Самая маленькая звезда во вселенной
Топ 10 | Самые маленькие звезды во Вселенной
10 Эпсилон Индейца BA
Эпсилон Индейца — одна из ближайших к Солнечной системе звёзд. Солнце выглядит из её окрестностей как умеренно яркая звезда. Ярчайшая звезда в небе Эпсилон Индейца – Канопус, на втором месте Сириус. Очертания большинства созвездий не слишком отличаются от видимых с Земли. Вокруг главной звезды (Эрцаба) обращается пара коричневых карликов (Эпсилон Индейца BA и BB), невидимых с её планет невооружённым глазом. Один из данных карликов на данный момент является десятым в рейтинге самых маленьких звезд.
9 Тейде 1
Тейде 1 — первый обнаруженный коричневый карлик. Находится в созвездии Тельца на расстоянии 400 св. лет (120 парсек) от Солнца и имеет видимую величину +17.76. Открыт в 1995 году. Объект спектрального класса M8 в скоплении Плеяд (созвездие Тельца), идентифицирован с помощью ПЗС-камеры в испанской обсерватории Роке-де-лос-Мучачос Канарского института астрофизики. Температура его поверхности — 2700 К. Масса коричневого карлика составляет 0.041 массы Солнца, радиус примерно в 6.7 раз меньше солнечного. Возраст — 120 миллионов лет, светимость приблизительно в 1052 слабее солнечной.
8 HD 98230B
HD 98230 представляет собой систему из двух гравитационно связанных звёзд, одна из которых имеет массу, равную массе 43 Юпитеров.
7 Эпсилон Индейца BB
Эпсилон Индейца — одна из ближайших к Солнечной системе звёзд. Солнце выглядит из её окрестностей как умеренно яркая звезда. Ярчайшая звезда в небе Эпсилон Индейца – Канопус, на втором месте Сириус. Очертания большинства созвездий не слишком отличаются от видимых с Земли. Вокруг главной звезды (Эрцаба) обращается пара коричневых карликов (Эпсилон Индейца BA и BB), невидимых с её планет невооружённым глазом. Один из данных карликов на данный момент является седьмым в рейтинге самых маленьких звезд.
6 2M1207
2M1207 — коричневый карлик в созвездии Гидры, вокруг которого обращается экзопланета. В апреле 2004 года группа европейских и американских астрономов обнаружила очень тусклый объект рядом с молодым коричневым карликом 2M1207. По инфракрасному спектру, содержащему следы молекул воды, массу объекта оценили в 4 масс Юпитера, что ниже порога горения дейтерия, отделяющего планеты от коричневых карликов. Учитывая соотношение масс компонентов (1:5), маловероятно, что планета сформировалась из протопланетного диска (его остатки были обнаружены как у 2M1207, так и позже у 2M1207 b). Скорее, система образовалась как очень маломассивная двойная звезда. Возможно, что в ближайшем времени статус 2M1207 b будет заменён с планеты на планемо.
5 Глизе 229B
Главная звезда Глизе 229A имеет компаньон — коричневый карлик Глизе 229B. В октябре 1994 года астрономы открыли в системе Глизе 229 коричневый карлик. Чуть позже он был подтверждён визуально с помощью орбитального телескопа Хаббл. По массе он превосходит Юпитер в 25—65 раз, температура поверхности оценивается в 1000—1200 °C. Атмосфера объекта богата метаном. Глизе 229B обращается на расстоянии около 39 а. е. от родительской звезды — почти на таком же среднем расстоянии обращается карликовая планета Плутон вокруг Солнца.
4 Змееносца 1622A
Пара двух лёгких коричневых карликов, которые вращаются по взаимной орбите вокруг общего центра тяжести. Оба коричневых карлика находятся в созвездии Змееносца и удалены от Земли на расстояние 400 св. лет. Точная масса обоих объектов неизвестна, но она, вероятно, выше, чем 13 масс Юпитера. Возраст пары, по оценкам, составляет 5 млн лет.
3 Змееносца 1622B
Обнаружение системы коричневых карликов поставило под сомнение теорию о возможном захвате свободно плавающих планет различными другими звёздными системами: гравитационная связь такой планеты со звездой будет крайне слабой и при малейшем нарушении может разорваться.
2 OTS 44
OTS 44 — одиночный коричневый карлик в южном околополюсном созвездии Хамелеона. Находится на расстоянии 554 световых лет от Земли. Он был наименьшим известным коричневым карликом, пока в том же созвездии не открыли объект Cha 110913-773444 (который относится к субкоричневым карликам, но сформировался из центра газопылевого облака, а не из его остатков, в отличие от планет типа Юпитера). OTS 44 имеет массу примерно 15 масс Юпитера, или примерно 1,5 % массы Солнца. Коричневый карлик окружен диском из пыли, камней и льда и в будущем может обзавестись планетной системой.
1 Cha 110913-773444
Cha 110913—773444 — астрономический объект в созвездии Хамелеона в окружении протопланетного диска на расстоянии 500 световых лет от Земли, представляющий собой зарождающуюся планетарную систему. Она является самой маленькой известной системой такого типа — её размер в 100 раз меньше Солнечной системы. В научном сообществе нет консенсуса, как классифицировать центральный объект системы — как субкоричневый карлик или планету-сироту. Он был обнаружен командой учёных во главе с Кевином Лахменом из Университета штата Пенсильвания с помощью космических телескопов Спитцер и Хаббл, а также двух наземных телескопов, расположенных в чилийских Андах. Возраст Cha 110913—773444 оценивается примерно в 2 млн лет, масса объекта примерно в 8 раз превышает массу Юпитера.
Самая маленькая звезда во Вселенной, известная учёным
Наше Солнце – звезда из класса жёлтых карликов, хотя среди прочих вполне себе средняя. Но какая звезда самая маленькая во Вселенной, известная ученым на сегодняшний день? Попробуем разобраться.
Солнце, хотя и относится к карликам, и рядом с настоящими гигантами кажется просто пылинкой, на самом деле не так уж и мало. По сравнению с планетами оно огромно – 1.4 миллионов километров в диаметре. И это вовсе не маленькая звезда, а вполне себе средняя, каких миллиарды только в нашей галактике. А через несколько миллиардов лет Солнце и вовсе превратится в красного гиганта, раздуется до поперечника в 355 миллионов километров и поглотит Землю. Так самую маленькую звезду надо искать в другом месте.
Какие бывают карликовые звёзды
Вообще, карликовые звёзды бывают очень разными. К примеру, желтые, к которым относится и наше Солнце, могут иметь массу от 0.81 до 1.22 солнечной. Светят они за счет термоядерной реакции превращения всех видов водорода в гелий, а температура поверхности у них достигает 5-6 тысяч градусов.
Но есть и очень маленькие звёзды, масса которых составляет менее 8% солнечной. Такие объекты можно скорее отнести к планетам, так как с ними сходства больше, чем со звёздами. Это нечто среднее между звёздами и планетами-гигантами. Массы им не хватает для полноценной термоядерной реакции. Поэтому в их недрах реакция поддерживается лишь горением тяжелых видов водорода – дейтерия и трития. Температура поверхности у них зачастую едва дотягивает до 1000 Кельвин.
Подобные планеты-звезды и внешне должны напоминать планеты-гиганты, просто очень горячие. Это газовый шар, подобный Юпитеру, также имеющий полосы из облаков, но горячий ниже. Он светит тусклым красно-бурым светом, подобно ночнику, освещая разве что собственные облака и спутники.
Нечто среднее между такими раскаленными планетами-звездами и желтыми карликами – красные карлики. Они гораздо массивнее первых, но меньше вторых, и у них внутри идёт вполне полноценная термоядерная реакция. Но идёт она не слишком активно, отчего и поверхность раскалена не сильно, всего лишь «докрасна». К этому типу и относится самая маленькая звезда во Вселенной, которая имеет обозначение OGLE-TR-122b.
Как открыли самую маленькую звезду
В 1992 году был запущен проект OGLE, целью которого был поиск и изучение тёмной материи методом микролинзирования. Этот метод заключается в наблюдении отклонения света около массивных объектов.
В ходе этого проекта и было открыто несколько экзопланет и коричневых карликов, которые излучают так мало света, что их просто нельзя обнаружить в телескоп. Но эти массивные тела отклоняют свет, и это позволило их найти и даже определить некоторые параметры.
Звезда OGLE-TR-122b была обнаружена в 2005 году именно в ходе этого проекта. И это самая маленькая звезда во Вселенной, известная учёным. Конечно, Вселенная огромна, и в ней есть еще огромное количество других таких же объектов, но обнаружить их даже вблизи довольно сложно, поэтому пока это единственная известная звезда такого рода.
Что собой представляет самая маленькая звезда во Вселенной
Находится этот любопытный объект в южном созвездии Киля, поэтому в северном полушарии не появляется. На самом деле это двойная система, в которой главный компонент обозначается OGLE-TR-122a и представляет собой обычную звезду, похожую на Солнце. Её масса и размер почти в точности равны солнечным, и принадлежит она тоже к желтым карликам.
Сравнительные размеры самой маленькой звезды OGLE-TR-122b с Солнцем и Юпитером.
А вот второй компонент этой системы и есть самая маленькая звезда под названием OGLE-TR-122b. Масса её – всего 0.09 солнечных, и это почти предел для зажигания звезды. Теоретически требуется 0.07-0.08 от массы Солнца, чтобы началась термоядерная реакция, и эта звезда близка к этому пределу. Будь она чуть легче, и это была бы просто большая планета. Но она, хотя и такая лёгкая, всё равно в 100 раз тяжелее Юпитера, так что ему стать звездой не грозит.
А вот по размеру самая маленькая звезда вполне заслужила своё звание – она всего лишь на 16% больше Юпитера. Её размер – всего лишь 12% солнечного.
Так как эта звезда в 100 раз тяжелее Юпитера и лишь немного его больше, плотность её вещества огромна – в среднем больше солнечной в 50 раз.
Период обращения звёзд в системе OGLE-TR-122 – всего 7.3 суток. Это значит, что они находятся довольно близко друг к другу.
Открытие этой звезды подтвердило теоретические расчеты, что самые маленькие звезды могут иметь размеры, сравнимые с размерами планет-гигантов.
К сожалению, найти на небе эту интересную систему не получится. Во-первых, находится она в южном полушарии, а во-вторых, её яркость составляет всего 15.6m, что под силу только довольно крупному телескопу. Различить же самую маленькую звезду OGLE-TR-122b рядом со своим нормальным соседом и вовсе не получится.
Как выглядит самая маленькая звезда во Вселенной
Мы уже познакомились с крупнейшим звездным представителем («Самую большую звезду во Вселенной ожидает быстрая смерть»). Теперь давайте посмотрим, как выглядит самая маленькая звезда во Вселенной.
Предыдущие кандидаты
Сравнительные размеры OGLE-TR-122
Крошечные звезды обычно рождаются в местах с небольшим количеством водорода. Звездным считается небесное тело, внутри которого осуществляется процесс ядерного синтеза. Для этого объект должен вмещать как минимум 7.5% солнечной массивности (теоретически).
Ранее в качестве самой маленькой звезды во Вселенной называли OGLE-TR-122. Находится на территории созвездия Киль. Речь идет о двойной звезде, одна из которых относится к типу главной последовательности. Впервые пару заметили в 2005 году. Скорость вращения вокруг центра масс охватывает 7.3 дней.
Одна из звезд по физическим параметрам напоминает звезду нашей системы. А вот вторая (OGLE-TR-122 В) относится к красным карликам. По радиусу достигает 0.12 от солнечного. Если сравнивать с Юпитером, то звезда всего на 16% крупнее газового гиганта. По сути, она приближается к нижнему пределу массы.
Сравнительные размеры 2MASS J0523-1403
Вторым недавним кандидатом считался еще один крошечный красный карлик 2MASS J0523-1403. Объект проживает на территории созвездия Заяц с дистанцией в 40 световых лет от нас. Ее эффективная температура составляет 2074 К.
По радиусу – 0.086 солнечного, а по массе – меньше 0.08 солнечной. Ее физические показатели также балансируют на грани звездных параметров. Полагают, что при массивности 0.012-0.07 солнечных есть риск перейти на стадию коричневых карликов (прекращаются термоядерные реакции и звезды остывают).
Самая маленькая звезда
Сфокусированное изображение двойной системы EBLM J0555-57, сделанное швейцарским 1,2-метровым телескопом Леонарда Эйлера в обсерватории ESO La Silla
С 2017 года титул самой маленькой звезды Вселенной принадлежит EBLM J0555-57. Это тройная звездная система, расположенная в созвездии Живописец. Удалена на 600 световых лет от Солнечной системы. Одна из звезд приближается к теоретическому звездному пределу.
Звезды А и В считаются затменной двойной системой, а вот третий компонент С – самая маленькая звезда. По массе достигает 0.081 солнечной (в 85 раз массивнее Юпитера). Чтобы вы понимали, по радиусу она приравнивается к Сатурну. Исследователи считают, что если бы ее массивность достигала 7% от Солнца, то завершилась бы термоядерная реакция, и перед нами предстал коричневый карлик.
Постскриптум
Размеры звёзд во Вселенной и как их вычисляют
Собственно говоря, небесные тела отличаются друг от друга по различным характеристикам. Одним из главных отличий звёзд между собой являются их размеры, масса и состав.
Как различают звёзды по размерам
Во Вселенной звёзды бывают разные по размеру — они могут быть маленькими, средними, большими и сверхбольшими или огромными.
Однако, в астрономии не группируют объекты таким образом. Их объединяют по другим общим характеристикам. Практически все параметры и свойства зависят друг от друга.
Для написания научно-исследовательской работы на эту и любую другую тему вы можете обратиться за помощью: https://peremena.com.ua/raboty/diplomnye-raboty-na-zakaz/
Классификация звёзд по размеру
На самом деле, по своим размерам звезды делятся на:
Правда, выделяют ещё гипергиганты — самые яркие, массивные, мощные светила. Но они очень редко встречаются в нашей Вселенной. Хотя они самые-самые, живут гипергиганты совсем недолго, поэтому их очень мало.
Красный гипергигант VY Большого Пса
Как определить размер звезды
Размеры звёзд определяют тремя способами:
Как связаны размеры звёзд и их светимость?
Поскольку светимость звёздного тела рассчитывается по формуле:
Формула светимости
где видно, что она связана с радиусом звезды.
Получается, эти два показателя важны друг для друга и созависимы.
Разумеется, нам сложно представить истинные величины космических объектов. Ведь они могут составлять от тысяч до млн тысяч километров.
Главным светилом для нас является Солнце, которое больше чем в миллион раз нашей планеты. Поэтому сравнение размеров звезд с размерами Земли просто затруднительно и неуместно.
Для удобства определения радиуса (размера) звёздных тел принято применять единицу измерения равную экваториальному радиусу Солнца (696 392 км).
Солнце в Солнечной системе
Каковы размеры самых маленьких звёзд?
Как известно, красные карлики имеют небольшие объемы и массу. Если говорить точнее, то в большинстве их масса равна половине солнечной, а радиус таких светил совсем небольшой.
Помимо этого, существуют белые карлики, чьи размеры сопоставимы с размерами Земли. Однако при этом их плотность больше земельной почти в миллион раз.
В конце концов, самые маленькие звёздные представители — нейтронные звёзды. Они меньше нашей планеты в сто миллионов раз! Хотя в сравнении с Землей, они выигрывают по массе и плотности.
Проксима Центавра (одна из самых маленьких звёзд)
Наша Вселенная, бесспорно, многообразна во всём. И это прекрасно и удивительно!
Светила представляют собой уникальный продукт вселенской природы. Они относятся к главным объектам космического пространства.
Спросите Итана №79: самая маленькая нейтронная звезда
Представьте, каково это, заснуть и не проснуться… А теперь представьте, каково это, проснуться, если ты не засыпал.
— Алан Уоттс
Иногда самые интересные эксперименты в физике можно проделывать только в своём воображении. Несмотря на физические ограничения, не позволяющие нам отправиться куда угодно, разрезать и детально изучить любой интересующий нас объект Вселенной, наше понимание материи – во всех её проявлениях – и законов, управляющих ею, продвинулось достаточно далеко.
На этой неделе мне сложно было выбрать самый интересный вопрос, но я остановился на этом взрывающем мозг вопросе от Руи Карвалхо, который звучит так:
Если бы мы отломили кусочек нейтронной звезды (кубический сантиметр) и удалили бы его от неё, что бы с ним случилось?
Что же это за звёзды такие – нейтронные?
Судя по названию, это шары из нейтронов, связанных вместе благодаря сильнейшему гравитационному притяжению, массой примерно равной массе звезды типа Солнца. Но это, конечно же, полная ерунда, поскольку нейтроны не могут долго существовать. Можно взять любую интересующую вас частицу, изолировать и посмотреть, что случится. Для трёх частиц, составляющих большую часть нормальной материи – протонов, нейтронов и электронов – результаты будут сильно отличаться.
Электроны – это фундаментальные и наилегчайшие стабильные частицы с электрическим зарядом. Насколько нам известно, они абсолютно стабильны и не распадаются.
Протоны – это составные частицы, состоящие из кварков и глюонов. В принципе они могут распадаться и мы попробовали исследовать этот вопрос. Мы построили огромные ёмкости, наполненные отдельными протонами – в каждом по 10 33 протонов – и ждали годы, чтобы посмотреть, не распадётся ли какой из них. Спустя десятки лет мы выяснили, что даже если протон и нестабилен, его период полураспада составляет не менее 10 35 лет, или в 10 25 раз больше возраста Вселенной. Судя по всему, они тоже абсолютно стабильны.
Но не нейтроны! Если пронаблюдать за свободным нейтроном, он, скорее всего, исчезнет минут через 15, распадаясь на протон, электрон и антинейтрино (его период полураспада составляет 10 минут).
И как же тогда нам получить такой объект, как нейтронная звезда?
Существует разница между свободным и связанным нейтроном, из-за чего многие элементы и изотопы не распадаются: когда ядро связано, в нём есть определённое количество связывающей энергии, достаточное, чтобы сохранять нейтроны стабильными.
В случае стабильных элементов некоторые конфигурации оказываются стабильнее других, а всего стабильных вариантов существует примерно 254. Не исключено, что на больших временных масштабах некоторые из них окажутся нестабильными – мы такого просто ещё не обнаружили. Но они не особенно тяжёлые и не содержат очень уж много нейтронов. Самый тяжёлый стабильный элемент – свинец, за номером 82, с четырьмя известными стабильными изотопами: Pb-204, Pb-206, Pb-207 и Pb-208.
Итак, из всех известных стабильных элементов, самым тяжёлым оказывается ядро с 82 протонами и 126 нейтронами.
Но это если предположить, что связывают частицы ядерные силы. А в случае нейтронной звезды за это отвечает кое-что другое. Чтобы разобраться, давайте поймём, как возникает нейтронная звезда.
Самые массивные звёзды – самые яркие и голубые, родившиеся в молодых звёздных кластерах – синтезируют в своих ядрах гелий из водорода, как и все молодые звёзды. Но в отличие от таких звёзд, как Солнце, у них уходит на сжигание всего горючего не миллиарды лет, а несколько миллионов, или даже меньше, поскольку сверхвысокие температуры и плотности приводят к очень большой скорости синтеза.
Когда у них заканчивается водород, внутренности начинают сжиматься и разогревать звезду. По достижению критической температуры в звезде начинается синтез углерода из гелия, что приводит к ещё более активному выходу энергии.
Всего через несколько тысяч лет заканчивается и гелий, и внутренности ещё сильнее сжимаются, разогреваясь до температур, которых ядро Солнца никогда не достигнет. В таких экстремальных условиях начинается синтез кислорода из углерода, а затем, в последующих реакциях, из кислорода получаются кремний и сера, из кремния – железо, а затем у нас появляется проблема.
Железо – самый стабильный элемент. Обладая 26 протонами и 30 нейтронами, оно получает самое высокое отношение связывающей энергии на один нуклон, а это значит, что все остальные комбинации менее стабильны. (По некоторым параметрам никель-62 чуть более стабилен, но для простоты мы остановимся на железе-56). Конечно, существуют элементы и тяжелее железа, но создаются они не синтезом из железа. Когда ядро наполняется железом, оно начинает сжиматься под воздействием гравитации, а топлива для сгорания больше нет. И остаётся невероятно горячая и плотная плазма, которая постоянно разогревается и уплотняется.
По достижению критического значения – сюрприз – начинается синтез из электронов и протонов, что приводит к появлению нейтронов, нейтрино и энергии!
Эта реакция производит столько энергии, что во взрыве сверхновой уничтожается весь верхний слой звезды, поскольку синтез электронов и протонов в нейтроны и нейтрино занимает всего несколько секунд.
Внешним слоям на разлёт от звезды потребуются недели и месяцы, а ядро сжимается до шара из нейтронов под воздействием огромной силы, но не ядерной, а гравитационной.
Нейтронная звезда весит примерно как Солнце, а вся эта масса сконцентрирована в объёме радиусом всего несколько километров. Плотность звезды составляет 10 19 килограмм на кубометр и это самый плотный трёхмерный объект из известных во Вселенной.
Чтобы нейтрон был стабильным и не распадался, связывающая его энергия должна превышать разницу масс нейтрона и протона, порядка 1МэВ, или 0,1% массы нейтрона. Нейтроны в ядре довольно просто сдерживать, а те, что на поверхности, будут находиться в наиболее разреженных условиях. Если масса нейтронной звезды будет равна солнечной, а радиус – 3 км, то связанный на поверхности нейтрон будет иметь 400 МэВ связывающей энергии: достаточно, чтобы не допустить его распад.
А что, если мы вытянем кубический сантиметр такой материи, как спрашивает Руи, из нейтронной звезды? Что мы получим?
К сожалению, гравитационная энергия связи нейтронов на поверхности составит лишь 0,07 эВ – слишком мало для того, чтобы удержать их от распада!
В реальной Вселенной встречаются аналогичные ситуации: когда нейтронные звёзды сталкиваются между собой. Большая часть материи сливается и образовывает чёрную дыру, но порядка 3% массы выбрасывается прочь. Вместо образования экзотической материи она быстро распадается и приводит к появлению большой части самых тяжёлых элементов периодической таблицы Менделеева. Если вас интересовало, откуда на Земле появились такие элементы, как золото, вот именно оттуда: от объединения нейтронных звёзд!
Так что, если извлечь небольшую массу нейтронов, она быстро распадётся на стабильные (или долгоживущие) элементы и изотопы из периодической таблицы, за время, не превышающее время жизни нейтрона, а скорее всего, гораздо быстрее.
А если бы мы захотели отломить кусок достаточный для того, чтобы на его поверхности нейтроны оставались стабильными? Для этого он должен быть радиусом не менее 200 метров.
Масса такого куска будет сравнимой с массой Сатурна и это лишь нижняя граница по массе, необходимой для достижения вашей цели. Всё, что будет иметь меньшую массу, распадётся.
Так что, даже если бы вы хотели верить, что молот Тора сделан из материи нейтронной звезды…
Физика этого не позволит. Он слишком маленький и гравитационная энергия связи будет слишком маленькой, в результате чего он подвергнется быстрому и катастрофическому радиоактивному распаду.
Спасибо за прекрасный вопрос, Руи, и я надеюсь, что если ты мечтаешь создать самую маленькую нейтронную звезду, ты начнёшь думать в крупном масштабе! Присылайте мне ваши вопросы и предложения для следующих статей.