Что такое сглаживающий реактор
Сглаживающий реактор
Сглаживающие реакторы предназначены для сглаживания пульсаций тока в цепи тяговых двигателей электровоза, вызванных приложением к двигателю пульсирующего выпрямленного напряжения.
На электровозах с плавным тиристорным регулированием напряжения, роль сглаживающих реакторов особенно велика, так как именно они обеспечивают протекание тока через тяговые двигатели по замкнутому (нулевому) контуру, в отсутствии приложенного к ТЭД напряжения со стороны трансформатора в первой зоне регулирования.
Рис. 69. Сглаживающий реактор РС-60.
Реактор (рис. 69) представляет собой электрическую катушку индуктивности и состоит из следующих узлов:
· шихтованного магнитопровода, выполненного из электротехнической стали;
· обмотки, выполненной из медной шины, рассчитанной на протекание тока якоря 2 или 3-х ТЭД (1700 – 2500 А) и отделенной от магнитопровода изоляционным цилиндром.
· изоляционного основания (боковин);
· стяжных диамагнитных шпилек (5шт.), выполненных из дюралюминия или нержавеющей стали.
Реакторы, установленные на электровозах переменного тока, обеспечивают сглаживание пульсаций тока якоря с коэффициентом 23 – 25%.
Благодаря снижению пульсации тока якоря, улучшаются условия коммутации на коллекторе при работе ТЭД, снижаются потери на перемагничивание (потери в стали).
Технические данные сглаживающих реакторов:
Параметр | ВЛ80 РС-60 |
Номинальное напряжении изоляции, В | |
Номинальный ток, А | |
Часовой ток, А | |
Начальная индуктивность, мГн | 5,85 |
Индуктивность при двойном часовом токе, мГн | 4,0 |
Масса |
4. 19 Система вентиляции.
Система вентиляции (рис. 70) электровоза принудительная и предназначена для охлаждения: ТД, ВИП, теплообменников тягового трансформатора, индуктивных шунтов, сглаживающих реакторов, блока балластных резисторов, выпрямительной установки возбуждения и для обеспечения требуемого избыточного давления в кузове с целью защиты от проникновения в него пыли и снега во время движения электровоза, а также для охлаждения воздуха в кузове в летнее время. Система вентиляции предусматривает два режима: летний и зимний. В летнем режиме эксплуатации система вентиляции обеспечивает полный номинальный расход воздуха на охлаждение и выброс воздуха в кузов, необходимый для создания противодавления в кузове. В зимнем режиме эксплуатации кроме выброса в кузов из воздуховодов, подающих воздух на охлаждение тяговых двигателей, предусмотренного в летнем режиме, в кузов подается воздух после охлаждения сглаживающих реакторов и частично воздух, идущий на охлаждение теплообменников тягового трансформатора за счет перекрытия одного из воздуховодов к его теплообменникам, при этом расход воздуха на охлаждение теплообменников трансформатора снижается до 280 м 3 /мин. Часть направленного в кузов воздуха, создав необходимое противодавление в кузове (3,0 – 5,0 кгс/см 2 ), уходит наружу через неплотности кузова, а остальная часть – через двери форкамер (положение которых фиксируется специальным устройством) и специальные рециркуляционные окна,расположенные на стенках проходных форкамер, вновь поступает в вентилятор, что уменьшает забор наружного воздуха, содержащего снег, пыль, влагу. При правильной регулировке система вентиляции обеспечивает следующие расходы воздуха, м 3 /мин (не менее), для охлаждения электрооборудования:
Тягового двигателя НБ-418К6………………………………………..105
Сглаживающего реактора РС-60. …………………….160
Индуктивного шунта ИШ-95…………………………………………20
Блока балластных резисторов ББС-131 (в горячем состоянии)……290
Выпрямительной установки возбуждения ВУВ-758…………………17
Выпрямительно-инверторного преобразователя ВИП2-2200М …….340
Рис.70. Схема вентиляции.
Охлаждение тяговых двигателей, индуктивных шунтов. Воздух через лабиринтные жалюзи и изолированные от других помещений кузова форкамеры, охлаждая индуктивные шунты, засасывается центробежными вентиляторами и нагнетается в воздуховоды к тяговым двигателям. Требуемый расход воздуха на охлаждение тяговых двигателей регулируют заслонками на окнах выброса воздуха в кузов, после чего заслонки фиксируют болтами. После охлаждения тяговых двигателей воздух выбрасывается в атмосферу под кузов электровоза. Охлаждение силового оборудования. Воздух поступает через лабиринтные жалюзи и форкамеры и подается двумя центробежными вентиляторами на охлаждение выпрямительно-инверторных преобразователей, затем одна часть воздуха поступает на охлаждение сглаживающих реакторов, другая — на охлаждение теплообменников тягового трансформатора. Распределение воздуха между сглаживающими реакторами и теплообменниками трансформатора осуществляется заслонками на воздуховодах к трансформатору и заслонками после сглаживающих реакторов. После охлаждения теплообменников тягового трансформатора воздух выбрасывается под кузов, после охлаждения сглаживающего реактора в летнем режиме эксплуатации – под кузов, в зимнем режиме эксплуатации – в кузов. Охлаждение блока балластных резисторов и выпрямительной установки возбуждения. Охлаждение осуществляется посредством центробежного вентилятора Ц8-19 № 7,6. Воздух через жалюзи поступает в форкамеру, затем подается в блок балластных резисторов и выпрямительную установку возбуждения. После охлаждения блока балластных резисторов воздух выбрасывается через колпак и крышевые жалюзи в атмосферу. После охлаждения выпрямительной установки возбуждения воздух выбрасывается в кузов. На электровозах выпуска с июля 1981 г. в выбросных колпаках блоков балластных резисторов устанавливают снегоотбойные листы, которые улучшают защиту блоков от снега на стоянке и в режиме тяги. Вентиляция кузова. Вентиляция кузова осуществляется воздухом, поступающим через окна выброса в кузов, расположенные на воздуховодах к тяговым двигателям, и воздухом после охлаждения выпрямительной установки возбуждения, при этом в кузове обеспечивается избыточное (по отношению к атмосферному 3,0 – 5,0 кгс/см 2 ), давление для защиты от попадания в кузов пыли и снега через его неплотности. Выбрасывается отработанный воздух из кузова через дефлекторы, расположенные на крыше кузова.
Устройство и назначение сглаживающего и переходного реакторов
Принцип работы и значение сглаживающего и переходного реакторов, необходимость их применении на электровозах переменного и постоянного тока. Технология ремонта сглаживающего реактора типа РС-53. Технические данные, назначение и устройство реактора ПРА-4.
Рубрика | Транспорт |
Вид | реферат |
Язык | русский |
Дата добавления | 31.08.2017 |
Размер файла | 487,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
1. ОБЩИЕ СВЕДЕНИЯ О ПЕРЕХОДНЫХ И СГЛАЖИВАЮЩИХ РЕАКТОРАХ
Катушка с ферромагнитным сердечником в цепи переменного тока. При подключении катушки с ферромагнитным сердечником в цепь переменного тока (рис.1а) протекающий по ней ток определяется потоком, который необходимо создать, чтобы индуцируемая в катушке э. д. с. eL была равна и противоположна по фазе приложенному к ней напряжению. Этот ток называют намагничивающим. Он зависит от числа витков катушки, магнитного сопротивления ее магнитопровода (т. е. от площади поперечного сечения, длины и материала магнитопровода), напряжения и частоты его изменения. При увеличении поданного на катушку напряжения u возрастает поток Ф, сердечник ее насыщается, что вызывает резкое увеличение намагничивающего тока. Следовательно, такая катушка представляет собой нелинейное индуктивное сопротивление XL, значение которого зависит от приложенного к ней напряжения. Вольт-амперная характеристика катушки с ферромагнитным сердечником (рис.1б) имеет вид, подобный кривой намагничивания. Как было показано в главе, магнитное сопротивление магнитопровода определяется также размерами воздушных зазоров, имеющихся в магнитной цепи. Поэтому форма вольт-амперной характеристики катушки зависит от воздушного зазора б в магнитной цепи. Чем больше этот зазор, тем больший ток i проходит через катушку при заданном напряжении и, следовательно, тем меньше индуктивное сопротивление XL катушки. С другой стороны, чем больше магнитное сопротивление, создаваемое воздушным зазором, по сравнению с магнитным сопротивлением ферромагнитных участков магнитопровода, т. е. чем больше зазор б, тем больше вольт-амперная характеристика катушки приближается к линейной.
Регулировать индуктивное сопротивление XL катушки с ферромагнитным сердечником можно не только путем изменения воздушного зазора, но и путем подмагничивания ее сердечника постоянным током. Чем больше подмагничивающий ток, тем большее насыщение создается в магнитопроводе катушки и тем меньше ее индуктивное сопротивление ХL. Катушка с ферромагнитным сердечником, подмагничиваемым постоянным током, называется насыщающимся реактором.
Применение реакторов для регулирования и ограничения тока в электрических цепях переменного тока вместо резисторов обеспечивает значительную экономию электрической энергии, так как в реакторе в отличие от резистора потери мощности незначительны (они определяются малым активным сопротивлением проводов реактора).
При включении катушки с ферромагнитным сердечником в цепь переменного тока протекающий по ней ток не будет синусоидальным. Из-за насыщения сердечника катушки в кривой тока i получаются «пики» тем больше, чем больше насыщение магнитопровода (рис.1в).
выпрямленного тока, которая имеет наибольшую амплитуду, является гармоника с частотой 100 Гц. Для эффективного ее подавления необходимо было бы включить сглаживающий реактор с большой индуктивностью, т. е. довольно значительных размеров. Поэтому практически эти реакторы рассчитывают так, чтобы снизить коэффициент пульсации тока до 25—30%.
Индуктивность реактора, а следовательно, и его габаритные размеры зависят от наличия в нем ферромагнитного сердечника. При отсутствии сердечника для получения требуемой индуктивности реактор должен иметь катушку значительного диаметра и с большим числом витков. Реакторы без сердечника устанавливают на тяговых подстанциях для сглаживания пульсации тока, поступающего в контактную сеть от выпрямителей. Они имеют большие габаритные размеры и массу и требуют значительного расхода меди. На э.п.с. устанавливать подобные устройства не представляется возможным.
Однако выполнять реактор с замкнутым стальным сердечником, как у трансформатора, нецелесообразно, так как протекающая по его катушке постоянная составляющая тока вызвала бы при больших нагрузках сильное насыщение сердечника и снижение индуктивности реактора. Поэтому магнитную систему сглаживающего реактора должны рассчитывать так, чтобы она не насыщалась от постоянной составляющей тока. Для этой цели магнитопровод 1 реактора выполняют незамкнутым (рис.2 а) так, чтобы его магнитный поток частично проходил по воздуху, либо замкнутым, но с большими воздушными зазорами (рис. 2б). Чтобы уменьшить расход меди и снизить массу и габаритные размеры реактора, его обмотку 2 рассчитывают на повышенную плотность тока и интенсивно охлаждают.
Рис. 2. Магнитная система сглаживающего реактора при разомкнутом (а) и замкнутом (б) магни-топроводах
На электровозах и электропоездах применяют реакторы с принудительным воздушным охлаждением. Такой реактор заключают в специальный цилиндрический кожух; охлаждающий воздух проходит по каналам между его сердечником и обмоткой. Имеются также конструкции реакторов, в которых сердечник с обмоткой установлен в баке с трансформаторным маслом. Для уменьшения вихревых токов, которые снижают индуктивность реактора, его сердечник собирают из изолированных листов электротехнической стали.
Подобную же конструкцию имеют индуктивные шунты, которые обеспечивают при переходных процессах требуемое распределение токов между обмоткой возбуждения тягового двигателя и шунтирующим резистором (при регулировании частоты вращения двигателей путем уменьшения магнитного потока).
Переходной реактор типа ПРА-48 служит для осуществления перехода с одной позиции ЭКГ на другую без разрыва электрической цепи с током тяговых двигателей, а также является делителем напряжения. Он ограничивает ток короткого замыкания в секции трансформатора до 1200А. Каждый реактор работает самостоятельно в одном из плеч тяговой вторичной обмотки трансформатора.
2. СГЛАЖИВАЮЩИЙ РЕАКТОР РС-53 ЭЛЕКТРОВОЗА ВЛ-80 С
Сглаживающий реактор типа РС-53 служит для сглаживания пульсирующего тока после выпрямительных установок, что необходимо для улучшения коммутации ТЭД.
Для преобразования переменного тока в постоянный с целью питания ТЭД электровоза, применяют выпрямительные установки со схемой двух полупериодного выпрямления, которые преобразуют переменный ток в пульсирующий, т.е. ток, который не изменяется по направлению, но меняется по времени. Такой ток не пригоден для питания ТЭД, так как при высоких пульсациях двигатели имели бы неудовлетворительную коммутацию и сильно нагревалась бы из за возникновения больших дополнительных потерь. Поэтому для уменьшения пульсаций необходимо выпрямленный ток сглаживать сглаживающим реактором(катушка индуктивности) который включается между выпрямительной установкой и ТЭД полностью сгладить выпрямленный ток невозможно, так как в этом случае сглаживающий реактор имел бы большие размеры.
2.2 ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ РС-53
Габаритные размеры, мм. 915x560x672
Часовый ток, А. 1850
Сечение провода обмотки, мм2. 4×65
Номинальное напряжение, В. 1500
Количество охлаждающего воздуха, м3/мин. 50
Индуктивность, мГн. 5,8
Сглаживающие реакторы помещены на электровозах в кожуха под тяговыми выпрямительными установками ВУ1 и ВУ2 соответственно и охлаждаются воздухом от вентиляторов МВ3 МВ4.
2.4 РАБОТА СГЛАЖИВАЮЩИХ РЕАКТОРОВ В СХЕМЕ
Принцип работы сглаживающего реактора основан на явлении самоиндукции. При нарастании пульсирующего тока в катушках сглаживающих реакторов наводится ЭДС самоиндукции, направленное по правилу Ленца встречно нарастающему току и не дает ему сразу увеличится до максимального значения.При убывании пульсирующего тока ЭДС самоиндукции направлена согласно с убывающим током и по правилу Ленца не дает току сразу уменьшится до нулевого значения.
В результате в цепи ТЭД с последовательно включенными сглаживающими реакторами значительно уменьшается переменная составляющая пульсирующего тока, что способствует улучшению коммутации ТЭД.
Для устойчивой работы ТЭД на электровозе необходимо, не просто ограничить пульсации выпрямленного пульсирующего тока, добиться их равномерности по величине, с 1 по 33 позицию. Сглаживающий реактор обладает начальной индуктивностью 6 мГн с последующим снижением до 4 мГн. Снижение индуктивности происходит в результате подмагничивания сердечника рабочим током. Поэтому пульсации тока, протекающего по обмоткам ТЭД, получаются равномерными на любой позиции.
При этом по обмотке возбуждения ТЭД протекает только постоянная составляющая выпрямленного тока, а переменная составляющая отводится по шунтирующему резистору.
2.5 ТЕХНОЛОГИЯ РЕМОНТА СГЛАЖИВАЮЩЕГО РЕАКТОРА ТИПА РС-53
Сглаживающий реактор очищается давлением сжатого воздуха не более 300 кПа, разбирается, проверяется состояние деталей.
Измеряется активное сопротивление катушек, сопротивление изоляции катушек относительно магнитопровода, убеждаются в отсутствии межвитковых замыканий. Катушки, имеющие пробой изоляции на корпус, выжиги глубиной более 3 мм или механические повреждения, низкое сопротивление изоляции, не устранимое сушкой, ремонтируются с полной заменой изоляции.
Катушки пропитываются и просушиваются в соответствии с техническими требованиями чертежа. Выводы катушки облуживаются оловянисто-свинцовым припоем.
Магнитопровод сглаживающего реактора с выжигами, расслоением или повреждением пластин разбирается с переборкой и заменой негодных пластин,
Проверяется сопротивление изоляции стяжных шпилек магнитопровода, которое должно быть не менее 5 МОм.
Стеклопластиковые кожуха реакторов РС-53 с трещинами, расслоениями восстанавливаются согласно требованиям Типовой технологической инструкции по заводскому ремонту сглаживающих реакторов типа РЭД-4000, РЭД-4000А, РС-32, РС-53, РСМ-2 электровозов переменного тока или заменяются новыми.
После ремонта реактора производится окраска в соответствии с требованиями чертежей. Проверяется индуктивное сопротивление реактора, убеждаются в отсутствии межвитковых замыканий катушек, испытываются на электрическую прочность изоляция катушек реактора относительно магнитопровода.
2.6 ПРИСПОСОБЛЕНИЯ, ТЕХ. ОСНАСТКА И ОБОРУДОВАНИЕ ПРИМЕНЯЕМЫЕ ПРИ РЕМОНТЕ
Значительное количество типов и видов электрооборудования, его конструктивные особенности, а также различные объемы ремонта требуют применения целого ряда приспособлений, позволяющих повысить производительность труда, качество ремонта и культуру производства. Ремонт электрической аппаратуры осуществляется в электроаппаратных цехах или отделениях депо, где оборудуются специализированные рабочие места. Приспособления применяемые при ремонте приведены в таблице:
ТЕМА 5.2 УСТРОЙСТВО И РЕМОНТ ПЕРЕХОДНЫХ И СГЛАЖИВАЮЩИХ РЕАКТОРОВ
1 Назначение и устройство реакторов
1.1 Общие сведения о переходных и сглаживающих реакторах
Реактором называют электрическую катушку, индуктивное сопротивление которой значительно по сравнению с индуктивным сопротивлением остальной электрической цепи. Для того чтобы индуктивность реактора была наибольшей, его обмотку располагают на сердечнике из ферромагнитного материала, т. е. материала, обладающего высокой магнитной проницаемостью. Таким материалом является, например, листовая электротехническая сталь. Индуктивность реактора, сердечник которого выполнен из ферромагнитного материала, не является постоянной, а зависит от тока в его обмотке. Это объясняется тем, что индуктивность изменяется прямо пропорционально магнитной проницаемости. В свою очередь магнитная проницаемость зависит от магнитной индукции. Если в обмотке реактора ток возрастает, то одновременно возрастает и магнитная индукция, что вызывает уменьшение магнитной проницаемости, а следовательно, и уменьшение индуктивности. При уменьшении тока в обмотке реактора индуктивность его увеличивается. Это свойство реактора с ферромагнитным сердечником использовано в силовых цепях электровозов для сглаживания пульсаций выпрямленного тока.
Известно, что пульсация выпрямленного тока зависит от тягового тока: чем больше ток, тем меньше пульсация, и наоборот. Между тем для нормальной коммутации тяговых двигателей необходимо, чтобы пульсация в любом режиме работы двигателя оставалась постоянной. Для этого в цепь тока включают реактивные катушки, индуктивность которых наибольшая при малых тяговых токах и наименьшая при больших.
Реактор, включенный последовательно в цепь тяговых двигателей для уменьшения пульсации выпрямленного тока, называют сглаживающим. Такие реакторы применяют на всех электровозах переменного тока. На электровозах ВЛ80т устанавливают четыре сглаживающих реактора типа РС-53. Начальная индуктивность такого реактора составляет 6 мГн, а при номинальном токе часового режима 1850 А уменьшается до 4 мГн. Длительный ток реактора 1700 А; корпусная изоляция рассчитана на напряжение 1500 В; масса реактора 800 кг.
Для интенсивного охлаждения реактора применяется принудительная вентиляция с объемом воздуха 95 м3/мин, проходящего по кожухам, выполненным из стеклопласта. Реактор крепится к раме кузова.
На электровозе ВЛ80к устанавливают четыре реактора РС-32. Основные технические данные реакторов такие же, как у реакторов РС-53. Конструкция реактора отличается от описанной отсутствием кожухов, вследствие чего требуется почти вдвое больше охлаждающего воздуха—180 м3/мин.
На электровозах ВЛ60к применяют два реактора типа РЭД-4000 А. Индуктивность реактора 5,6 мГн при номинальном токе 1545 А и 10,5 мГн при токе 300 А. Корпусная изоляция рассчитана на напряжение 3000 В, масса реактора 1570 кг. Охлаждение воздушное, принудительное. Количество расходуемого воздуха 300 м3/мин.
На электровозах с регулированием напряжения на вторичной обмотке трансформатора в цепь ее регулировочной части включают так называемый переходный реактор.
На электровозах ВЛ80т устанавливают переходные реакторы типа ПРА-48, на электровозах ВЛ80к — ПРА-3 и на электровозах ВЛ60к — ПРА-2. Устройство переходных реакторов всех типов и схемы соединения их обмоток одинаковы. Охлаждение реакторов— естественное воздушное. Реакторы размещены один над другим. Этим достигается наилучшее использование места и их взаимной индуктивности.
1.2 Переходной реактор ПРА-48 (электровоз ВЛ80с)
Переходной реактор типа ПРА-48 служит для осуществления перехода с одной позиции ЭКГ на другую без разрыва электрической цепи с током тяговых двигателей, а также является делителем напряжения. Он ограничивает ток короткого замыкания в секции трансформатора до 1200 А. Каждый реактор работает самостоятельно в одном из плеч тяговой вторичной обмотки трансформатора.
Технические характеристики ПРА-48
Номинальное напряжение относительно земли, кВ. 1500
Номинальное напряжение между выводами, В. 146
Часовый ток ветви, А. 1370
Длительный ток ветви, А. 1270
Индуктивное сопротивление, Ом. 0,12
Число витков. 27
Сечение обмоточного провода, мм2. 8 x 60
Габаритные размеры реактора, мм. 835 x 940 x 955
Масса, кг. 450
Устройство. Оба переходных реактора (рис. 1) выполнены в одном комплекте без стального сердечника. Каждый переходной реактор состоит из четырех катушек.
Каждая катушка реактора намотана в один слой из двух параллельных алюминиевых шин сечением 8 x 60 мм с зазором между шинами 7 мм в виде спирали и имеет 6,75 витков. По радиусам между витками катушки установлены прокладки из электронита для изоляции, по которым все витки катушки стягиваются бандажами из стеклоленты.
При сборке реактора на основании в виде гетинаксовой плиты (толщиной 30 мм) устанавливаются друг на друга четыре катушки нижнего реактора, на них устанавливаются четыре катушки верхнего реактора. Затем все восемь катушек в двух реакторах стягиваются между собой и с основанием при помощи верхних текстолитовых планок и восьми алюминиевых шпилек (М24).
Снизу, сверху и между реакторов укреплены шихтованные пакеты для замыкания по ним переменного магнитного потока катушек реакторов (экранирование), что позволяет уменьшить нагрев крышки трансформатора и основания ЭКГ от действия вихревых токов.
Все четыре катушки каждого реактора соединены между собой последовательно, путем сварки алюминиевых шин. Каждый реактор имеет три вывода: начало, конец и средний вывод «0» между второй и третьей катушками.Переходные реакторы устанавливаются на крышке тягового трансформатора (под ЭКГ). Расстояние между крышкой и основанием реактора должно быть не менее 100 мм. Реактор имеет естественное охлаждение.
Фрагмент работы с оформлением в формате PDF можно посмотреть ЗДЕСЬ
В комплект входит чертеж реакторов на формате А1 в программе «Компас» (формат CDW)
Что такое сглаживающий реактор
Назначение и основные характеристики реакторов. Реакторы электровозов и электропоездов выполняют со стальными магнитопроводами и без них. Их применяют для уменьшения пульсаций выпрямленного тока в цепи тяговых двигателей пульсирующего тока (сглаживающие реакторы), для ограничения тока в секции обмотки трансформатора во время перехода с одной ступени регулирования напряжения на другую (переходные реакторы), более равномерного распределения тока между обмотками возбуждения тяговых двигателей и резисторами ослабления возбуждения (индуктивные шунты), стабилизация напряжения (насыщающиеся реакторы, допускающие изменение параметров с помощью подмагничивания — трансформаторы ТРПШ-2 и др.), сглаживания пульсаций выпрямленного тока в цепи аккумуляторных батарей, в цепи защиты от замыкания на «землю», снижения уровня радиопомех, создаваемых при работе электровоза или электропоезда под контактным проводом, в качестве датчиков для ограничения тока к. з. в случае сквозного пробоя вентилей плеча выпрямителя (токоограничиваюшие реакторы), выравнивания нагрузки между параллельными цепями тиристоров (индуктивные делители) и для других цепей.
Основными характеристиками реакторов являются зависимости магнитной индукции В от суммарной м. д. с. F, индуктивности реактора Lp и магнитного потока Ф от тока / в цепи реактора.
Сглаживающие реакторы. На э. п. с. со статическими преобразователями выпрямленное напряжение на зажимах тяговых двигателей не является постоянным во времени: оно изменяется, пульсирует. Коэффициент пульсаций напряжения
Коэффициент кп„ зависит от схемы выпрямления и угла коммутации диодов и тиристоров выпрямителя. Пульсации выпрямленного напряжения вызывают н пульсации тока тяговых двигателей, которые тем больше, чем меньше индуктивность в их цепи. Собственной индуктивности тяговых двигателей недостаточно для сглаживания тока в необходимых пределах. Поэтому для уменьшения пульсации тока последовательно в цепь двигателей включают добавочное индуктивное сопротивление — сглаживающий реактор. В этом случае коэффициент пульсации тока
Рис 119 Сглаживающие реакторы РС-53(а) электровозов ВЛ80Т, ВЛ80С, РЭД-4000А(б) электровозов ВЛ60″, 1СЬУН-7050
электровозов ЧС4, ЧС4Т (в):
1 — обмотка; 2 — шпнлькн стяжные, 3 — раднально-шихтованный сердечник; 4 — боковина гетннаксовая; 5 — кожух; 6 — установочный угольник, 7 — ярмовая балка; 8 — основание, 9 — разомкнутый магнитопровод, 10 — каркас
на основного слоя 7 мм Стеклопласт обеспечивает упругое крепление пакета без каких-либо крепежных деталей.
Сглаживающие реакторы РС-32, РС-53, РС-60 выполнены с разомкнутой магнитной системой, равноценны по электромагнитным характеристикам, имеют принудительное воздушное охлаждение, и одинаковые по конструкции обмотки и магнитопроводы. Различие между ними заключается в конструкциях воздуховодов. Воздуховод реактора РС-53 входит в конструкцию самого реактора. Реакторы РС-32 и РС-60 размещают в вентиляционных камерах, которые являются частью кузова электровоза. Магнитопровод такого реактора выполнен в виде одиночного радиально-шихто-ванного стержня круглого сечения.
Сглаживающие реакторы ЭРБД-800 и СР-800 имеют магнитопроводы броневого типа. Каждая обмотка их состоит из 14 секций (168 витков) из провода ПСД-3,05 • 10. Реактор ЭРБД-800 имеет принудительное воздушное охлаждение, реактор СР-800 охлаждается одновременно с установленными на нем охладителями масла тягового трансформатора.
Характеристики некоторых сглажи-
Рис. 120. Характеристики сглаживающих реакторов типов РЭД-4000А (кривая /), РС-53 (кривая 2), РС-32 (кривые 3 и 5), РС-56 (кривая 4)
ваюших реакторов показаны на рис 120, а основные технические данные приведены в табл. 6.
Переходные реакторы. Эти реакторы применяют на электровозах для ограничения тока в секции в процессе ее шунтирования при регулировании напряжения на вторичной обмотке трансформатора. Реакторы выполняют как с магнито-проводами, так и без них. В переходном реакторе с магнитопроводом вследствие нелинейности характеристики на-
магничивания амплитуда суммарного тока, обусловленная насыщением магнитной цепи, достигает больших значений. Для снижения ее и уменьшения массы реакторов широко применяют переходные реакторы без магнитопроводов, имеющие линейную характеристику. Индуктивность такого реактора зависит от
геометрических размеров и конструкции обмотки.
На отечественных электровозах применяют переходные реакторы ПРА-1М и ПРА-2, ПРА-ЗА, ПРА-48.
Каждый реактор состоит из двух самостоятельных аппаратов, размещенных один над другим (рис. 121). Этим достигается наиболее выгодное использование площади кузова и взаимной индуктивности реакторов. Каждый аппарат имеет четыре катушки /, включается в одно из плеч трансформатора и работает самостоятельно. По конструкции и схеме все отечественные переходные реакторы одинаковы. Каждая катушка намотана плашмя в один слой из двух параллельных шин алюминия. Между параллельными шинами предусмотрены зазоры 3 мм, между витками — 8 мм. Катушка в радиальном направлении скреплена восемью бандажами из стеклоленты, в осевом — шпильками 2 из дюралюминия. Для предотвращения чрезмерного нагрева находящихся вблизи реактора стальных конструкций сверху и снизу реактора
устанавливают экранирующие шихтованные стальные пакеты 3. Характеристики переходных реакторов приведены в табл. 7.
Реакторы токоограничивающие. Их
применяют на электропоездах ЭР9 и ЭР9П выпуска до 1976 г. для ограничения тока короткого замыкания в выпрямителе и как датчики для отключения главного выключателя.
На любом моторном вагоне установлено три токоограничиваюших реактора ТР-400 каждый в отдельном кожухе. Реактор не имеет магнитопровода, состоит из силовой катушки и дополнительной вторичной обмотки, с которой подается импульс на отключение главного выключателя. Силовая катушка имеет 28 витков из медной шины площадью сечения 5,5×40 мм, дополнительная, расположенная между слоями силовой катушки,—18 витков из провода ПБД диаметром 2,02 мм. Катушки укреплены монтажными колодками на стеклотексто-литовой плите (основании), установленной на изоляторах в общем кожухе