Что такое сглаживающий фильтр
ElectronicsBlog
Обучающие статьи по электронике
Выпрямители. Часть 2. Сглаживающие фильтры
Всем доброго времени суток. Сегодня продолжение темы про выпрямители и поговорим мы о сглаживающих фильтрах выпрямителей. Сглаживающие фильтры включаются между выпрямителем и нагрузкой для уменьшения переменных составляющих (пульсаций) выпрямленного напряжения. Эти фильтры выполняются из индуктивных элементов – дросселей и из ёмкостных элементов – конденсаторов. Простейший сглаживающий фильтр может состоять только из одного элемента, например дросселя или конденсатора. В малогабаритной аппаратуре сравнительно малой мощности индуктивные элементы фильтра могут быть заменены активными (резисторами).
Сглаживающие фильтры, прежде всего, характеризуются коэффициентом сглаживания q, представляющим собой отношение коэффициентов пульсаций на входе S0 и выходе S0H фильтра:
Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.
Индуктивный сглаживающий фильтр
Применяется в маломощных выпрямителях, но может входить в состав сложных многозвенных фильтров. Параметры дросселя следует выбирать так, чтобы активное сопротивление обмотки rдр было много меньше сопротивления нагрузки (rдр > Rн). В этом случае почти вся постоянная составляющая напряжения будет приложена к нагрузке, а переменная составляющая – к дросселю.
По заданному коэффициенту сглаживания q можно рассчитать необходимую индуктивность сглаживающего фильтра
Индуктивный фильтр прост, дешев, имеет малые потери мощности; коэффициент сглаживания фильтра растёт с увеличением индуктивности дросселя, числа фаз питающего напряжения и с уменьшением сопротивления нагрузки. Поэтому индуктивные фильтры обычно применяются совместно с многофазными мощными выпрямителями. При отключении нагрузки или скачкообразном изменении ее сопротивления возможно возникновение перенапряжений; в этом случае параллельно обмотке дросселя необходимо включать защитные устройства, например разрядники. В маломощных однофазных выпрямителях индуктивный фильтр может являться звеном более сложного фильтра.
Eмкостной сглаживающий фильтр
Емкостной сглаживающий фильтр состоит из конденсатора Сф, подключённого параллельно сопротивлению нагрузки Rн. Принцип действия заключается в накоплении электрической энергии конденсатором фильтра и последующей отдачи этой энергии в нагрузку. Заряд и разряд конденсатора фильтра происходит с частотой пульсаций fп выпрямленного напряжения.
Для расчёта ёмкости конденсатора сглаживающего фильтра можно воспользоваться следующей формулой
, где
результируещее значение ёмкости выражено в микрофарадах,
SOH – коэффициент пульсаций в процентах, %;
RH – сопротивление нагрузки в омах, Ом;
fc – частота сети в герцах, Гц;
m – число используемых при выпрямлении полупериодов за период напряжения сети,m = 1 – для однополупериодных, m = 2 – для двухполупериодных.
Емкостной фильтр целесообразней всего применять совместно с однофазными и маломощными схемами выпрямления.
Сглаживающий LC фильтр
Сглаживание пульсаций выпрямленного напряжения будет более эффективным, если в совместить два предыдущих фильтра: индуктивный и емкостной фильтры. Данные типы сглаживающих фильтров называют LC фильтрами
Простейший Г-образный индуктивно-емкостный фильтр рассчитывают такким образом, чтобы параметры элементов подходили под следующие условия
Коэффициент сглаживания Г-образного фильтра связан с произведением индуктивности и емкости следующим образом:
Сглаживающие RC фильтры
В схемах выпрямления малой мощности дроссель фильтра может быть заменён резистором RФ. Такие типы фильтров называют RC фильтрами
Расчёт сглаживающего RC фильтра должен вестись с учётом следующих условий
Коэффициент сглаживания фильтра
Сопротивление резистора RФ обычно задаются в пределах RФ = (0,15…0,5)RH; КПД резистивно-емкостного фильтра сравнительно мал и обычно составляет 0,6…0,8, причем при ηф = 0,8 RФ = 0,25RH. Емкость Cф (в микрофарадах), обеспечивает требуемый коэффициент сглаживания q при частоте сети fC = 50 Гц, находят из выражения
Преимущества резистивно-емкостных фильтров: малые габариты, масса и стоимость; недостаток – низкий КПД.
Многозвенные сглаживающие фильтры
Если с помощью индуктивно-емкостного фильтра необходимо обеспечить коэффициент сглаживания пульсаций более 40…50, то вместо однозвенного фильтра целесообразнее использовать двухзвенный сглаживающий фильтр.
Фильтры с тремя и более звеньями на практике применяются редко. В общем случае коэффициент сглаживания многозвенного фильтра равен произведению коэффициентов сглаживания отдельных звеньев: q = q’q’’q’’’ …
Сглаживающие индуктивно-емкостные фильтры достаточно просты и эффективны в выпрямительных устройствах средней и большой мощностей. Однако масса и габариты таких фильтров весьма значительны, коэффициент сглаживания снижается с ростом тока нагрузки, фильтры малоэффективны при появлении медленных изменений сетевого напряжения. Индуктивные элементы фильтра являются источниками магнитных полей рассеяния, а совместно с паразитными емкостными элементами создают колебательные контуры, способствующие появлению переходных процессов.
Транзисторный сглаживающий фильтр
Транзисторные фильтры по сравнению с индуктивно-емкостными сглаживающими фильтрами имеют меньшие габариты, массу и более высокий коэффициент сглаживания пульсаций.
Фильтры могут быть выполнены по схемам с последовательным или параллельным включением силового транзистора по отношению к сопротивлению нагрузки, а также с включением нагрузки RH в цепь коллектора или эмиттера транзистора. Недостатком фильтров с нагрузкой в цепи коллектора является большое изменение выходного напряжения при изменении сопротивления нагрузки. Поэтому чаще используют фильтры, в которых сопротивление нагрузки включено в цепь эмиттера силового транзистора.
Фильтр с последовательным транзистором
Транзисторный сглаживающий фильтр с последовательным включением транзистора и нагрузкой в цепи эмиттера эквивалентен П-образному LC фильтру. Принцип действия его основан на том, что коллекторный и эмиттерный токи транзистора в режиме усиления практически не зависит от напряжения коллектор-эмиттер. Если выбрать рабочую точку транзистора на горизонтальном участке выходной вольт-амперной характеристики, то его сопротивление для переменного тока будет значительно большим, чем для постоянного тока.
Транзисторный фильтр
В схеме базовый ток транзистора VT задается резистором Rб. Конденсатор Сб достаточно большой емкости устраняет напряжение пульсаций на переходе эмиттер-база. Поэтому переменная составляющая напряжения пульсаций прикладывается к переходу база-коллектор и выделяется на транзисторе VT. В коллекторном и эмиттерном токе переменная составляющая практически отсутствует, поэтому пульсации в нагрузке RH также очень малы.
Коэффициент сглаживания транзисторного фильтра тем больше, чем больше коэффициент передачи тока транзистора VT и чем больше значение отношений
то есть чем меньше напряжение пульсаций на переходе эмиттер-база силового транзистора.
Составной транзистор
Для более успешного выполнения этих соотношений конденсатор Сб может быть заменён одно- или двухзвенным RC сглаживающим фильтром, а для увеличения коэффициента передачи тока транзистор VT можно выполнить составным
Транзисторный фильтр со стабилитроном
Еще эффективней работает транзисторный фильтр, у которого в цепь базы транзистора включен стабилитрон
Коэффициент полезного действия транзисторного фильтра будет тем больше, чем меньше падание постоянного напряжения на силовом транзисторе. Однако амплитуда переменной составляющей напряжения на транзисторе не должна превышать значение постоянного напряжения на нём, иначе фильтр потеряет свою работоспособность.
Фильтр с параллельным транзистором
Фильтр с балластным резистором и параллельным включением транзистора
Фильтр с балластным резистором и последовательным включением транзистора
Транзисторные фильтры с балластным резистором Rбл и параллельным включением транзистора относительно нагрузки, в отличие от схем с последовательным включением, применяется при сравнительно небольшом выпрямленном напряжении (десятки вольт). Режим работы транзистора VT – минимальное значение тока IK.min – устанавливается соответствующим выбором сопротивлений R1 и R2. Переменная составляющая напряжения в этой схеме прикладывается к переходу эмиттер-база транзистора VT, усиливается и выделяется на балластном резисторе Rбл. Эта составляющая оказывается в противофазе с переменной составляющей напряжения, выделяющейся на Rбл при непосредственном протекании тока нагрузки. Выбором Rбл и IK.min можно добиться их полной компенсации. Амплитуда переменной составляющей тока транзистора VT должна быть меньше протекающего постоянного тока IK.min, иначе схема будет неработоспособна. Ток IK.min, не должен быть очень малым, так как иначе потребуется увеличение сопротивления Rбл, что приведёт к снижению КПД фильтра. Слишком большой ток также нецелесообразен, так как увеличивается мощность потерь на транзисторе и снижается КПД.
Коэффициент сглаживания параллельного транзисторного фильтра будет тем больше, чем больше сопротивление Rбл, емкость конденсаторов С1 и С2, крутизна вольт-амперной характеристики транзистора. Недостатком транзисторного фильтра с параллельным включением транзистора является значительное изменение среднего значения коллекторного тока транзистора, при изменении среднего значения выпрямленного напряжения, поступающего на вход фильтра. Это приводит к снижению КПД фильтра.
Следует помнить, что транзисторные фильтры не обеспечивают стабилизацию постоянной составляющей выпрямленного напряжения, а при изменении тока нагрузки, температуры окружающей среды и воздействия других дестабилизирующих факторов вносят дополнительную нестабильность выпрямленного напряжения.
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
Сглаживающие фильтры
Переменный ток идеально выпрямить нельзя, поэтому на выходе любого выпрямителя присутствуют пульсации с частотой 50 Гц или 100 Гц. Пульсации вредно отражаются на работе питаемого устройства, и поэтому их уровень необходимо снижать. Эту задачу и выполняют сглаживающие фильтры.
Основным из параметров сглаживающих фильтров является коэффициент сглаживания (фильтрации), который определяется отношением коэффициента пульсации на входе фильтра к коэффициенту пульсации на его выходе (рис.1):
Рис.1. Процесс фильтрации
Качество сглаживающих свойств фильтров ( коэффициент сглаживания) можно оценить по следующей формуле:
Для удовлетворения фильтрующих свойств необходимо выполнение условий: U12 Коэффициент сглаживания учитывает подавление пульсаций и передачу постоянной составляющей U. Для устройств, беспрепятственно передающих постоянную составляющую, коэффициент сглаживания – это деление пульсаций между нагрузкой и фильтром (при этом считается, что Uвх приблизительно равно Uн).
Фильтры можно классифицировать следующим образом:
1. По частотному составу различают:
а) простые (однозвенные)
б) сложные (многозвенные или резонансные);
4. По конструктивному исполнению:
При проектировании фильтров как и при проектировании других электронных систем и устройств используются общесистемные критерии оптимальности:
Минимизация сводится к минимизации суммарной ёмкости и индуктивности.
Простейшим сглаживающим фильтром является конденсатор, включенный параллельно нагрузке (емкостный фильтр). Или можно включить дроссель, но уже последовательно с сопротивлением нагрузки (индуктивный фильтр). При этом, дроссель можно заменить на волновое сопротивление.
Комбинация этих элементов дает еще больший эффект сглаживания. Варианты построения различных типов фильтров приведены на рисунке 2.
Рис.2. Сложные (многозвенные) фильтры.
Рассмотрим работу устройства на примере емкостного фильтра. Как же происходит сглаживание пульсаций? Давайте посмотрим на форму выходного напряжения, например, однополупериодного выпрямителя без фильтра, показанную на рисунке 3:
Рис.3. Форма выходного напряжения однополупериодного выпрямителя без фильтра
Рис.4. Подсоединение фильтра Сф относительно нагрузки Rн
При подключении осциллографа параллельно нагрузке выпрямителя получим следующую диаграмму работы выпрямителя с С-фильтром (рис. 5):
Рис.5. Форма выходного напряжения однополупериодного выпрямителя с ёмкостным фильтром
Сглаживающие фильтры и стабилизаторы напряжения
Сглаживающие фильтры предназначены для уменьшения пульсаций выпрямленного напряжения. Сглаживание пульсаций оценивают коэффициентом сглаживания q.
Основными элементами сглаживающих фильтров являются конденсаторы, катушки индуктивности и транзисторы, сопротивление которых различно для постоянного и переменного токов.
В зависимости от типа фильтрующего элемента различают емкостные, индуктивные и электронные фильтры. По количеству фильтрующих звеньев фильтры делятся на однозвенные и многозвенные.
Емкостной фильтр представляет собой конденсатор большой емкости, который включается параллельно нагрузочному резистору Rн. Конденсатор обладает большим сопротивление постоянному току и малым сопротивлением переменному току. Рассмотрим работу фильтра на примере схемы однополупериодного выпрямителя (рис. 1, а).
При протекании положительной полуволны во временном промежутке t0 – t1 (рис. 2.63, б) протекает ток нагрузки (ток диода) и ток заряда конденсатора. Конденсатор заряжается и в момент времени t1 напряжение на конденсаторе превышает спадающее напряжение вторичной обмотки – диод закрывается и во временной промежуток t1 – t2 ток в нагрузке обеспечивается разрядом конденсатора. Т.о. ток в нагрузке протекает постоянно, что значительно уменьшает пульсации выпрямленного напряжения.
Емкостный фильтр целесообразно применять с высокоомным нагрузочным резистором RH при небольших мощностях нагрузки.
Индуктивный фильтр (дроссель) включается последовательно с Rн (рис. 3, а). Индуктивность обладает малым сопротивлением постоянному току и большим переменному. Сглаживание пульсаций основывается на явлении самоиндукции, которая изначально препятствует нарастанию тока, а затем поддерживает его при уменьшении (рис. 2, б).
Индуктивные фильтры применяют в выпрямителях средней и большой мощностей, т. е. в выпрямителях, работающих с большими токами нагрузки.
Коэффициент сглаживания определяется по формуле: q = 2π fс m Lф /Rн
Работа емкостного и индуктивного фильтра основана на том, что во время протекания тока, потребляемого из сети, конденсатор и катушка индуктивности запасают энергию, а когда тока от сети нет, либо он уменьшается, элементы отдают накопленную энергию, поддерживая ток (напряжение) в нагрузке.
Многозвенные фильтры используют сглаживающие свойства и конденсаторов и катушек индуктивности. В маломощных выпрямителях, у которых сопротивление нагрузочного резистора составляет несколько кОм, вместо дросселя Lф включают резистор Rф, что существенно уменьшает массу и габариты фильтра.
На рисунке 3 представлены типы многозвенных LC- и RC- фильтров.
Стабилизаторы предназначены для стабилизации постоянного напряжения (тока) на нагрузке при колебаниях сетевого напряжения и изменении потребляемого нагрузкой тока.
Стабилизаторы подразделяются на стабилизаторы напряжения и тока, а также на параметрические и компенсационные. Стабильность выходного напряжения оценивают коэффициентом стабилизации Кст.
Схема параметрического стабилизатора приведена на рисунке 4. Входное напряжение UBX распределяется между ограничивающим резистором Rогр и параллельно включенными стабилитроном VD и резистором нагрузки Rн.
Рисунок 4 – Параметрический стабилизатор
При увеличении входного напряжения ток через стабилитрон увеличится, значит, увеличится ток через ограничивающий резистор, и на нём будет происходить большее падение напряжения, а напряжение нагрузки останется неизменным.
Компенсационный стабилизатор использует в качестве ограничивающего резистора переменное сопротивление транзистора. С ростом входного напряжения возрастает и сопротивление транзистора, соответственно с уменьшением напряжения уменьшается сопротивление. При этом напряжение на нагрузке остается неизменным.
Схема стабилизатора на транзисторах представлена на рисунке 5. Принцип регулирования выходного напряжения URн основан на изменении проводимости регулирующего транзистора VT1.
Рисунок 5 – Схема компенсационного стабилизатора напряжения
Например, при увеличении входного напряжения, выходное также возрастёт, что приведёт к росту напряжения на базе транзистора VT2, в тоже время потенциал эмиттера VT2 останется прежним. Это приведёт к увеличению тока базы, а значит и тока коллектора транзистора VT2 – потенциал базы транзистора VT1 уменьшится, транзистор подзакроется и на нём будет происходить большее падение напряжения, а выходное напряжение останется неизменным.
На сегодняшний день стабилизаторы выпускают в виде интегральных схем. Типовая схема включения интегрального стабилизатора изображена на рисунке 6.
Рисунок 6 – Типовая схема включения интегрального стабилизатора напряжения
Выбор стабилизатора производится исходя из значения выходного напряжения, максимального тока нагрузки и диапазона изменения входного напряжения.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Что такое сглаживающий фильтр
Критерии качества сглаживающих свойств фильтров
Сглаживающий фильтр предназначен для подавления пульсаций выпрямленного напряжения. Он относится к классу низкочастотных фильтров. Критерием качества сглаживающих свойств фильтров является коэффициент сглаживания S :
К параметрам схемы замещения предъявляются следующие требования:
Для получения высокого значения коэффициента сглаживания Z1 и Z2 должны быть представлены реактивными элементами. В качестве Z 1 выбирается дроссель.Так как дроссель установлен в цепи постоянного тока, то для исключения намагничивания сердечника он должен выполнятся на сердечнике с воздушным ( или немагнитным) зазором. На высокой частоте используют альсифер, т.к. этот материал имеет достаточный запас по намагничиванию сердечника.
В качестве Z 2 используют электролитический конденсатор, так как он удовлетворяет требованию :
.
Электролитическому конденсатору присущи следующие особенности :
· у ниполярность (при неверном подключении – взрывоопасен) ;
· н еобходима постоянная тренировка напряжением, т.к. он имеет свойство высыхать, при этом все параметры изменяются ;
· чувствительность к пульсациям тока, напряжения и превышению максимально допустимого уровня напряжения.
При проектировании фильтров должны учитываться все эти особенности.
Пассивные сглаживающие фильтры
Активно-индуктивный ( R-L ) сглаживающий фильтр
Установим связь коэффициента сглаживания фильтра с параметрами его элементов.
Коэффициент сглаживания фильтра прямо пропорционален постоянной цепи Т и частоте пульсаций выпрямленного напряжения.
Активно- индуктивный фильтр является габаритным устройством, поэтому для уменьшения его размеров стараются повысить пульсность в звене выпрямителя. Данный фильтр используется при постоянном токе нагрузки в цепях с повышенным током. При возрастании тока нагрузки (I н) происходит увеличение энергии, накапливаемой в дроселе, при этом увеличивается ЭДС самоиндукции, что препятствует прохождению в нагрузку переменной составляющей тока. При этом улучшаются сглаживающие свойства фильтра.
При работе на импульсную нагрузку а, именно при “ сбросе ” тока нагрузки I н или отключении источника питания возникает перенапряжение, который может привести к выходу из строя элементов схемы. Поэтому при проектировании сглаживающих фильтров необходимо учитывать такие перенапряжения.
По законам Ома и Кирхгофа:
Активно- емкостный ( R-C ) сглаживающий фильтр
Получим выражение для коэффициента сглаживания через параметры схемы замещения :
где Z2 – параллельное соединение R Н и C Ф :
Тогда S равен :
где p – пульсность выпрямителя, T – постоянная цепи фильтра.
Индуктивно- емкостный ( L-C ) сглаживающий фильтр
Получим выражение для коэффициента сглаживания фильтра через параметры схемы замещения :
где
При проектировании сглаживающего фильтра на заданный коэффициент пульсации определяют требуемое произведение Lф × Cф. Для обеспечения непрерывного протекания тока дросселя по расчетному значению произведения сначала выбирают дроссель. Для этого рассчитывают допустимое минимальное его значение :
Конденсатор выбирается меньше, чтобы не был выражен импульсный режим работы выпрямителя, поэтому Lдр. увеличивают в (2…4) раза, что уменьшает к.п.д. устройства. Конденсатор выбирают из справочной литературы с учетом следующих требований :
·
по рабочему напряжению
· по допустимому уровню пульсации ;
Рассмотрим переходный процесс при “сбросе” и “набросе” тока нагрузки ( смотрите ниже рисунок). При “ сбросе ” тока нагрузки возникает перенапряжение, которое может привести к выходу из строя аппаратуры, поэтому при расчете LC-фильтра, необходимо учитывать режим работы на импульсную нагрузку.
Многозвенные сглаживающие фильтры
В промышленных выпрямительных устройствах широко используются 2-х-звенные сглаживающие фильтры благодаря следующим достоинствам: малая зависимость коэф фициента с глаживания от тока нагрузки, высокие качественные и удельные показатели. Дальнейшее увеличение числа звеньев приведет к уменьшению области устойчивой работы источника питания (так как источник питания представляет собой замкнутую систему автоматического регулирования, то увеличение числа реактивных элементов в силовой цепи может привести к неустойчивости ) и уменьшению к.п.д. устройства.
Получим выражение для коэффициента сглаживания многозвенного фильтра, т.е. докажем, что при каскадном включении коэффициенты сглаживания каскадов перемножаются.
Резонансные сглаживающие фильтры
Существует две модификации резонансных сглаживающих фильтров:
Фильтр с параллельным колебательным контуром ( фильтр “пробка” )
Получим выражение для коэффициента сглаживания фильтра:
Фильтр(контур) настраивается на частоту первой гармоники и создается большле сопротивление Z к для ее прохождения. Кондесатор C ф сглаживает гармоники высших порядков.
Резонансный фильтр с последовательным колебательным контуром (режекторный фильтр)
Получим выражение для коэффициента сглаживания фильтра :
При настройке колебательного контура ZК на частоту первой гармоники, сопротивление контура становится равной потерям в дросселе RК и первая гармоника выпрямленного напряжения не проходит в нагрузку.
Активный сглаживающий фильтр.
· высокие качественные и энергетические показатели;
· широкий диапазон частот;
· малая зависимость коэффициента сглаживания от изменений тока нагрузки;
· малые магнитные поля из-за отсутствия индуктивности в схеме фильтра;
· отсутствие опасных режимов при возникновении переходного процесса, т.к. нет перенапряжения при “ сбросе ” тока нагрузки.
К недостаткам схемы можно отнести : снижение к.п.д. устройства при увеличении тока нагрузки из-за увеличения потерь на транзисторе; необходимость защиты транзистора в переходных режимах.
R Д = D U К / D I К будет много больше его сопротивления постоянному току
Таким образом, сглаживание пульсаций в фильтре ОК обеспечивается RC фильтром в базовой цепи, а транзистор VT предназначен для усиления сигнала по мощности (эмиттерный повторитель!). Резистор R задаёт режим работы транзистора по постоянному току, устанавливая ток базы.
Второй способ построения активного фильтра состоит в том, что транзистор включается по схеме с общей базой: