Что такое репаративные процессы в организме человека

Что такое репаративные процессы в организме человека

Что такое репаративные процессы в организме человека. Смотреть фото Что такое репаративные процессы в организме человека. Смотреть картинку Что такое репаративные процессы в организме человека. Картинка про Что такое репаративные процессы в организме человека. Фото Что такое репаративные процессы в организме человека

До недавнего времени считалось, что возможность репаративной регенерации организма, происходящей после повреждения или утраты какой-либо части тела, была утеряна практически всеми живыми организмами в процессе эволюции и, как следствие, усложнения строения организма, кроме некоторых существ, включая амфибий. Одним из открытий, сильно поколебавшим этот догмат, стало обнаружение гена р21 и его специфических свойств: блокирование регенеративных возможностей организма, группой исследователей из Вистарского Института, штат Филадельфия, США (The Wistar Institute, Philadelphia).

По словам ученых, при отсутствии гена р21 клетки грызунов ведут себя как регенерирующие эмбриональные стволовые клетки. А не как зрелые клетки млекопитающих. То есть, они скорее выращивают новую ткань, чем восстанавливают поврежденную. Здесь будет уместно вспомнить, что такая же схема регенерации присутствует и у саламандр, обладающих возможностью отращивать заново не только хвост, но и утерянные конечности, или у планарий, ресничных червей, которых можно разрезать на несколько частей, и из каждого кусочка вырастет новая планария.

По осторожным замечаниям самих исследователей, следует вывод, что теоретически, отключение гена р21 может запускать аналогичный процесс и в человеческом организме. Безусловно, стоит отметить и тот факт, что ген р21 тесно связан с другим геном, р53. который контролирует деление клеток и препятствует образованию опухолей. В обычных взрослых клетках организма р21 блокирует деление клеток в случае повреждения ДНК, поэтому у мышей, у которых он был отключен, больше риск возникновения рака.

Но хотя исследователи действительно обнаружили большие повреждения ДНК в ходе эксперимента, они не нашли следов рака: напротив, у мышей усилился механизм апоптоза, программируемого «суицида» клеток, который также защищает от возникновения опухолей. Такая комбинация может позволять клеткам делиться быстрее, не превращаясь в «раковые».

Избегая далеко идущих выводов, все же отметим, что сами исследователи говорят лишь о временном отключении этого гена с целью ускорения регенерации: «While we are just beginning to understand the repercussions of these findings, perhaps, one day we´ll be able to accelerate healing in humans by temporarily inactivating the p21 gene». Перевод: «В данный момент мы только начинаем понимать все последствия наших открытий, и возможно, когда-нибудь мы сможем ускорять исцеление людей, временно инактивируя ген р21» [1].

1. ЭСК экспрессируют такие факторы, связанные с плюрипотентными клетками, как Oct4, Sox2, Tert, Utfl и Rex1 (Carpenter and Bhatia 2004).

3. ЭСК могут самообновляться путем многократных делений.

Отдельно остановимся на механизмах работы и регуляции стволовых клеток. Особые характеристики стволовых клеток определяются не одним геном, но целым их набором. Возможность идентификации этих генов непосредственно связана с разработкой метода культивирования эмбриональных стволовых клеток in vitro, а также с возможностью использования современных методов молекулярной биологии (в частности, использование фактора ингибирования лейкемии LIF).

В результате совместных исследований компаний Geron Corporation и Celera Genomics были созданы библиотеки кДНК недифференцированных ЭСК и частично дифференцированных клеток (кДНК получают путем синтеза на основе молекулы иРНК, комплиментарной молекулы ДНК при помощи фермента обратной транскриптазы). При анализе данных по секвенированию нуклеотидных последовательностей и экспрессии генов было выявлено более 600 генов, включение или выключение которых отличает недифференцированные клетки, и составлена картина молекулярных путей, по которым идет дифференцировка этих клеток.

В настоящее время принято отличать стволовые клетки по их поведению в культуре и по химическим маркерам на клеточной поверхности. Однако, гены, ответственные за проявление этих особенностей, в большинстве случаев остаются неизвестными. Тем не менее, проведенные исследования позволили выделить две группы генов, придающих стволовым клеткам их замечательные свойства. С одной стороны, свойства стволовых клеток проявляются в определенном микроокружении, известном как ниша стволовых клеток. При изучении этих клеток, которые окружают, питают и поддерживают стволовые клетки в недифференцированном состоянии, было обнаружено около 4000 генов. При этом указанные гены были активны в клетках микроокружения, и неактивны во всех других
клетках [3, 4].

Следует отметить, что база данных по генам, определяющим свойства стволовых клеток, постоянно пополняется. Полный каталог генов стволовых клеток может улучшит процесс их идентификации, а также прояснить механизмы функционирования этих клеток, что обеспечит получение дифференцированных клеток, необходимых для терапевтического применения, а также позволит получить новые возможности для разработки лекарств. Значение этих генов велико, так как они обеспечивают организму возможность сохранять себя и регенерировать ткани.

Здесь у читателя может возникнуть вопрос: «А насколько далеко продвинулись ученые в практическом применении этих знаний?». Используются ли они в медицине? Имеются ли перспективы дальнейшего развития у этих направлений? Чтобы ответить на эти вопросы, проведем небольшой обзор по научным разработкам в данном русле, как старым, чему не нужно удивляться, ведь исследования в области регенеративной медицины ведутся давно, минимум с начала 20 века, так и совсем новым, подчас весьма необычным и экзотическим.

Для начала отметим, что еще в 80-е годы 20 века в СССР в Институте эволюционной экологии и морфологии животных им. Северцева АН СССР, в лаборатории А.Н. Студицкого проводились эксперименты: измельченное мышечное волокно пересаживалось в поврежденный участок, которое впоследствии восстанавливаясь, заставляло регенерировать нервные ткани. Были сделаны сотни успешных операций на человеке.

Отдельно отметим, что еще в середине 20 века группой советских ученых, под руководством Л.В. Полежаева проводились исследования, с успешным практическим применением их результатов по регенерации костей свода черепа у животных и человека; область дефекта достигала до 20 квадратных сантиметров. Края пробоины засыпались измельченной костной тканью, что вызывало процесс регенерации, в ходе которого происходило восстановление поврежденных участков.

Так же, хотелось бы заострить внимание на таком повседневном и привычном объекте, как соль (NaCl). Широко известны лечебные свойства морского климата, мест, с высоким содержанием соли в воде и в воздухе, наподобие Мертвого моря в Израиле или Соль-Илецка в России, соляных шахт, широко применяемых в стационарах, санаториях и курортах по всему миру. Спортсмены и люди, ведущие активный образ жизни, хорошо знакомы и с соляными ванночками, применяемыми при лечении травм опорно-двигательного аппарата. В чем же секрет этих удивительных свойств обычной соли? Как обнаружили ученые из университета Тафтса (США), для процесса восстановления отрезанного или откушенного хвоста головастикам необходима поваренная соль. Если посыпать ею ранку, хвост отрастает быстрее даже в том случае, если уже успела образоваться рубцовая ткань (шрам). При наличии соли ампутированный хвост отрастает, а отсутствие ионов натрия блокирует этот процесс. Безусловно, следует порекомендовать воздержаться от безудержного потребления соли, в надежде ускорить процесс исцеления. Многочисленные исследования наглядно демонстрируют тот вред, который наносит организму чрезмерное употребление соли в пищу. По всей видимости, для запуска и ускорения процесса регенерации, ионы натрия должны поступать к поврежденным участкам иными путями [6].

В дальнейшем был разработан специальный пластик, разлагаемый микроорганизмами. Из него был изготовлен имплантант на спине мыши: пластиковый каркас, отлитый в форме человеческого уха, покрытый живыми клетками. Клетки в процессе роста прилипают к волокнам и принимают необходимую форму. Со временем клетки начинают доминировать и формировать новую ткань (например, хрящ ушной раковины). Другой вариант данного метода: имплантант на спине пациента, представляющий собой каркас необходимы формы, засеивается стволовыми клетками определенной ткани. Через некоторое время этот фрагмент удаляется со спины и имплантируется на место.

Тот же пластик, о котором упоминалось чуть выше, был использован для восстановления поврежденного спинного мозга у лабораторных мышей. Принцип здесь был тот же: волокна пластика сворачивали в жгут и высеивали на него эмбриональные нервные клетки. В результате разрыв закрывался новой тканью, и происходило полное восстановление всех моторных функций. Достаточно полный обзор приводится в документальном фильме ВВС «Сверхчеловек. Самоисцеление».

. А чего нельзя? Нельзя ставить крест на больном лишь потому, что в учебники еще не вошло все, что могут сегодня специалисты. Те же врачи, которые принимали больного и все видели, удивлялись: «Ну, помилуйте, товарищи ученые, конечно, у вас там наука, но ведь полный перерыв спинного мозга, о чем можно говорить?!» Вот так. Видели и не видели. Есть научный фильм, все заснято.

Чем раньше после поражения мозга начинается стимуляция, тем более вероятен эффект. Однако даже в случаях давних травм многое удается и узнать, и сделать.

В этом же направлении имеются и более экзотичные пути, наподобие трехмерного биопринтера, созданного в Австралии, который уже печатает кожу, и в ближайшем будущем, по заверениям разработчиков, сможет печатать и целые органы. В основу его работы заложен тот же принцип, что и в описанном случае создания мочевого пузыря: высеивание живых клеток слой за слоем [1].

Второе направление регенеративной медицины можно условно обозначить одной фразой: «Зачем выращивать новое, если можно починить старое?». Главной задачей приверженцы данного направления считают восстановление поврежденных участков силами самого организма, используя его резервы, скрытые возможности (стоит вспомнить начало данной статьи) и определенные вмешательства извне, в основном в виде поставки дополнительных ресурсов и строительного материала для репарации.

Возможных вариантов здесь также большое количество. Для начала, следует отметить, что по некоторым оценкам, в каждом органе от рождения есть запас резервных стволовых клеток примерно в 30 %, которые расходуются в процессе жизни. В соответствии с этим, по мнению некоторых геронтологов, видовой предел жизни человека составляет 110-120 лет. Следовательно, биологический резерв жизни человека 30-40 лет, а учитывая российские реалии эти цифры можно увеличить до 50-60 лет. Другой вопрос, что современные условия жизни не способствуют этому: крайне плачевное, и с каждым годом все более ухудшающееся состояние экологии; сильные, и что еще более важно постоянные стрессы; огромные психические, интеллектуальные и физические нагрузки; удручающее на местах состояние медицины, в частности российской; направленность фармацевтики не на помощь людям, а на получение сверхприбыли и многое другое, полностью изнашивают человеческий организм к тому моменту, когда по идее должен наступать самый расцвет наших сил и возможностей. Тем не менее, данный резерв может сильно помочь при восстановлении после травм и лечении серьезных заболеваний, особенно в младенческом и детском возрасте [7].

Отдельно выделим создание гемобанков по сбору пуповинной крови новорожденных, являющейся одним из наиболее перспективных источников стволовых клеток. Известно, что пуповинная кровь богата гемопоэтическими стволовыми клетками (ГСК). Характерной особенностью полученных из пуповинной крови СК является их значительно большее, чем у взрослых СК сходство с клетками из эмбриональных тканей по таким параметрам, как биологический возраст и способность к размножению. Пуповинная кровь, полученная из плаценты сразу после рождения ребенка, богата СК с большими пролиферативными возможностями, чем у клеток, полученных из костного мозга или периферической крови. Подобно любому продукту крови, СК пуповинной крови нуждаются в инфраструктуре для их сбора, хранения и установления пригодности для трансплантации. Пуповина пережимается через 30 секунд после рождения ребенка, плацента и пуповина отделяются, и пуповинную кровь собирают в специальный пакет. В образце должно быть не менее 40 мл, чтобы его можно было использовать. Кровь типируется по HLA и культивируется. Незрелые клетки человеческой пуповинной крови с высокой способностью к пролиферации, размножению вне организма и выживанию после трансплантации могут храниться замороженными более 45 лет, затем после оттаивания они с большой вероятностью сохраняют эффективность при клинической трансплантации. Банки пуповинной крови существуют по всему миру, только в США их более 30 и еще много частных банков. Национальные институты здоровья США спонсируют программу изучения трансплантации пуповинной крови. В Нью-Йоркском центре крови есть программа плацентарной крови, и своя программа исследований есть у Национального регистра доноров костного мозга [2].

Другой важной областью исследований является изучение способности СК пуповинной крови к дифференцировке в клетки различных тканей, помимо гемопоэтической, и установление соответствующих линий СК. Исследователи из университета Южной Флориды (University of South Florida (USF, Tampa,FL)) использовали ретиноевую кислоту, чтобы заставить СК пуповинной крови дифференцироваться в нервные клетки, что было продемонстрировано на генетическом уровне анализом строения ДНК. Эти результаты показали возможность использования этих клеток для лечения нейродегенеративных болезней. Пуповинная кровь для этой работы была предоставлена родителями ребенка; она была обработана в оснащенной на современном уровне лаборатории CRYO-CELL и фракционированные замороженные клетки были переданы ученым USF. Пуповинная кровь оказалась источником гораздо более разнообразных клеток-предшественников, чем считалось раньше. Она может быть использована для лечения нейродегенеративных болезней, в том числе в сочетании с генотерапией, травм и генетических болезней. В ближайшем будущем станет возможным при рождении детей с генетическими дефектами собирать их пуповинную кровь, методами генной инженерии исправлять дефект и возвращать эту кровь ребенку.

1) не травмировать ткани механически;

2) не поражать здоровые клетки;

3) не вызывать побочных эффектов;

4) лекарства должны самостоятельно:

Наиболее экзотическим вариантом являются так называемые нанороботы. Среди проектов будущих медицинских нанороботов уже существует внутренняя классификация на макрофагоциты, респироциты, клоттоциты, васкулоиды и другие. Все они являются по сути искусственными клетками, в основном иммунитета или крови человека. Соответственно, их функциональное предназначение напрямую зависит от того, какие клетки они замещают. Помимо медицинских нанороботов, существующих пока только в головах ученых и отдельных проектов, в мире уже созданы ряд технологий для наномедицинской отрасли. К ним относятся: адресная доставка лекарств к больным клеткам, диагностика заболеваний с помощью квантовых точек, лаборатории на чипе, новые бактерицидные средства [10].

И ученым это удалось: они синтезировали искусственный аналог активного сайта белка MMPS9: ион цинка, скоординированный тремя гистидиновыми остатками. Его инъекция лабораторным мышам приводила к выработке антител, действующих ровно в той же манере, в какой работают белки TIMPS: блокируя вход в активный сайт [1].

В России Министерство образования и науки создало Межведомственный научно-технический совет по проблеме нанотехнологий и наноматериалов, деятельность которого направлена на сохранение технологического паритета в будущем мире. Для развития нанотехнологий в целом и наномедицины в частности. Готовится принятие федеральной целевой программы по их развитию. Данная программа будет включать подготовку целого ряда специалистов в длительной перспективе.

Достижения наномедицины станут доступны по разным оценкам только через 40-50 лет. Сам Эрик Дрекслер называет цифру в 20-30 лет. Но учитывая масштаб работы в данной области и количество вкладываемых в нее денег, все больше аналитиков сдвигают первоначальные оценки на 10-15 лет в сторону уменьшения [10].

Источник

Регенерация (восстановление). Что такое регенерация тканей?

Что такое репаративные процессы в организме человека. Смотреть фото Что такое репаративные процессы в организме человека. Смотреть картинку Что такое репаративные процессы в организме человека. Картинка про Что такое репаративные процессы в организме человека. Фото Что такое репаративные процессы в организме человека

Содержание

Регенерация — все подробности

Регенерация (от позднелатинского regeneratio возрождение, возобновление) — обновление структур организма в процессе жизнедеятельности и восстановление тех структур, которые были утрачены в результате патологических процессов.

Явления регенерации были знакомы людям еще в глубокой древности. К концу 19 века был накоплен материал, раскрывающий закономерности регенераторной реакции у человека и животных, но особенно интенсивно проблема регенерации разрабатывается с 40-х годов 20 века.

Различают два вида регенерации — физиологическую и репаративную. Физиологическая регенерация — непрерывное обновление структур на клеточном (смена клеток крови, эпидермиса и другое) и внутриклеточном (обновление клеточных органелл) уровнях, которыми обеспечивается функционирование органов и тканей. Репаративная регенерация — процесс ликвидации структурных повреждений после действия патогенных факторов. Оба вида регенерации не являются обособленными, не зависимыми друг от друга. Так, репаративная регенерация развертывается на базе физиологической, т.е. на основе тех же механизмов, и отличается лишь большей интенсивностью проявлений. Поэтому репаративную регенерацию следует рассматривать как нормальную реакцию организма на повреждение, характеризующуюся резким усилением физиологических механизмов воспроизведения специфических тканевых элементов того или иного органа.

Значение регенерации для организма определяется тем, что на основе клеточного и внутриклеточного обновления органов обеспечивается широкий диапазон приспособительных колебаний их функциональной активности в меняющихся условиях окружающей среды, а также восстановление и компенсация нарушенных под воздействием различных патогенных факторов функций. Физиологическая и репаративная регенерация являются структурной основой всего разнообразия проявлений жизнедеятельности организма в норме и патологии.

Процесс регенерации развертывается на разных уровнях организации — системном, органном, тканевом, клеточном, внутриклеточном. Осуществляется он путем прямого и непрямого деления клеток, обновления внутриклеточных органелл и их размножения. Обновление внутриклеточных структур и их гиперплазия являются универсальной формой регенерации, присущей всем без исключения органам млекопитающих и человека. Она выражается либо в форме собственно внутриклеточной регенерации, когда после гибели части клетки ее строение восстанавливается за счет размножения сохранившихся органелл, либо в виде увеличения числа органелл (компенсаторная гиперплазия органелл) в одной клетке при гибели другой.

Восстановление исходной массы органа после его повреждения осуществляется различными путями. В одних случаях сохранившаяся часть органа остается неизмененной или малоизмененной, а недостающая его часть отрастает от раневой поверхности в виде четко отграниченного регенерата. Такой способ восстановления утраченной части органа называют эпиморфозом. В других случаях происходит перестройка оставшейся части органа, в процессе которой он постепенно приобретает исходные форму и размеры. Этот вариант процесса регенерации называют морфаллаксисом. Чаще эпиморфоз и морфаллаксис встречаются в различных сочетаниях. Наблюдая увеличение размеров органа после его повреждения, прежде говорили о его компенсаторной гипертрофии. Цитологический анализ этого процесса показал, что в его основе лежит размножение клеток, т.е. регенераторная реакция. В связи с этим процесс получил название «регенерационная гипертрофия».

Принято считать, что репаративная регенерация развертывается после наступления дистрофических, некротических и воспалительных изменений. Так, однако, бывает далеко не всегда. Значительно чаще немедленно после начала действия патогенного фактора резко интенсифицируется физиологическая регенерация, направленная на компенсацию убыли структур, в связи с их внезапным ускоренным расходованием или гибелью. В это время она представляет собой по существу репаративную регенерацию.

Об источниках регенерации имеются две точки зрения. Согласно одной из них (теория резервных клеток), происходит пролиферация камбиальных, незрелых клеточных элементов (так называемх стволовых клеток и клеток-предшественников), которые, интенсивно размножаясь и дифференцируясь, восполняют убыль высокодифференцированных клеток данного органа, обеспечивающих его специфическую функцию. Другая точка зрения допускает, что источником регенерации могут быть высокодифференцированные клетки органа, которые в условиях патологического процесса могут перестраиваться, утрачивать часть своих специфических органелл и одновременно приобретать способность к митотическому делению с последующей пролиферацией и дифференцировкой.

Исходы процесса регенерации могут быть различными. В одних случаях регенерация заканчивается формированием части, идентичной погибшей по форме и построенной из такой же ткани. В этих случаях говорят о полной регенерации (реституции, или гомоморфозе). В результате регенерации может образоваться и совсем иной орган, чем удаленный, что обозначают как гетероморфоз (например, образование у ракообразных конечности вместо усика). Наблюдают также неполное развитие регенерирующего органа — гипотипию (например, появление меньшего числа пальцев на конечности у тритона). Случается и обратное — формирование большего числа конечностей, чем в норме, обильное новообразование костной ткани в месте перелома и другое (избыточная регенерация, или суперрегенерация). В ряде случаев у млекопитающих и человека в результате регенерации в зоне повреждения образуется не специфическая для данного органа ткань, а соединительная ткань, в дальнейшем подвергающаяся рубцеванию, что обозначают как неполную регенерацию, или реституцией. Завершение восстановительного процесса полной регенерации, или субституцией, в значительной мере определяется сохранностью или повреждением соединительнотканного каркаса органа. Если избирательно гибнет только паренхима органа, например, печени, то обычно наступает полная ее регенерация; если же некрозу подвергается и строма, процесс всегда заканчивается формированием рубца, В силу различных причин (гиповитаминоз, истощение и другое) течение репаративной регенерации может принимать затяжной характер, качественно извращаться, сопровождаясь образованием вяло гранулирующих, длительно не заживающих язв, формированием ложного сустава вместо срастания костных отломков, гиперрегенерацией ткани, метаплазией и другое. В подобных случаях говорят о патологической регенерации.

Степень и формы выражения регенерационной способности неодинаковы у разных животных. Ряд простейших, кишечнополостных, плоских червей, немертин, кольчатых червей, иглокожих, полухордовых и личиночно-хордовых обладают способностью восстанавливать из отдельного фрагмента или кусочка тела целый организм. Многие представители этих же групп животных способны восстанавливать только большие участки тела (например, головной или хвостовой его концы). Другие восстанавливают лишь отдельные утраченные органы или их часть (регенерация ампутированных конечностей, усиков, глаз — у ракообразных; частей ноги, мантии, головы, глаз, щупалецев, раковины — у моллюсков; конечностей, хвоста, глаз, челюстей — у хвостатых амфибий и другое). Проявления регенерационной способности у высокоорганизованных животных, а также человека отличаются значительным разнообразием — могут восстанавливаться крупные части внутренних органов (например, печени), мышцы, кости, кожа и другое, а также отдельные клетки после гибели части их цитоплазмы и органелл.

В связи с тем, что высшие животные не способны целиком восстанавливать организм или крупные его части из небольших фрагментов, в качестве одной из важных закономерностей регенерационной способности в 19 веке было выдвинуто положение, что она снижается по мере повышения организации животного. Однако в процессе углубленной разработки проблемы регенерации, особенно проявлений регенерации у млекопитающих и человека, становилась все более очевидной ошибочность этого положения. Многочисленные примеры свидетельствуют о том, что среди сравнительно низкоорганизованных животных встречаются такие, которые отличаются слабой регенерационной способностью (губки, круглые черви), в то время как многие относительно высокоорганизованные животные (иглокожие, низшие хордовые) этой способностью обладают в достаточно высокой степени. Кроме того, среди близкородственных видов животных нередко встречаются как хорошо, так и плохо регенерирующие.

Многочисленные исследования восстановительных процессов у млекопитающих и человека, систематически проводившиеся с середины 20 века, также свидетельствуют о несостоятельности представления о резком снижении или даже полной утрате регенерационной способности по мере повышения организации животного и специализации его тканей. Концепция регенерационной гипертрофии свидетельствует о том, что восстановление исходной формы органа не является единственным критерием наличия регенерационной способности и что для внутренних органов млекопитающих еще более важным показателем в этом отношении является их способность восстанавливать свою исходную массу, т.е. общее количество структур, обеспечивающих специфическую функцию. В результате электронномикроскопических исследований коренным образом изменились представления о диапазоне проявлений регенераторной реакции и, в частности, стало очевидным, что элементарной формой этой реакции является размножение не клеток, а восстановление и гиперплазия их ультраструктур. Это, в свою очередь, явилось основанием для отнесения к процессам регенерации такого феномена, как гипертрофия клетки. Считалось, что в основе этого процесса лежит простое увеличение ядра и массы коллоида цитоплазмы. Электронно-микроскопические исследования позволили установить, что гипертрофия клетки — процесс структурный, обусловленный увеличением числа ядерных и цитоплазматических органелл и на основе этого обеспечивающий нормализацию специфической функции данного органа при гибели той или иной его части, т.е. в принципе это процесс регенераторный, восстановительный. С помощью электронной микроскопии была расшифрована сущность и такого широко распространенного явления, как обратимость дистрофических изменений органов и тканей. Оказалось, что это не просто нормализация состава коллоида ядра и цитоплазмы, нарушенного в результате патологического процесса, а значительно более сложный процесс нормализации архитектоники клетки за счет восстановления структуры поврежденных органелл и их новообразования. Таким образом и этот феномен, ранее стоявший особняком среди других общепатологических процессов, оказался проявлением регенераторной реакции организма.

В целом же все эти данные явились основанием для существенного расширения представлений о роли и значении процессов регенерации в жизнедеятельности организма, и в частности для выдвижения принципиально нового положения о том, что эти процессы имеют отношение не только к заживлению повреждений, а являются основой функциональной активности органов. Важную роль в утверждении этих новых представлений о диапазоне и сущности процессов Р. сыграла точка зрения, что главным в регенерации органа является не только достижение им исходных анатомических параметров, но и нормализация нарушенной функции, обеспечиваемая различными вариантами структурных преобразований. Именно в таком принципиально новом освещении под структурно-функциональным углом зрения учение о регенерации утрачивает свое преимущественно биологическое звучание (восстановление удаленных органов) и становится первостепенно важным для решения основных проблем современной клинической медицины, в частности проблемы компенсации нарушенных функций.

Эти новые данные убеждают в том, что регенерационная способность у высших животных и, в частности, у человека характеризуется значительным разнообразием своих проявлений. Так, в некоторых органах и тканях, например, в костном мозге, покровном эпителии, слизистых оболочках, костях, физиологическая регенерация выражается в непрерывном обновлении клеточного состава, а репаративная регенерация — в полном восстановлении дефекта ткани и реконструкции ее исходной формы путем интенсивного митотического деления клеток. В других органах, например, в печени, почках, поджелудочной железе, органах эндокринной системы, легких и другие, обновление клеточного состава происходит сравнительно медленно, а ликвидация повреждения и нормализация нарушенных функций обеспечиваются на основе двух процессов — размножения клеток и наращивания массы органелл в предсуществующих сохранившихся клетках, в результате чего они подвергаются гипертрофии и соответственно этому возрастает их функциональная активность. Характерно, что исходная форма этих органов после повреждения чаще всего не восстанавливается, в месте травмы образуется рубец, а восполнение утраченной части происходит за счет неповрежденных отделов, т.е. восстановительный процесс протекает по типу регенерационной гипертрофии. Внутренние органы млекопитающих и человека обладают огромной потенциальной способностью к регенерационной гипертрофии; например, печень в течение 3—4 недель после резекции 70% ее паренхимы по поводу доброкачественных опухолей, эхинококка и другое, восстанавливает исходный вес и в полном объеме — функциональную активность. В центральной нервной системе и миокарде, клетки которых не обладают способностью к митотическому делению, структурное и функциональное восстановление после повреждения достигается исключительно или почти исключительно за счет увеличения массы органелл в сохранившихся клетках и их гипертрофии, т.е. восстановительная способность выражается только в форме внутриклеточной регенерации.

В различных органах в основе характерного для млекопитающих и человека разнообразия проявлений физиологической и репаративной регенерации лежат скорее всего структурно-функциональные особенности каждого из них. Например, хорошо выраженная способность к размножению клеток, свойственная эпителию кожи и слизистых оболочек, связана с основной его функцией — непрерывным поддержанием целости покровов на границе с окружающей средой. Также особенностями функции объясняется высокая способность костного мозга к клеточной регенерации непрерывным отделением все новых и новых клеток от общей массы в кровь. Эпителиальные клетки, выстилающие ворсинки тонкой кишки, регенерируют по клеточному типу, т.к. для осуществления ферментативной деятельности они сходят с ворсинки в просвет кишки, а их место тотчас занимают новые клетки, в свою очередь уже готовые отторгнуться так же, как это только что случилось с их предшественницами. Восстановление опорной функции кости может быть достигнуто только путем пролиферации клеток, и именно в области перелома, а не в каком-либо ином месте. В ряде других органов, например, в печени, почках, легких, поджелудочной железе, надпочечниках, необходимый объем работы после повреждения обеспечивается прежде всего восстановлением исходной массы, поскольку основная функция этих органов связана не столько с сохранением формы, сколько с определенным количеством и размерами структурных единиц, выполняющих в каждом из них специфическую деятельность,— печеночных долек, альвеол, панкреатических островков, нефронов и другое. В миокарде и в центральной нервной системе митоз оказался в значительной мере или полностью вытесненным внутриклеточными механизмами репарации повреждения. В центральной нервной системе, в частности, функция, например, пирамидной клетки (пирамидального нейроцита) коры головного мозга состоит в непрерывном поддержании связей с окружающими и располагающимися в самых различных органах нервными клетками. Она обеспечивается соответствующей структурой — многочисленными и разнообразными отростками, соединяющими тело клетки с различными органами и тканями. Менять такую клетку в порядке физиологической или репаративной регенерации — это значит менять и все эти исключительно сложные ее связи как внутри нервной системы, так и далеко на периферии. Поэтому характерным, наиболее целесообразным и экономичным путем восстановления нарушенной функции для клеток центральной нервной системы является усиление работы клеток, соседних с погибшими, за счет гиперплазии их специфических ультраструктур, т.е. исключительно путем внутриклеточной регенерации.

Таким образом, эволюционный процесс в мире животных характеризовался не постепенным ослаблением регенерационной способности, а нарастающим разнообразием ее проявлений. При этом регенерационная способность в каждом конкретном органе приобретала ту форму, которая обеспечивала наиболее эффективные пути восстановления его нарушенных функций.

В основе всего разнообразия проявлений регенерационной способности у млекопитающих и человека лежат две ее формы — клеточная и внутриклеточная, которые в разных органах или сочетаются в различных комбинациях, или существуют обособленно. В основе этих казалось бы крайних форм процесса регенерации лежит единый феномен — гиперплазия ядерных и цитоплазматических ультраструктур. В одном случае эта гиперплазия развертывается в предшесуществующих клетках и каждая из них увеличивается, а в другом — то же число новообразованных ультраструктур размещается в разделившихся клетках, сохраняющих нормальные размеры. В итоге общее число элементарных функционирующих единиц (митохондрий, ядрышек, рибосом и другое) в обоих случаях оказывается одинаковым. Поэтому среди всех этих комбинаций форм регенераторной реакции нет «худших» и «лучших», более или менее эффективных; каждая из них является наиболее соответствующей структуре и функции данного органа и одновременно неподходящей для всех остальных. Современное учение о внутриклеточных регенераторных и гиперпластических процессах свидетельствует о несостоятельности представлений о возможности нормализации работы патологически измененных органов на основе «чисто функционального напряжения» сохранившихся отделов; любые, даже едва уловимые функциональные сдвиги компенсаторного порядка всегда обусловливаются соответствующими пролиферативными изменениями ядерных и цитоплазматических ультраструктур.

Эффективность процесса регенерации в большой мере определяется условиями, в которых он протекает. Важное значение в этом отношении имеет общее состояние организма. Истощение, гиповитаминоз, нарушения иннервации и другие, оказывают значительное влияние на ход репаративной регенерации, затормаживая ее и способствуя переходу в патологическую. Существенное влияние на интенсивность репаративной регенерации оказывает степень функциональной нагрузки, правильное дозирование которой благоприятствует этому процессу. Скорость репаративной регенерации в известной мере определяется и возрастом, что приобретает особое значение в связи с увеличением продолжительности жизни и соответственно числа оперативных вмешательств у лиц старших возрастных групп. Обычно существенных отклонений процесса регенерации при этом не отмечается и большее значение, по-видимому, имеют тяжесть заболевания и его осложнения, чем возрастное ослабление регенерационной способности.

В регуляции процессов регенерации участвуют многочисленные факторы эндо- и экзогенной природы. Установлены антагонистические влияния различных факторов на течение внутриклеточных регенераторных и гиперпластических процессов. Наиболее изучено влияние на регенерацию различных гормонов. Регуляция митотической активности клеток различных органов осуществляется гормонами коры надпочечников, щитовидной железы, половых желез и другое. Важную роль в этом отношении играют так называемые гастроинтестинальные гормоны. Известны мощные эндогенные регуляторы митотической активности — кейлоны, простагландины, их антагонисты и другие биологически активные вещества. Важное место в исследованиях механизмов регуляции процессов регенерации занимает изучение роли различных отделов нервной системы в их течении и исходах. Новым направлением в разработке этой проблемы является изучение иммунологической регуляции процессов регенерации, и в частности установление факта переноса лимфоцитами «регенерационной информации», стимулирующей пролиферативную активность клеток различных внутренних органов. Регулирующее влияние на течение процесса регенерации оказывает и дозированная функциональная нагрузка.

Знание механизмов регуляции регенерационной способности органов и тканей открывает перспективы для разработки научных основ стимуляции репаративной регенерации и управления процессами выздоровления.

Регенерация — основная информация

Регенера́ция (восстановление) — способность живых организмов со временем восстанавливать повреждённые ткани, а иногда и целые потерянные органы. Регенерацией также называется восстановление целого организма из его искусственно отделённого фрагмента (например, восстановление гидры из небольшого фрагмента тела или диссоциированных клеток). У протистов регенерация может проявляться в восстановлении утраченных органоидов или частей клетки.

Регенерация, происходящая в случае повреждения или утраты какого-нибудь органа или части организма, называется репаративной. Регенерацию в процессе нормальной жизнедеятельности организма, обычно не связанную с повреждением или утратой части организма, называют физиологической.

Физиологическая регенерация

В каждом организме на протяжении всей его жизни постоянно идут процессы восстановления и обновления. У человека, например, постоянно обновляется наружный слой кожи. Птицы периодически сбрасывают перья и отращивают новые, а млекопитающие сменяют шерстный покров. У листопадных деревьев листья ежегодно опадают и заменяются свежими. Такие процессы носят название физиологической регенерации.

Репаративная регенерация

Репаративной называют регенерацию, происходящую после повреждения или утраты какой-либо части тела. Выделяют типичную и атипичную репаративную регенерацию.

При типичной регенерации утраченная часть замещается путём развития точно такой же части. Причиной утраты может быть внешнее воздействие (например, ампутация), или же животное намеренно отрывает часть своего тела (автотомия), как ящерица, обламывающая часть своего хвоста, спасаясь от врага.

При атипичной регенерации утраченная часть замещается структурой, отличающейся от первоначальной количественно или качественно. У регенерировавшей конечности головастика число пальцев может оказаться меньше исходного, а у креветки вместо ампутированного глаза может вырасти антенна (гетероморфоз).

Регенерация у животных

Что такое репаративные процессы в организме человека. Смотреть фото Что такое репаративные процессы в организме человека. Смотреть картинку Что такое репаративные процессы в организме человека. Картинка про Что такое репаративные процессы в организме человека. Фото Что такое репаративные процессы в организме человека

Способность к регенерации широко распространена среди животных. Низшие животные, как правило, чаще способны к регенерации, чем более сложные высокоорганизованные формы. Так, среди беспозвоночных гораздо больше видов, способных восстанавливать утраченные органы, чем среди позвоночных, но только у некоторых из них возможна регенерация целой особи из небольшого её фрагмента. Тем не менее общее правило о снижении способности к регенерации с повышением сложности организма нельзя считать абсолютным. Такие примитивные животные, как круглые черви и коловратки, практически не способны к регенерации, а у гораздо более сложных ракообразных и амфибий эта способность хорошо выражена; известны и другие исключения. Некоторые сравнительно близкородственные животные сильно различаются в этом отношении. Так, у многих видов дождевых червей только из передней половины тела может полностью регенерировать новая особь, тогда как пиявки не способны восстановить даже отдельные утраченные органы. У хвостатых амфибий на месте ампутированной конечности образуется новая, а у лягушки культя просто заживает и никакого нового роста не происходит. Однако, как показали опыты Полежаева, если культю лягушки подвергать механическим раздражениям или воздействию определённых химических веществ, то конечность регенерирует. Более того, при таких условиях регенерируют и конечности некоторых млекопитающих, например, новорожденных крысят.

Нет также чёткой связи между характером эмбрионального развития и способностью к регенерации. Так, у некоторых животных со строго детерминированным развитием (гребневики, полихеты) во взрослом состоянии регенерация развита хорошо (у ползающих гребневиков и некоторых полихет целая особь может восстановиться из небольшого участка тела), а у некоторых животных с регулятивным развитием (морские ежи, млекопитающие) — достаточно слабо.

Многие беспозвоночные способны к регенерации значительной части тела. У большинства видов губок, гидроидных полипов, многих видов плоских, ленточных и кольчатых червей, мшанок, иглокожих и оболочников из небольшого фрагмента тела может регенерировать целый организм. Особенно примечательна способность к регенерации у губок. Если тело взрослой губки продавить через сетчатую ткань, то все клетки отделятся друг от друга, как просеянные сквозь сито. Если затем поместить все эти отдельные клетки в воду и осторожно, тщательно перемешать, полностью разрушив все связи между ними, то спустя некоторое время они начинают постепенно сближаться и воссоединяются, образуя целую губку, сходную с прежней. В этом участвует своего рода «узнавание» на клеточном уровне, о чём свидетельствует следующий эксперимент: губки трёх разных видов разделяли описанным способом на отдельные клетки и как следует перемешивали. При этом обнаружилось, что клетки каждого вида способны «узнавать» в общей массе клетки своего вида и воссоединяются только с ними, так что в результате образовалась не одна, а три новых губки, подобные трём исходным. Из других животных к восстановлению целого организма из взвеси клеток способна только гидра.

Регенерация у человека

Что такое репаративные процессы в организме человека. Смотреть фото Что такое репаративные процессы в организме человека. Смотреть картинку Что такое репаративные процессы в организме человека. Картинка про Что такое репаративные процессы в организме человека. Фото Что такое репаративные процессы в организме человека

У человека хорошо регенерирует эпидермис; к регенерации способны также такие его производные, как волосы и ногти. Способностью к регенерации обладает также костная ткань: кости срастаются после переломов. С утратой части печени (до 85 %) оставшиеся фрагменты начинают увеличиваться в размере благодаря увеличению размера самих клеток, но не благодаря увеличению их количества; таким образом печень полностью восстанавливает первоначальную массу.

При определённых условиях могут ограничено регенерировать кончики пальцев — при утере фрагмента пальца до первой фаланги, если рана не была купирована.

До недавних пор считалось, что нервная система не способна к регенерации, но последние исследования показали, что ЦНС обладает некоторым нейрогенезом — способностью создавать новые нейроны и впоследствии образовывать новые синаптические соединения.

Регенерация, которую мы потеряли (видео, выступление на «Дне биологии для школьников» в ИБХ РАН)

Мария Терёшина рассказывает о регенерации — полноценном восстановлении «случайно» утраченных частей организма. Эта способность будоражит умы учёных вот уже 250 лет. Мария объясняет, кто и что может регенерировать, каковы основные механизмы этого процесса и почему же у нас с вами нет этой замечательной способности.

Мария Терёшина — кандидат биологических наук, сотрудник ИБХ.

Регенерация органов и тканей: как это происходит? (видео)

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *