. На графике ниже представлено три ситуации, когда границы допуска остаются неизменными, а благодаря повышению качества (уменьшению вариабельности, сужению сигма) доля брака сокращается:
На первом рисунке только 1,5σ попадают в границы допуска, то есть только 86,6% деталей являются годными. На втором рисунке уже 3σ попадают в границы допуска, то есть 99,75% являются годными. Но всё еще 25 деталей из каждых 10 000 произведенных являются браком. На третьем рисунке целых 6σ попадают в границы допуска, то есть в брак попадут только две детали на миллиард изготовленных!
Вообще-то говоря, измерение качества в терминах сигм использует не совсем нормальное распределение. Вот что пишет на эту тему Википедия:
Опыт показывает, что показатели процессов имеют тенденцию изменяться с течением времени. В результате со временем в промежуток между границами поля допуска будет входить меньше, чем было установлено первоначально. Опытным путём было установлено, что изменение параметров во времени можно учесть с помощью смещения в 1,5 сигма. Другими словами, с течением времени длина промежутка между границами поля допуска под кривой нормального распределения уменьшается до 4,5 сигма вследствие того, что среднее процесса с течением времени смещается и/или среднеквадратическое отклонение увеличивается.
Широко распространённое представление о «процессе шесть сигма» заключается в том, что такой процесс позволяет получить уровень качества 3,4 дефектных единиц на миллион готовых изделий при условии, что длина под кривой слева или справа от среднего будет соответствовать 4,5 сигма (без учёта левого или правого конца кривой за границей поля допуска). Таким образом, уровень качества 3,4 дефектных единиц на миллион готовых изделий соответствует длине промежутка 4,5 сигма, получаемых разницей между 6 сигма и сдвигом в 1,5 сигма, которое было введено, чтобы учесть изменение показателей с течением времени. Такая поправка создана для того, чтобы предупредить неправильною оценку уровня дефектности, встречающееся в реальных условиях.
С моей точки зрения, не вполне внятное объяснение. Тем не менее, во всем мире принята следующая таблица соответствия числа дефектов и уровня качества в сигмах:
Как построить график с нормальным распределением в Excel
Так как я часто имею дело с большим количеством данных, у меня время от времени возникает необходимость генерировать массивы значений для проверки моделей в Excel. К примеру, если я хочу увидеть распределение веса продукта с определенным стандартным отклонением, потребуются некоторые усилия, чтобы привести результат работы формулы СЛУЧМЕЖДУ() в нормальный вид. Дело в том, что формула СЛУЧМЕЖДУ() выдает числа с единым распределением, т.е. любое число с одинаковой долей вероятности может оказаться как у нижней, так и у верхней границы запрашиваемого диапазона. Такое положение дел не соответствует действительности, так как вероятность возникновения продукта уменьшается по мере отклонения от целевого значения. Т.е. если я произвожу продукт весом 100 грамм, вероятность, что я произведу 97-ми или 103-граммовый продукт меньше, чем 100 грамм. Вес большей части произведенной продукции будет сосредоточен рядом с целевым значением. Такое распределение называется нормальным. Если построить график, где по оси Y отложить вес продукта, а по оси X – количество произведенного продукта, график будет иметь колоколообразный вид, где наивысшая точка будет соответствовать целевому значению.
Таким образом, чтобы привести массив, выданный формулой СЛУЧМЕЖДУ(), в нормальный вид, мне приходилось ручками исправлять пограничные значения на близкие к целевым. Такое положение дел меня, естественно, не устраивало, поэтому, покопавшись в интернете, открыл интересный способ создания массива данных с нормальным распределением. В сегодняшней статье описан способ генерации массива и построения графика с нормальным распределением.
Нормальное распределение в Excel
В Excel есть несколько функций для подсчета вероятностей или обратных значений нормального распределения.
Функция НОРМ.СТ.РАСП
Функция НОРМ.СТ.РАСП предназначена для расчета плотности ϕ( z ) или вероятности Φ(z) по нормированным данным (z).
z – значение стандартизованной переменной
интегральная – если 0, то рассчитывается плотность ϕ( z ) , если 1 – значение функции Ф(z), т.е. вероятность P(Z
В реальности чаще приходится рассчитывать вероятность того, что случайная величина не выйдет за некоторые пределы от средней (в среднеквадратичных отклонениях, соответствующих переменной z), т.е. P(|Z|
Определим, чему равна вероятность попадания случайной величины в пределы ±1z, ±2z и ±3z от нуля. Потребуется формула 2Ф(z)-1, в Excel =2*НОРМ.СТ.РАСП(A2;1)-1.
На диаграмме отлично видны основные основные свойства нормального распределения, включая правило трех сигм. Функция НОРМ.СТ.РАСП – это автоматическая таблица значений функции нормального распределения в Excel.
Может стоять и обратная задача: по имеющейся вероятности P(Z
Например, при расчете доверительных интервалов задается доверительная вероятность, по которой нужно рассчитать величину z.
Учитывая то, что доверительный интервал состоит из верхней и нижней границы и то, что нормальное распределение симметрично относительно нуля, достаточно получить верхнюю границу (положительное отклонение). Нижняя граница берется с отрицательным знаком. Обозначим доверительную вероятность как γ (гамма), тогда верхняя граница доверительного интервала рассчитывается по следующей формуле.
Рассчитаем в Excel значения z (что соответствует отклонению от средней в сигмах) для нескольких вероятностей, включая те, которые наизусть знает любой статистик: 90%, 95% и 99%. В ячейке B2 укажем формулу: =НОРМ.СТ.ОБР((1+A2)/2). Меняя значение переменной (вероятности в ячейке А2) получим различные границы интервалов.
Доверительный интервал для 95% равен 1,96, то есть почти 2 среднеквадратичных отклонения. Отсюда легко даже в уме оценить возможный разброс нормальной случайной величины. В общем, доверительным вероятностям 90%, 95% и 99% соответствуют доверительные интервалы ±1,64, ±1,96 и ±2,58 σ.
В целом функции НОРМ.СТ.РАСП и НОРМ.СТ.ОБР позволяют произвести любой расчет, связанный с нормальным распределением. Но, чтобы облегчить и уменьшить количество действий, в Excel есть несколько других функций. Например, для расчета доверительных интервалов средней можно использовать ДОВЕРИТ.НОРМ. Для проверки статистической гипотезы о средней арифметической есть формула Z.ТЕСТ.
Функция НОРМ.РАСП
Функция НОРМ.РАСП отличается от НОРМ.СТ.РАСП лишь тем, что ее используют для обработки данных любого масштаба, а не только нормированных. Параметры нормального распределения указываются в синтаксисе.
x – значение (или ссылка на ячейку), для которого рассчитывается плотность или значение функции нормального распределения
среднее – математическое ожидание, используемое в качестве первого параметра модели нормального распределения
стандартное_откл – среднеквадратичное отклонение – второй параметр модели
интегральная – если 0, то рассчитывается плотность, если 1 – то значение функции, т.е. P(X
Если последний параметр поставить 1, то получим вероятность того, что нормальная случайная величина окажется меньше 15 при заданных параметрах распределения. Таким образом, вероятности можно рассчитывать напрямую по исходным данным.
Функция НОРМРАСПР в EXCEL
Щелкнем на кнопке ОК. В диапазоне А4:А16 будет сформирована последовательность значений х.
Установим курсор в ячейку В4 и выполним команду меню Вставка/Функция. В открывшемся окне Мастер функций выберем категорию Статистические, а в списке функций – НОРМРАСП.
Установим значения параметров функции НОРМРАСП: для параметра х установим ссылку на ячейку А4, для параметра Среднее – введем число 0, для параметра Стандартное_откл – число 1, для параметра Интегральное – число 0 (весовая).