Тепловой аккумулятор фазового перехода для авто
Тепловой аккумулятор фазового перехода
Изобретение относится к двигателестроению, а именно к устройствам для разогрева двигателя внутреннего сгорания (ДВС) мобильных машин в условиях отрицательных температур окружающего воздуха. Тепловой аккумулятор фазового перехода (ТАФП), утилизирующий и аккумулирующий тепловую энергию отработавших газов ДВС, состоит из наружного и внутреннего корпусов, между которыми установлен слой тепловой изоляции, например минеральная вата. В замкнутой полости, ограниченной внутренним корпусом, находится теплоаккумулирующий материал (ТАМ), способный претерпевать обратимое полиморфное превращение. Теплоаккумулирующий материал пронизан двумя теплообменниками: газовым, соединенным с системой выхлопа ДВС, и жидкостным, соединенным с зарубашечным пространством двигателя. Применение в качестве ТАМ вещества, способного претерпевать обратимые полиморфные превращения с поглощением (выделением) теплоты фазового перехода без существенного изменения объема в рабочем интервале температур (например, BeF2), позволяет упростить конструкцию ТАФП и снизить его массовые показатели. 1 ил.
Изобретение относится к двигателестроению, а именно к устройствам для разогрева двигателей внутреннего сгорания (ДВС), и может использоваться в эксплуатации строительных, дорожных, лесозаготовительных машин, автомобилей, тепловозов и других мобильных машин в условиях отрицательных температур окружающего воздуха.
Утилизация и аккумулирование теплоты обеспечивается за счет того, что отработавшие газы работающего ДВС проходят через газовый теплообменник и нагревают ТАМ, вызывая фазовое превращение ТАМ из твердого состояния в жидкое, при этом теплоизоляция препятствует рассеиванию тепловой энергии в окружающую среду.
Использование накопленной теплоты для разогрева ДВС перед пуском в условиях отрицательных температур осуществляется за счет прохождения по жидкостному теплообменнику охлаждающей жидкости, что вызывает кристаллизацию ТАМ, сопровождающуюся выделением теплоты фазового перехода, переносимой теплоносителем в зарубашечное пространство двигателя.
Недостатком указанного устройства является существенная разница в объемах ТАМ в жидком и твердом состояниях. Например, при использовании в качестве ТАМ солей последние могут увеличивать свой объем при плавлении более чем на 25% [2], что вынуждает существенно усиливать конструкцию устройства.
Задача, решаемая предлагаемым изобретением, сводится к замене ТАМ, позволяющей избежать существенной разницы в объемах ТАМ, находящегося в твердой и жидкой фазах, что позволяет упростить конструкцию устройства и уменьшить его массу за счет отказа от усиления конструкции.
Утилизация и аккумулирование теплоты обеспечивается за счет того, что отработавшие газы работающего ДВС проходят через газовый теплообменник и нагревают ТАМ, а слой теплоизоляции препятствует рассеиванию теплового потока в окружающую среду. При этом ТАМ претерпевает полиморфное превращение в твердой фазе, которое не вызывает существенного изменения его объема в рабочем интервале температур. При работе в режиме отдачи накопленной теплоты в жидкостный теплообменник подается жидкий теплоноситель (вода, тосол, антифриз), который нагревается за счет теплообмена с ТАМ, при этом последний претерпевает обратимое полиморфное превращение в твердой фазе и отдает определенное количество теплоты, достаточное для разогрева ДВС.
Примером такого ТАМ может быть фторид бериллия BeF2.
Указанный новый признак не выявлен из существующего уровня техники, что позволяет сделать вывод о соответствии заявляемого изобретения критерию «изобретательский уровень».
Предлагаемый ТАФП представлен на чертеже.
Он состоит из наружного 1 и внутреннего 2 корпусов, между которыми установлен слой тепловой изоляции 3 (минеральная вата). Внутри корпуса 2 размещено теплоаккумулирующее ядро, представляющее собой замкнутую полость, которая заполнена ТАМ 4 и через которую проходят трубы газового 5 и жидкостного 6 теплообменников.
На поверхности труб 5 и 6 закреплены ребра 7.
Для ликвидации между корпусами 1, 2 и трубами 5, 6 «тепловых мостов» установлены втулки 8 из материала с небольшим коэффициентом теплопроводности.
ТАФП работает следующим образом.
Зарядка аккумулятора тепловой энергией осуществляется пропусканием потока отработавших газов ДВС мобильной машины через трубу 5.
В период безгаражного хранения мобильной машины, когда ее ДВС заглушен, ТАМ 4 сохраняется при температуре, превышающей температуру полиморфного превращения за счет тепловой изоляции 3.
Подтверждением достижения поставленной задачи является следующее: применение в качестве ТАМ вещества, претерпевающего обратимые полиморфные превращения с выделением (поглощением) теплоты фазового перехода без существенного изменения объема в рабочем интервале температур позволяет упростить конструкцию ТАФП, не применяя при этом специальных поясов жесткости, а также уменьшить массу его металлоконструкции за счет того, что не требуется предусматривать увеличение прочности корпуса теплоаккумулирующего ядра вследствие тепловых расширений. Вышесказанное позволяет сделать вывод о соответствии заявленного изобретения критерию «промышленная применимость».
Тепловой аккумулятор фазового перехода, состоящий из наружного и внутреннего корпусов, между которыми установлен слой тепловой изоляции, пространство внутреннего корпуса заполнено теплоаккумулирующим материалом, способным претерпевать фазовые превращения с поглощением (выделением) теплоты фазового перехода, сквозь которой проходят газовый и жидкостный теплообменники, отличающийся тем, что пространство внутреннего корпуса заполнено теплоаккумулирующим материалом, фазовое превращение которого сводится к обратимому полиморфному превращению, например фторид, бериллия Be F2.
ТЕПЛОВОЙ АККУМУЛЯТОР ФАЗОВОГО ПЕРЕХОДА Российский патент 2000 года по МПК F02N17/00
Описание патента на изобретение RU2150603C1
Изобретение относится к двигателестроению, а именно к устройствам для разогрева двигателей внутреннего сгорания (ДВС), и может использоваться в эксплуатации строительных, дорожных, лесозаготовительных машин, автомобилей, тепловозов и других мобильных машин в условиях отрицательных температур окружающего воздуха.
Утилизация и аккумулирование теплоты обеспечивается за счет того, что отработавшие газы работающего ДВС проходят через газовый теплообменник и нагревают ТАМ, вызывая фазовое превращение ТАМ из твердого состояния в жидкое, при этом теплоизоляция препятствует рассеиванию тепловой энергии в окружающую среду.
Использование накопленной теплоты для разогрева ДВС перед пуском в условиях отрицательных температур осуществляется за счет прохождения по жидкостному теплообменнику охлаждающей жидкости, что вызывает кристаллизацию ТАМ, сопровождающуюся выделением теплоты фазового перехода, переносимой теплоносителем в зарубашечное пространство двигателя.
Недостатком указанного устройства является существенная разница в объемах ТАМ в жидком и твердом состояниях. Например, при использовании в качестве ТАМ солей последние могут увеличивать свой объем при плавлении более чем на 25% [2], что вынуждает существенно усиливать конструкцию устройства.
Задача, решаемая предлагаемым изобретением, сводится к замене ТАМ, позволяющей избежать существенной разницы в объемах ТАМ, находящегося в твердой и жидкой фазах, что позволяет упростить конструкцию устройства и уменьшить его массу за счет отказа от усиления конструкции.
Утилизация и аккумулирование теплоты обеспечивается за счет того, что отработавшие газы работающего ДВС проходят через газовый теплообменник и нагревают ТАМ, а слой теплоизоляции препятствует рассеиванию теплового потока в окружающую среду. При этом ТАМ претерпевает полиморфное превращение в твердой фазе, которое не вызывает существенного изменения его объема в рабочем интервале температур. При работе в режиме отдачи накопленной теплоты в жидкостный теплообменник подается жидкий теплоноситель (вода, тосол, антифриз), который нагревается за счет теплообмена с ТАМ, при этом последний претерпевает обратимое полиморфное превращение в твердой фазе и отдает определенное количество теплоты, достаточное для разогрева ДВС.
Примером такого ТАМ может быть фторид бериллия BeF2.
Указанный новый признак не выявлен из существующего уровня техники, что позволяет сделать вывод о соответствии заявляемого изобретения критерию «изобретательский уровень».
Предлагаемый ТАФП представлен на чертеже.
Он состоит из наружного 1 и внутреннего 2 корпусов, между которыми установлен слой тепловой изоляции 3 (минеральная вата). Внутри корпуса 2 размещено теплоаккумулирующее ядро, представляющее собой замкнутую полость, которая заполнена ТАМ 4 и через которую проходят трубы газового 5 и жидкостного 6 теплообменников.
На поверхности труб 5 и 6 закреплены ребра 7.
Для ликвидации между корпусами 1, 2 и трубами 5, 6 «тепловых мостов» установлены втулки 8 из материала с небольшим коэффициентом теплопроводности.
ТАФП работает следующим образом.
Зарядка аккумулятора тепловой энергией осуществляется пропусканием потока отработавших газов ДВС мобильной машины через трубу 5.
В период безгаражного хранения мобильной машины, когда ее ДВС заглушен, ТАМ 4 сохраняется при температуре, превышающей температуру полиморфного превращения за счет тепловой изоляции 3.
Подтверждением достижения поставленной задачи является следующее: применение в качестве ТАМ вещества, претерпевающего обратимые полиморфные превращения с выделением (поглощением) теплоты фазового перехода без существенного изменения объема в рабочем интервале температур позволяет упростить конструкцию ТАФП, не применяя при этом специальных поясов жесткости, а также уменьшить массу его металлоконструкции за счет того, что не требуется предусматривать увеличение прочности корпуса теплоаккумулирующего ядра вследствие тепловых расширений. Вышесказанное позволяет сделать вывод о соответствии заявленного изобретения критерию «промышленная применимость».
Похожие патенты RU2150603C1
Реферат патента 2000 года ТЕПЛОВОЙ АККУМУЛЯТОР ФАЗОВОГО ПЕРЕХОДА
Изобретение относится к двигателестроению, а именно к устройствам для разогрева двигателя внутреннего сгорания (ДВС) мобильных машин в условиях отрицательных температур окружающего воздуха. Тепловой аккумулятор фазового перехода (ТАФП), утилизирующий и аккумулирующий тепловую энергию отработавших газов ДВС, состоит из наружного и внутреннего корпусов, между которыми установлен слой тепловой изоляции, например минеральная вата. В замкнутой полости, ограниченной внутренним корпусом, находится теплоаккумулирующий материал (ТАМ), способный претерпевать обратимое полиморфное превращение. Теплоаккумулирующий материал пронизан двумя теплообменниками: газовым, соединенным с системой выхлопа ДВС, и жидкостным, соединенным с зарубашечным пространством двигателя. Применение в качестве ТАМ вещества, способного претерпевать обратимые полиморфные превращения с поглощением (выделением) теплоты фазового перехода без существенного изменения объема в рабочем интервале температур (например, BeF2), позволяет упростить конструкцию ТАФП и снизить его массовые показатели. 1 ил.
Формула изобретения RU 2 150 603 C1
Тепловой аккумулятор фазового перехода, состоящий из наружного и внутреннего корпусов, между которыми установлен слой тепловой изоляции, пространство внутреннего корпуса заполнено теплоаккумулирующим материалом, способным претерпевать фазовые превращения с поглощением (выделением) теплоты фазового перехода, сквозь которой проходят газовый и жидкостный теплообменники, отличающийся тем, что пространство внутреннего корпуса заполнено теплоаккумулирующим материалом, фазовое превращение которого сводится к обратимому полиморфному превращению, например фторид, бериллия Be F2.
Тепловой аккумулятор фазового перехода
Изобретение относится к теплотехнике, предназначено для аккумулирования и утилизации низкопотенциального тепла жидкостей или газов, которые нельзя хранить и/или накапливать в больших объемах без специального оборудования, например едкие агрессивные вещества, дымовые газы от химических производств и т.п., и может быть использовано для отопления зданий.
Известен тепловой аккумулятор фазового перехода по патенту России №2187049, F 24 H 7/00, содержащий цилиндрический корпус, состоящий из одной камеры, блок горизонтально расположенных капсул, заполненных теплоаккумулирующим веществом, претерпевающим в интервале рабочих температур фазовое превращение, подводящий и отводящий патрубки. Капсулы выполнены из коаксиально расположенных цилиндров.
Подводящий патрубок расположен на продольной оси корпуса, а отводящий смещен относительно этой оси.
Такое расположение патрубков не обеспечивает закручивания входящей и выходящей сред, в результате чего образуются застойные зоны в нижней части корпуса. При пропускании загрязненной теплоотдающей среды пространство между блоком капсул забивается грязью, что снижает надежность устройства.
Отсутствие средств принудительного перемешивания поступающей среды снижает теплообмен и эффективность работы устройства.
Невозможно передать тепло от загрязненной среды к чистой без загрязнения последней при однокамерном корпусе из-за непосредственного контакта теплоотдающей и теплоаккумулирующей сред с одним и тем же участком аккумулирующих капсул. Это снижает эффективность работы устройства.
Недостатком является также периодичность в работе устройства, т.к. поступление теплоотдающей и теплоаккумулирующей сред происходит в разное время (поочередно) из-за отсутствия дополнительной камеры.
Кроме того, невозможно использовать низко потенциальное тепло из-за отсутствия в конструкции испарителя теплового насоса.
Такое расположение патрубков не обеспечивает закручивания входящей и выходящей сред, в результате чего образуются застойные зоны в нижней части корпуса. При пропускании загрязненной теплоотдающей среды пространство между блоком капсул забивается грязью, что снижает надежность устройства.
Отсутствие средств принудительного перемешивания поступающей среды снижает теплообмен и эффективность работы устройства.
Невозможно передать тепло от загрязненной среды к чистой без загрязнения последней при однокамерном корпусе из-за непосредственного контакта теплоотдающей и теплоаккумулирующей сред с одним и тем же участком аккумулирующих капсул. Это снижает эффективность работы устройства.
Недостатком является также периодичность в работе устройства, т.к. поступление теплоотдающей и теплоаккумулирующей сред происходит в разное время (поочередно) из-за отсутствия дополнительной камеры. Кроме того, невозможно использовать низкопотенциальное тепло из-за отсутствия в конструкции испарителя теплового насоса.
Задачей изобретения является повышение эффективности, надежности и непрерывность работы устройства.
Тепловой аккумулятор фазового перехода содержит цилиндрический корпус со сферическим днищем, блок вертикальных трубчатых капсул, заполненных теплоаккумулирующим веществом, претерпевающим в интервале рабочих температур фазовое превращение, подводящий и отводящий патрубки.
Снабжение устройства перегородкой позволяет разделить корпус на две изолированные камеры, обеспечив разделение теплоотдающей и теплоаккумулирующей сред. В результате происходит постоянный процесс теплообмена одновременно в обеих камерах.
Кроме того, эффект принудительного закручивания теплоносителя в нижней камере исключает образование застойных зон и обеспечивает надежное отделение твердой взвеси, находящейся в теплоносителе (к центру днища и удаление ее через отводящий патрубок), что повышает надежность устройства.
Выполнение трубчатого элемента в форме змеевика просто в изготовлении и позволяет удобно расположить его между рядами капсул для возможности равномерной подачи воздуха по всему объему верхней камеры.
Отверстия на поверхности обоих трубчатых элементов позволяют подать в них воздух, обеспечивающий принудительное перемешивание среды (барботаж) по всему объему каждой камеры. Это ускоряет процесс теплообмена между блоком капсул и средой, а в нижней камере способствует дополнительному закручиванию среды из-за спиральной формы трубчатого элемента. Все это увеличивает скорость движения среды, что повышает коэффициент теплопередачи и эффективность работы устройства.
Использование концентрированного раствора соли в качестве теплоаккумулирующей среды позволяет, не увеличивая габаритов устройства, накапливать большой объем тепловой энергии в относительно малом объеме раствора соли из-за скрытой теплоты фазового перехода соли из кристаллов в раствор, что необходимо для обеспечения эффективной работы насоса, т.е. для передачи тепла потребителю даже при низких температурах раствора соли.
Таким образом, все заявляемые признаки являются существенными и решают поставленную задачу.
Заявляемое устройство представлено на чертежах:
Устройство работает следующим образом.
Через подводящий патрубок 7 в нижнюю камеру 5 поступает теплоотдающая среда (теплоноситель), который закручиваясь по спирали, ускоряет свое движение и равномерно омывает испарительный участок блока капсул 6 (фиг.1,2). Одновременно с этим через отверстия в трубчатом элементе 11 подают воздух. Происходит интенсивное и равномерное перемешивание среды (барботаж). Жидкость в блоке капсул 6 начинает интенсивно кипеть и испаряться, поднимаясь в их верхнюю конденсационную часть, расположенную в верхней камере 4, где конденсируется, отдавая тепло раствору соли и накапливаясь там. Для равномерного перемешивания среды в верхнюю камеру 4 подают воздух через отверстия в трубчатом элементе 10. В результате раствор соли равномерно омывает конденсационный участок блока капсул 6 и испаритель теплового насоса 9, передавая последнему тепло. Затем через тепловой насос (не показано) тепло поступает к потребителю.
Отдавший свое тепло, охлажденный теплоноситель выходит наружу через отводящий патрубок 8, закручиваясь при этом по спирали и образуя в центре днища 12 воронку, в которую затягивается с ускорением твердая взвесь.
2. Тепловой аккумулятор фазового перехода по п.1, отличающийся тем, что в качестве теплоаккумулирующей среды, заполняющей верхнюю камеру, используют концентрированный раствор соли.
Тепловой аккумулятор фазового перехода
Изобретение относится к двигателестроению, а именно к устройствам для обогрева двигателя внутреннего сгорания строительных, дорожных, лесозаготовительных, коммунальных и других мобильных машин и автомобилей в условиях безгаражного хранения при отрицательных температурах окружающей среды. Сущность изобретения: в аккумуляторе фазового перехода, содержащем теплоизолированный вакуумированный цилиндрический корпус со съемной крышкой, имеющей входное и выходное отверстия с запрессованными в них впускной и выпускной трубами, блок капсул заполнен изменяющим агрегатное состояние в рабочем диапазоне температур теплоаккумулирующим материалом, а капсулы выполнены из коаксиально расположенных цилиндров с образованием между ними кольцевых зазоров для прохода жидкого теплоносителя. Такой аккумулятор имеет повышенную надежность вследствие исключения большого количества запаянных капсул. 2 ил.
Изобретение относится к двигателестроению, а именно к устройствам для обогрева двигателя внутреннего сгорания (ДВС) строительных, дорожных, лесозаготовительных, коммунальных и других мобильных машин и автомобилей в условиях безгаражного хранения при отрицательных температурах окружающей среды.
Известна установка воздухообогрева двигателей автомобилей, состоящая из узла нагрева и подачи воздуха, диффузора, воздуховодов и соединительных рукавов. В свою очередь узел нагрева и подачи воздуха состоит из калорифера и вентилятора, приводимого в работу от электродвигателя. При функционировании установки калорифер нагревает воздух, который с помощью вентилятора подается через диффузор, воздуховоды и соединительные рукава на радиатор или в картер обогреваемого двигателя [1].
Данная установка может применяться в стационарных условиях автотранспортного предприятия как групповое средство предпускового подогрева ДВС автомобилей при их безгаражном хранении и требует значительных затрат энергии.
Известен также жидкостный предпусковой подогреватель ДВС, предназначенный для обогрева деталей и сред двигателя и состоящий из котла, системы подачи топлива, системы подачи воздуха, жидкостного насоса, трубопроводов и устройств автоматики. При работе данного подогревателя обогрев блока и головки двигателя осуществляется жидким теплоносителем (водой, тосолом) через зарубашечное пространство, а моторное масло подогревается отработавшими газами подогревателя.
Наиболее близким аналогом [3] предлагаемого изобретения является тепловой аккумулятор фазового перехода (ТАФП), состоящий из теплоизолированного вакуумированного цилиндрического корпуса со съемной крышкой, имеющей входное и выходное отверстия, с запрессованными в них впускной и выпускной трубами, размещенного в корпусе блока из параллельно расположенных в шахматном порядке трубчатых капсул, заполненных изменяющим агрегатное состояние в рабочем диапазоне температур теплоаккумулирующим материалом (ТАМом). ТАФП подключается в систему охлаждения ДВС мобильной машины.
Накопление ТАФП тепловой энергии осуществляется при работе ДВС за счет теплообмена его охлаждающей жидкости с теплоаккумулирующим материалом, находящимся в трубчатых капсулах. При этом ТАМ нагревается в твердой фазе до температуры плавления, плавится, а затем нагревается в жидкой фазе до некоторой температуры, при которой наступает равновесие между ним и охлаждающей жидкостью.
Хранение тепловой энергии осуществляется за счет наличия в конструкции аккумулятора теплоизолированного вакуумированного корпуса.
Разогрев ДВС мобильной машины происходит за счет теплообмена охлаждающей жидкости (ОЖ) с расплавленным ТАМом, при котором последний претерпевает обратимый фазовый переход из жидкого состояния в твердое и выделяет скрытую теплоту кристаллизации. Выделяющаяся тепловая энергия переносится ОЖ и передается двигателю.
Описанный выше ТАФП состоит из большого количества трубчатых капсул, изготовление и заполнение которых представляют собой трудоемкий процесс. Более того, большое количество запаянных капсул снижает надежность конструкции аккумулятора.
Задача, стоящая перед предлагаемым изобретением, состоит в повышении надежности конструкции теплообменника теплового аккумулятора.
Тепловой аккумулятор фазового перехода состоит из теплоизолированного вакуумированного цилиндрического корпуса, съемной крышки, входного и выходного отверстий. В эти отверстия запрессованы впускная и выпускная трубы. Внутри корпуса находится теплообменник, состоящий из коаксиально расположенных цилиндрических капсул. Капсулы заполнены теплоаккумулирующим материалом. Теплообменник монтируется на съемной крышке при помощи болтового соединения и приваривается к корпусу.
Устройство работает следующим образом.
В период зарядки теплового аккумулятора поток ОЖ из зарубашечного пространства ДВС поступает во впускную трубу, проходит через кольцевые отверстия и выходит из аккумулятора в выпускную трубу. ТАМ, находящийся в цилиндрических капсулах, нагревается в твердой фазе до температуры плавления, плавится, а затем нагревается в жидкой фазе до некоторой температуры, при которой наступает тепловое равновесие между ним и ОЖ.
Хранение тепловой энергии осуществляется за счет наличия вакуумированного цилиндрического корпуса.
В период разрядки теплового аккумулятора происходит обратимый процесс, при котором ТАМ охлаждается и кристаллизуется с выделением скрытой теплоты фазового перехода, а поток ОЖ нагревается и поступает в зарубашечное пространство ДВС.
Предлагаемая конструкция теплового аккумулятора фазового перехода по сравнению с прототипом является более надежной, так как необходимая площадь теплообмена ОЖ с ТАМом реализуется меньшим количеством элементов, состоящих из коаксиально расположенных цилиндров с образованием между ними кольцевых зазоров для прохода жидкого теплоносителя. Новым в заявляемом изобретении является выполнение капсул в виде коаксиально расположенных цилиндров.
Указанный признак не выявлен из существующего уровня техники, что позволяет сделать вывод о соответствии заявляемого устройства условию патентоспособности «изобретательский уровень».
Предлагаемый тепловой аккумулятор фазового перехода представлен на фиг. 1 и 2.
Он состоит из вакуумированного корпуса 1, съемной крышки 2, имеющей входное 3 и выходное 4 отверстия, в которые запрессованы впускная 5 и выпускная 6 трубы. Внутри корпуса находится теплообменник, состоящий из коаксиально расположенных цилиндрических капсул 7 с зазорами 8 для прохода жидкости. Вся конструкция теплообменника смонтирована на съемной крышке 2, которая закреплена при помощи болтового соединения 10 к кольцу 9, приваренному к корпусу.
Данный аккумулятор включен в систему охлаждения ДВС мобильной машины. Накопление им тепловой энергии осуществляется следующим образом.
При работе ДВС поток ОЖ поступает в впускную трубу 5, затем проходит через кольцевые отверстия 8 и выходит из аккумулятора в выпускную трубу 6. При этом ТАМ, находящийся в цилиндрических капсулах 7, нагревается в твердой фазе до температуры плавления, плавится, а затем нагревается в жидкой фазе до некоторой температуры, при которой наступает тепловое равновесие между ним и ОЖ.
Вышесказанное позволяет сделать вывод о соответствии заявляемого изобретения условию патентоспособности «промышленная применимость».
3. Заявка RU 97113939/06, МПК 6 F 24 H 7/00, 1999 г.
Тепловой аккумулятор фазового перехода, содержащий теплоизолированный вакуумированный цилиндрический корпус со съемной крышкой, имеющей входное и выходное отверстия с запрессованными в них впускной и выпускной трубами, блок капсул, заполненных изменяющим агрегатное состояние в рабочем диапазоне температур теплоаккумулирующим материалом, отличающийся тем, что капсулы выполнены из коаксиально расположенных цилиндров с образованием между ними кольцевых зазоров для прохода жидкого теплоносителя.