Что такое свойство вычитания
Вычитание натуральных чисел: свойства, примеры
Операции вычитания между любыми натуральными числами присущ ряд особенностей, называемых свойствами. В данной статье мы рассмотрим основные свойства натуральных чисел и приведем разъясняющие примеры.
Свойство вычитания равных натуральных чисел
Это самое простое свойство. Число ноль указывает на отсутствие чего либо. Если из множества каких-то объектов вычесть такое же множество объектов, получится ноль. Например, у Пети было 15 яблок, он решил угостить Машу и отдал ей все 15 штук. Теперь у Пети ноль яблок.
Переместительный закон (не выполняется для вычитания)
Известно, что при сложении чисел от перемены мест слагаемых сумма не меняется. Так же, как и при умножении произведение не меняется при перестановке множителей. Эта особенность называется переместительным, или коммутативным законом. Однако при вычитании коммутативный закон работает только в одном случае: когда вычитаемое число равно уменьшаемому.
В случаях, когда уменьшаемое число становится меньше вычитаемого, теряется сам смысл вычитания натуральных чисел. Например:
Свойства вычитания натуральных чисел
Для операции вычитания натуральных чисел переместительный закон не выполняется!
Вычитание суммы двух чисел из натурального числа
Сформулируем свойство, а затем рассмотрим пример, который даст глубокое понимание и поможет осмыслить сказанное.
Свойство вычитания суммы двух чисел из натурального числа
Вычитание суммы двух натуральных чисел из другого натурального числа равносильно последовательному вычитанию из числа сначала одного слагаемого суммы, а затем другого.
Математически это запишется так:
Обратимся к примеру. У Пети и у Васи было по 8 монет. Петя сразу купил напиток за две монеты и конфету за одну монету. Вася сначала купил напиток, а потом подумал, и тоже купил конфету. В итоге, у обоих осталось по пять монет. Операции с монетами Пети и Васи можно соответственно записать так:
Важно отметить, что данная операция для натуральных чисел имеет смысл только тогда, когда уменьшаемое число больше или равно сумме чисел, которые из него вычитают.
В соответствии с рассмотренным свойством и сочетательным законом, можно вычитать из натурального числа сумму двух, трех и более чисел.
Вычитание числа из суммы
Количество конфет в итоге остается неизменным и справедливы равенства:
Теперь можно сформулировать правило вычитания числа из суммы других натуральных чисел.
Свойство вычитания натурального числа из суммы двух чисел
Вычитание натурального числа из суммы других натуральных чисел эквивалентно последовательному вычитанию данного числа из одного слагаемого и сложению полученной разности с другим слагаемым.
В буквенной форме свойство имеет следующий вид:
Свойство вычитания натурального числа из суммы трех и более чисел формулируется аналогично и вытекает из свойства вычитания числа из суммы двух чисел.
Пример. Вычитание числа из суммы
Понятие действия
Вычитание — бинарная операция, результатом выполнения которой является число, называемое разностью. В действии участвуют два аргумента: один из них — уменьшаемое, а другой — вычитаемое. Ответ получается путем уменьшения значения одного аргумента на второй. Уменьшаемое располагается слева, а вычитаемое — справа. Обозначают операцию знаком минус, который ставят между двумя числами. По сути, уменьшение — это действие, обратное сложению.
При операции вычитания используют три термина:
Стоит отметить, что результат вычитания может быть как положительным, так и отрицательным. Рассмотреть процесс уменьшения удобно на примере:
Пусть в вазе лежит восемь яблок. Если три штуки забрать, то в вазе останется пять.
Математическая запись такого действия будет выглядеть как 8 — 3 = 5. В ней число восемь является уменьшаемым, три — вычитаемым, а пять — разностью (результатом). Произносится эта запись так: разность восьми и трёх равняется пяти.
Применение вычитание также позволяет сравнивать два числа. Пытаясь вычислить, какое число больше, а какое меньше, фактически определяют ту часть выражения, где находится больше единиц. Найти же, какое число больше или меньше другого, можно как раз вычитанием. Например для того чтобы узнать, насколько 50 меньше 80, нужно из последнего вычесть первое: 80 — 50 = 30. То есть второе число больше первого на тридцать единиц.
Так как уменьшение — это операция, обратная суммированию (прибавлению), то проверкой вычитания будет сумма. Пусть дано равенство: 66 — 13 = 43. Чтобы проверить его верность, можно к тринадцати (вычитаемому) прибавить разность (ответ). В результате должно получиться число, равное уменьшаемому. Для рассматриваемого примера проверка выглядит следующим образом: 13 + 43 = 66. Осуществить проверку можно и другим способом. Для этого необходимо уменьшаемое уменьшить на разность. Если после действия ответ совпадет с вычитаемым, то задание решено верно: 66 — 43 = 13.
Уменьшение многозначных чисел обычно выполняют в столбик. Для этого друг под другом пишут уменьшаемое и вычитаемое таким образом, чтобы разряды чисел находились строго один под одним. Затем проводят черту и, начиная с наименьшего разряда, выполняют минусование. Результат записывают под чертой.
Свойства уменьшения
Основная формула вычитания имеет следующий вид: a — b = c. При этом справедливыми будут утверждения: с + b = a и a — c = b. Числа, подставляемые в формулу, могут быть любыми, например натуральными, дробными, рациональными. Но вычитать можно только те аргументы, которые принадлежат одному множеству, то есть относятся к одному типу. Действие характеризуется несколькими важными свойствами:
Кроме этого, действие характеризуется антикоммутативностью — правило позволяет поменять аргументы местами, но при этом перед действием необходимо поставить знак минус, и дистрибутивностью — сочетанием умножения и вычитания. Других правил не бывает.
Если рассмотреть процесс на графике, то можно говорить, что происходит перенос числа по числовой прямой в левую часть. Следует отметить, что если действие выполняется с отрицательным числом, то получится операция сложения, так как минус на минус будет давать плюс. В этом случае результат сместится в правую часть. Важным является и то, что при вычитании переместительный закон, как для сложения или умножения, выполняться не будет. Действительно, очевидно, что 4 — 2 не будет равняться 2 — 4.
Этим базисным понятиям арифметики начинают обучать в 5 классе. Правила и свойства сложения и вычитания помогают довольно сильно облегчить ту или иную задачу. Так, чтобы вычесть сумму чисел из натурального аргумента, можно сначала найти сумму, а потом выполнить вычитание. Но, используя правило, может быть и удобнее сначала выполнить уменьшение, а потом разность прибавить к числу. Например, 38 — (28 + 7). Здесь проще сначала от тридцати восьми отнять двадцать восемь, а потом прибавить семь, чем сначала выполнять действие в скобках.
Простые примеры
Знание правил должно быть обязательно подкреплено практическим навыком. Поэтому как в школе, так и в видеоуроках после прослушивания лекции учащимся предлагается решить несколько примеров. Вначале школьники делают вычисления совместно с преподавателем, который должен рассказать, как лучше поступить в том или ином задании. Затем уже ученикам нужно попробовать самостоятельно порешать примеры. Для этого используют математические тренажеры.
Вот один из них, состоящий из 15 тестов и затрагивающий различные правила:
Только с опытом можно понять, в каких случаях желательно использовать переместительное правило, а в каких удобнее применить сочетательный закон без изменения записи.
Пример. Пусть у Ирины Петровны на кредитной карте находилось 3282 рубля. В конце месяца ей на эту карту начислили 6018 рублей пенсии. Ирина Петровна в магазине купила себе пирог и рассчиталась картой. Стоимость покупки составила 318 рублей. Спрашивается, сколько денег осталось у пенсионерки на счету. Эту задачу можно решить тремя разными способами. Какой из них удобнее, зависит от личного предпочтения:
Таким образом, какой бы способ ни был выбран, можно утверждать, что у Ирины Петровны на карте после покупки останется 8982 рубля. После окончания 5 класса законы вычитания нужно знать так же хорошо, как и таблицу умножения. Только в этом случае от арифметики можно будет переходить к изучению алгебры.
Вычитание на числовой прямой
Довольно наглядно свойства вычитания можно увидеть на иллюстрации, изобразив действие на числовой прямой. На ней нужно отложить точки через равный промежуток, например от ноля до десяти, и последовательно их пронумеровать.
Так, для решения примера 3 + 5 — 2 на прямой необходимо найти цифру три. Согласно условию и свойствам уменьшения, из неё можно вычесть двойку. Следовательно, нужно влево от тройки отсчитать два пункта. На иллюстрации этому будет соответствовать точка один. Затем по условию задания нужно прибавить пять единиц. На графике этому будет соответствовать перемещение на пять точек вправо. Итогом всех действий получится точка, подписанная как шесть.
Аналогичным образом можно подсчитать любое вычитание или сложение. Но этот метод хорош для обучения при значениях не больше десяти. Очень наглядно иллюстрация показывает и вычитание ноля. Так как при уменьшении на ноль передвигаться по прямой не нужно, то после вычитания значение уменьшаемого не изменяется.
Задача 2. Велосипедист за день преодолел путь от села Крюково до деревни Морозко. Вычислить, какое он преодолел расстояние за первый час, если за следующее время он проехал 13 км. Для иллюстрации условия задачи нужно на прямой изобразить точку отсчёта, обозначив её за ноль. Затем отметить конечную точку, соответствующую 18 км (в удобном масштабе).
На прямой от конечной точки отсчитать 13. Теперь от тринадцати подсчитать количество отрезков до начальной точки. Математические же вычисления будут выглядеть так: 18 — 13 = 4 км. И в первом, и во втором случае ответ будет аналогичным.
Свойства вычитания чисел с примерами
В данной публикации мы рассмотрим 6 основных свойств вычитания натуральных чисел, сопроводив их примерами для лучшего понимания теоретического материала.
Свойства вычитания чисел
Свойство 1
Разность двух равных натуральных чисел равняется нулю.
Примеры:
Примечание: если из числа вычесть ноль, в результате получится это же самое число.
Свойство 2
Переместительный закон, работающий при сложении чисел, не применим при их вычитании.
Другими словами, уменьшаемое ( a ) и вычитаемое ( b ) нельзя менять местами, т.к. это приведет к разным результатам.
Примеры:
Свойство 3
Если из натурального числа требуется вычесть сумму других чисел, это означает, что мы вычитаем из него первое слагаемое данной суммы, затем из полученной разности – второе и т.д. (или наоборот, с последнего до первого).
В данном случае скобки можно убрать:
Примеры:
Свойство 4
Если требуется вычесть натуральное число из суммы других чисел, то мы можем отнять его из любого слагаемого суммы.
Или можно опустить скобки:
Примеры:
Свойство 5
При вычитании натурального числа из разности других чисел, его можно вычесть из уменьшаемого или прибавить к вычитаемому.
Скобки можно убрать, строго соблюдая первоначальный порядок чисел выражении:
Примеры:
Свойство 6
Если из натурального числа требуется вычесть разность других чисел, то согласно правилам раскрытия скобок это выполняется так:
Т.е. числа в скобках со знаком “плюс” мы вычитаем из исходного, а со знаком “минус” прибавляем.
Свойства сложения и вычитания
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Свойства сложения
Сложение — это арифметическое действие, в котором единицы двух чисел объединяются в одно новое число
Для записи сложения используют знак «+» (плюс), который ставят между слагаемыми.
Слагаемые — это числа, единицы которых складываются.
Сумма — это число, которое получается в результате сложения.
Рассмотрим пример 2 + 5 = 7, в котором:
При этом саму запись (2 + 5) можно тоже назвать суммой.
Сложение двух чисел можно проверить вычитанием. Для этого вычитаем из суммы одно из слагаемых. Если разность окажется равной другому слагаемому — сложение выполнено верно.
Впервые мы сталкиваемся со свойствами сложения во 2 классе. С каждым годом задания усложняются, и появляются новые правила и законы. Рассмотрим свойства сложения для 4 класса.
Свойства вычитания
Вычитание— это арифметическое действие, в котором отнимают меньшее число от большего.
Для записи вычитания используется знак «-» (минус), который ставится между уменьшаемым и вычитаемым.
Уменьшаемое — это число, из которого вычитают.
Вычитаемое — это число, которое вычитают.
Разность — это число, которое получается в результате вычитания.