Что такое скалярная скорость

Неравномерное движение и средняя скорость

теория по физике 🧲 кинематика

Неравномерное движение — движение с переменной скоростью, которая может менять как направление, так и модуль.

Неравномерное движение можно охарактеризовать средней скоростью. Различают среднюю векторную и среднюю скалярную скорости.

Средняя векторная скорость

Средняя векторная скорость — это скорость, равная отношению перемещения тела ко времени, в течение которого это перемещение было совершено.

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

v ср — средняя векторная скорость, s — перемещение тела, совершенное за время t

Направление вектора средней скорости всегда совпадает с направлением вектора перемещения.

Чтобы вычислить среднюю векторную скорость, нужно поделить сумму всех перемещений на сумму всех временных промежутков, в течение которых эти перемещения были совершены:

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Пример №1. Миша пробежал стометровку за 16 секунд. Через 1 минуту он вернулся на старт. Найти среднюю векторную скорость мальчика.

Миша совершил одинаковые по модулю, но разные по направлению перемещения. При сложении этих векторов получается 0. Поэтому средняя векторная скорость также равна нулю:

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Средняя скалярная скорость

Средняя скалярная (путевая) скорость — это скорость, равная отношению пути, пройденного телом, ко времени, в течение которого этот путь был пройден.

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

vср — средняя путевая скорость, s — путь, пройденный телом за время t

Чтобы вычислить среднюю путевую скорость, нужно поделить сумму всех путей на сумму всех временных промежутков, в течение которых эти пути были преодолены:

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Пример №2. Мальчик пробежал по периметру квадратного поля сто стороной 100 м. На первые две стороны мальчик потратил по 15 секунд, а на последние две — по 20 секунд. Найти среднюю путевую скорость мальчика.

У квадрата 4 стороны, поэтому путь мальчика составляют 4 дистанции по 100 м каждая. Поэтому средняя путевая скорость равна:

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Средняя скалярная скорость всегда больше или равна модулю средней векторной скорости:

Пример №3. Рыболов остановился на берегу круглого пруда и увидел на противоположном берегу удобное для рыбалки место. Он к нему шел в течение 2 минут. Вычислите среднюю путевую и среднюю векторную скорости рыболова после того, как он придет на новое место, если радиус пруда равен 50 м.

Две противоположные точки окружности соединяются отрезком, проходящим через его центр — диаметром. Поэтому модуль вектора перемещения равен двум радиусам пруда:

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Чтобы дойти до диаметрально противоположной точки окружности, нужно пройти путь, равный половине окружности:

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Переведя 2 минуты в СИ, получим 120 с. Модуль средней векторно скорости равен:

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Пример №4. Первые полчаса автомобиль двигался со скоростью 90 км/ч, а потом 1 час он двигался со скоростью 60 км/ч. Найти среднюю скорость автомобиля.

Нам известны скорости на каждом из участков пути и время, в течение которого каждый из этих участков был преодолен. Поэтому:

Источник

Таким образом, что такое скорость и ее типы?

Имея это в виду, почему Current является скаляром?

Кроме того, что такое вектор, приведите пример?

Является ли сила скалярной величиной?

Во-вторых, какие 3 типа скорости?

Различные типы скоростей равномерная скорость, переменная скорость, средняя скорость и мгновенная скорость.

Начальная скорость V?

Конечная скорость (v) объекта равна начальной скорости (u) этого объекта плюс ускорение (a) объекта, умноженное на прошедшее время (t) от u до v.

Что такое физика скоростей в 10 классе?

Подходит ли текущий скаляр или вектор?

Примечание: ток вектор потому что у него есть величина и направление. Но дело в том, что вектор всегда подчиняется закону сложения векторов. Поскольку ток ему не подчиняется и следует алгебраическому сложению, токи скалярны.

Что такое формула единичного вектора?

Ортопедические векторы вектора направлены по осям. Единичные векторы в трехмерном пространстве можно представить следующим образом: v = х ^ + у ^ + г ^. В трехмерной плоскости вектор v будет обозначаться тремя перпендикулярными осями (осью x, y и z). В математических обозначениях единичный вектор по оси x представлен буквой i ^.

Какие бывают 3 типа векторов?

Типы списков векторов

Что такое векторная формула?

Какая величина есть сила?

Текущая скалярная величина?

Что такое сила, скалярная или векторная?

Что такое начальная скорость?

Следовательно, начальная скорость равна скорость объекта до эффекта ускорения, что вызывает изменение. После ускорения объекта в течение некоторого времени скорость будет конечной скоростью.

Что такое скорость в уроке физики 9?

Вход в музей Мадам Тюссо Расстояние, пройденное телом за единицу времени. Это расстояние, которое проходит тело за единицу времени в заданном направлении. У него есть только Величина.

Что такое скорость с примером?

Какая формула начальной скорости?

Очевидно, эта скорость на временном интервале t = 0. Она обозначается буквой u. Ниже приведены три формулы начальной скорости, основанные на уравнениях движения, если время, ускорение и скорость известны.
.
Формулы для начальной скорости.

uНачальная скорость
tзатраченное время
sсмещение
aускорение

Может ли начальная скорость быть нулевой?

Когда тело выходит из состояния покоя или меняет направление движения, это называется начальной скоростью. Мы обычно считаем начальная скорость равна нулю(u = 0), только когда объект стартует из состояния покоя. Обычно в момент времени (t = 0) начальная скорость равна нулю.

Может ли начальная скорость быть отрицательной?

Скорость может быть указана в любой конкретный момент времени. … Поскольку конечное положение объекта (rfinal) может быть положительным, отрицательным или нулевым, а также больше, меньше или совпадает с исходным положением (rinitial), скорость может быть положительной, отрицательной или нулевой.

Узнайте все о своем любимом. знаменитости в Интервью со знаменитостями и не забудьте поделиться этим постом!

Источник

Механическое движение

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Механическое движение

Когда мы идем в школу или на работу, автобус подъезжает к остановке или сладкий корги гуляет с хозяином, мы имеем дело с механическим движением.

Механическим движением называется изменение положения тел в пространстве относительно других тел с течением времени.

«Относительно других тел» — очень важные слова в этом определении. Для описания движения нам нужны:

В совокупности эти три параметра образуют систему отсчета.

В механике есть такой раздел — кинематика. Он отвечает на вопрос, как движется тело. Дальше мы с помощью кинематики опишем разные виды механического движения. Не переключайтесь 😉

Прямолинейное равномерное движение

Движение по прямой, при котором тело проходит равные участки пути за равные промежутки времени называют прямолинейным равномерным. Это любое движение с постоянной скоростью.

Например, если у вас ограничение скорости на дороге 60 км/ч, и у вас нет никаких препятствий на пути — скорее всего, вы будете двигаться прямолинейно равномерно.

Мы можем охарактеризовать это движение следующими величинами.

Скалярные величины (определяются только значением)

Векторные величины (определяются значением и направлением)

Проецирование векторов

Векторное описание движения полезно, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения.

Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами — проекциями векторов.

Если вектор сонаправлен с осью, то его проекция равна длине вектора. А если вектор противоположно направлен оси — проекция численно равна длине вектора, но отрицательна. Если вектор перпендикулярен — его проекция равна нулю.

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Скорость может определяться по вектору перемещения и пути, только это будут две разные характеристики.

Скорость — это векторная физическая величина, которая характеризует быстроту перемещения, а средняя путевая скорость — это отношение длины пути ко времени, за которое путь был пройден.

Скорость

→ →
V = S/t


V — скорость [м/с]

S — перемещение [м]
t — время [с]

Средняя путевая скорость

V ср.путевая = S/t

V ср.путевая — средняя путевая скорость [м/с]
S — путь [м]
t — время [с]

Задача

Найдите, с какой средней путевой скоростью должен двигаться автомобиль, если расстояние от Санкт-Петербурга до Великого Новгорода в 210 километров ему нужно пройти за 2,5 часа. Ответ дайте в км/ч.

Решение:

Возьмем формулу средней путевой скорости
V ср.путевая = S/t

Подставим значения:
V ср.путевая = 210/2,5 = 84 км/ч

Ответ: автомобиль будет двигаться со средней путевой скоростью равной 84 км/ч

Уроки физики в онлайн-школе Skysmart не менее увлекательны, чем наши статьи!

Уравнение движения

Основной задачей механики является определение положения тела в данный момент времени. Для решения этой задачи помогает уравнение движения, то есть зависимость координаты тела от времени х = х(t).

Уравнение движения

x(t) = x0 + vxt

x(t) — искомая координата [м]
x0 — начальная координата [м]
vx — скорость тела в данный момент времени [м/с]
t — момент времени [с]

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v

Уравнение движения при движении против оси

x(t) — искомая координата [м]
x0 — начальная координата [м]
vx — скорость тела в данный момент времени [м/с]
t — момент времени [с]

Графики

Изменение любой величины можно описать графически. Вместо того, чтобы писать множество значений, можно просто начертить график — это проще.

В видео ниже разбираемся, как строить графики кинематических величин и зачем они нужны.

Прямолинейное равноускоренное движение

Чтобы разобраться с тем, что за тип движения в этом заголовке, нужно ввести новое понятие — ускорение.

Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости. В международной системе единиц СИ измеряется в метрах, деленных на секунду в квадрате.

СИ — международная система единиц. «Перевести в СИ» означает перевод всех величин в метры, килограммы, секунды и другие единицы измерения без приставок. Исключение — килограмм с приставкой «кило».

Итак, прямолинейное движение — это движение с ускорением по прямой линии. Движение, при котором скорость тела меняется на равную величину за равные промежутки времени.

Уравнение движения и формула конечной скорости

Основная задача механики не поменялась по ходу текста — определение положения тела в данный момент времени. У равноускоренного движения в уравнении появляется ускорение.

Уравнение движения для равноускоренного движения

x(t) = x0 + v0xt + axt^2/2

x(t) — искомая координата [м]
x0 — начальная координата [м]
v0x — начальная скорость тела в данный момент времени [м/с]
t — время [с]
ax — ускорение [м/с^2]

Для этого процесса также важно уметь находить конечную скорость — решать задачки так проще. Конечная скорость находится по формуле:

Формула конечной скорости

→ →
v = v0 + at


v — конечная скорость тела [м/с]
v0 — начальная скорость тела [м/с]
t — время [с]

a — ускорение [м/с^2]

Задача

Найдите местоположение автобуса через 0,5 часа после начала движения, разогнавшегося до скорости 60 км/ч за 3 минуты.

Решение:

Сначала найдем ускорение автобуса. Его можно выразить из формулы конечной скорости:

Так как автобус двигался с места, v0 = 0. Значит
a = v/t

Время дано в минутах, переведем в часы, чтобы соотносилось с единицами измерения скорости.

3 минуты = 3/60 часа = 1/20 часа = 0,05 часа

Подставим значения:
a = v/t = 60/0,05 = 1200 км/ч^2
Теперь возьмем уравнение движения.
x(t) = x0 + v0xt + axt^2/2

Начальная координата равна нулю, начальная скорость, как мы уже выяснили — тоже. Значит уравнение примет вид:

Ускорение мы только что нашли, а вот время будет равно не 3 минутам, а 0,5 часа, так как нас просят найти координату в этот момент времени.

Подставим циферки:
x = 1200*0,5^2/2 = 1200*0,522= 150 км

Ответ: через полчаса координата автобуса будет равна 150 км.

Графики

Мы уже знаем, что такое графики функций и зачем они нужны. Для прямолинейного равноускоренного движения графики будут отличаться. Об этом — в видео ниже

Движение по вертикали

Движение по вертикали — это частный случай равноускоренного движения. Дело в том, что на Земле тела падают с одинаковым ускорением — ускорением свободного падения. Для Земли оно приблизительно равно 9,81 м/с^2, а в задачах мы и вовсе осмеливаемся округлять его до 10 (физики просто дерзкие).

Вообще в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают значение: g = 9,8 м/с2. В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с2.

Частным случаем движения по вертикали (частным случаем частного случая, получается) считается свободное падение — это равноускоренное движение под действием силы тяжести, когда другие силы, действующие на тело, отсутствуют или пренебрежимо малы.

Помните о том, что свободное падение — это не всегда движение по вертикали. Если мы бросаем тело вверх, то начальная скорость, конечно же, будет.

Источник

Кинематика

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Прямолинейное равномерное движение

Движение по прямой, при котором тело проходит равные участки пути за равные промежутки времени называют прямолинейным равномерным. Это любое движение с постоянной скоростью.

Например, если у вас ограничение скорости на дороге 60 км/ч и у вас нет никаких препятствий на пути, то вы скорее всего будете двигаться прямолинейно равномерно.

Мы можем охарактеризовать это движение следующими величинами.

Скалярные величины (определяются только значением)

Векторные величины (определяются значением и направлением)

Проецирование векторов

Векторное описание движения полезно, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения.

Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами — проекциями векторов.

Если вектор сонаправлен с осью, то его проекция равна длине вектора. А если вектор противоположно направлен оси — проекция численно равна длине вектора, но отрицательна. Если вектор перпендикулярен — его проекция равна нулю.

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Скорость может определяться по вектору перемещения и пути, только это будут две разные характеристики. Скорость — это векторная физическая величина, характеризующая быстроту перемещения, а средняя путевая скорость — это отношение длины пути ко времени, за которое путь был пройден.

Скорость

→ →
V = S/t

Средняя путевая скорость

V ср.путевая = S/t

V ср.путевая — средняя путевая скорость [м/с]

В чем разница между перемещением и путем?

Перемещение — это вектор, проведенный из начальной точки в конечную, а путь — это длина траектории.

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Задача

Найдите, с какой средней путевой скоростью должен двигаться автомобиль, если расстояние от Санкт-Петербурга до Великого Новгорода в 210 километров ему нужно пройти за 2,5 часа. Ответ дайте в км/ч.

Решение:

Возьмем формулу средней путевой скорости

V ср.путевая = 210/2,5 = 84 км/ч

Ответ: автомобиль будет двигаться со средней путевой скоростью равной 84 км/ч

Уравнение движения

Основной задачей механики является определение положения тела в данный момент времени. Для решения этой задачи помогает уравнение движения, то есть зависимость координаты тела от времени х = х(t).

Уравнение движения

x(t) = x0 + vxt

x(t) — искомая координата [м]

x0 — начальная координата [м]

vx — скорость тела в данный момент времени [м/с]

t — момент времени [с]

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v

Уравнение движения при движении против оси

x(t) — искомая координата [м]

x0 — начальная координата [м]

vx — скорость тела в данный момент времени [м/с]

t — момент времени [с]

Графики

Изменение любой величины можно описать графически. Вместо того, чтобы писать множество значений, можно просто начертить график — это проще.

В видео ниже я рассказываю, как строить графики кинематических величин и зачем они нужны.

Прямолинейное равноускоренное движение

Чтобы разобраться с тем, что за тип движения в этом заголовке, нужно ввести новое понятие — ускорение.

Ускорение — векторная физическая величина, характеризующая быстроту изменения скорости. В международной системе единиц СИ измеряется в метрах, деленных на секунду в квадрате.

То есть прямолинейное движение — это движение с ускорением по прямой линии, движение, при котором скорость тела меняется на равную величину за равные промежутки времени.

Уравнение движения и формула конечной скорости

Основная задача механики не поменялась по ходу текста — определение положения тела в данный момент времени. У равноускоренного движения в уравнении

Уравнение движения для равноускоренного движения

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

x(t) — искомая координата [м]

x0 — начальная координата [м]

v0x — начальная скорость тела в данный момент времени [м/с]

Для данного процесса также важно уметь находить конечную скорость. Это часто упрощает решение задач. Она находится по формуле

Формула конечной скорости

→ →
v = v0 + at


v — конечная скорость тела [м/с]

v0 — начальная скорость тела [м/с]

Задача

Найдите местоположение автобуса через 0,5 часа после начала движения, разогнавшегося до скорости 60 км/ч за 3 минуты.

Решение:

Сначала найдем ускорение автобуса. Его можно выразить из формулы конечной скорости:

Так как автобус двигался с места, v0 = 0. Значит

Время дано в минутах, переведем в часы, чтобы соотносилось с единицами измерения скорости.

3 минуты = 3/60 часа = 1/20 часа = 0,05 часа

a = v/t = 60/0,05 = 1200 км/ч^2

Теперь возьмем уравнение движения.

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Начальная координата равна нулю, начальная скорость, как мы уже выяснили — тоже. Значит уравнение примет вид:

Ускорение мы только что нашли, а вот время будет равно не 3 минутам, а 0,5 часа, так как нас просят найти координату в этот момент времени.

x = 1200*0,5^2/2 = (1200*0,5^2)/2 = 150 км

Ответ: через полчаса координата автобуса будет равна 150 км.

Графики

Мы уже знаем, что такое графики функций и зачем они нужны. Для прямолинейного равноускоренного движения графики будут отличаться. Об этом — в видео ниже.

Движение по вертикали

Движение по вертикали — это частный случай равноускоренного движения. Дело в том, что на Земле тела падают с одинаковым ускорением — ускорением свободного падения. Для Земли оно приблизительно равно 9,81 м/с^2, а в задачах мы и вовсе осмеливаемся округлять его до 10 (физики просто дерзкие).

Вообще в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают значение: g = 9,8 м/с^2. В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с^2.

И кому же верить?

Частным случаем движения по вертикали (частным случаем частного случая, получается) считается свободное падение — это равноускоренное движение под действием силы тяжести, когда другие силы, действующие на тело, отсутствуют или пренебрежимо малы.

Помните о том, что свободное падение — это не всегда движение по вертикали. Если мы бросаем тело вверх, то начальная скорость, конечно же, будет.

Движение по окружности

Движение по окружности — простейший случай криволинейного движения тела, когда тело движется вокруг некоторой точки. Очень важно разделить движение по окружности и вращение тела.

При вращательном движении тела все его точки описывают окружности, расположенные в параллельных плоскостях. Центры всех окружностей лежат при этом на одной прямой, перпендикулярной к плоскостям окружностей и называемой осью вращения. Ось вращения может располагаться внутри тела и за его пределами.

Движение тела по окружности с постоянной по модулю скоростью — это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги. Это очень похоже на равномерное движение, только в данном случае мы имеем дело с дугами.

При движении по окружности тело двигается вокруг одной точки, а при вращении — все точки тела движутся вокруг оси вращения.

В видеролике ниже рассказано про ускорение при криволинейном движении. Оно складывается из двух составляющих — нормальной и тангенциальной. При равномерном движении по окружности тангенциальная составляющая отсутствует, остается нормальная, которую мы в данном случае называем центростремительной.

Центростремительное ускорение

При движении по окружности модуль скорости постоянен, а вот направление скорости постоянно меняется. За изменение направления скорости отвечает центростремительное ускорение.

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Центростремительное ускорение

aц = v^2/R

aц — центростремительное ускорение [м/с^2]

R — радиус окружности [м]

Что такое скалярная скорость. Смотреть фото Что такое скалярная скорость. Смотреть картинку Что такое скалярная скорость. Картинка про Что такое скалярная скорость. Фото Что такое скалярная скорость

Задачка

Мотоцикл движется по закруглённому участку дороги радиусом 120 м со скоростью 36 км/ч. Чему равно центростремительное ускорение мотоцикла?

Решение:

Возьмем формулу центростремительного ускорения тела

В условии задачи скорость дана в километрах в час, а радиус в метрах. Значит, нужно перевести скорость в м/с, чтобы избежать коллапса в решении.

Теперь можно подставить значения в формулу:

aц = 10^2/120 = 100/120 = 10/12 ≃ 0,83 м/с^2

Ответ: центростремительное ускорение мотоциклиста равно 0,83 м/с^2

Эту и другие темы мы разбираем на курсе физики за 9 класс.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *