Тепловой аккумулятор фазового перехода для авто

Тепловой аккумулятор фазового перехода

Изобретение относится к двигателестроению, а именно к устройствам для разогрева двигателя внутреннего сгорания (ДВС) мобильных машин в условиях отрицательных температур окружающего воздуха. Тепловой аккумулятор фазового перехода (ТАФП), утилизирующий и аккумулирующий тепловую энергию отработавших газов ДВС, состоит из наружного и внутреннего корпусов, между которыми установлен слой тепловой изоляции, например минеральная вата. В замкнутой полости, ограниченной внутренним корпусом, находится теплоаккумулирующий материал (ТАМ), способный претерпевать обратимое полиморфное превращение. Теплоаккумулирующий материал пронизан двумя теплообменниками: газовым, соединенным с системой выхлопа ДВС, и жидкостным, соединенным с зарубашечным пространством двигателя. Применение в качестве ТАМ вещества, способного претерпевать обратимые полиморфные превращения с поглощением (выделением) теплоты фазового перехода без существенного изменения объема в рабочем интервале температур (например, BeF2), позволяет упростить конструкцию ТАФП и снизить его массовые показатели. 1 ил.

Изобретение относится к двигателестроению, а именно к устройствам для разогрева двигателей внутреннего сгорания (ДВС), и может использоваться в эксплуатации строительных, дорожных, лесозаготовительных машин, автомобилей, тепловозов и других мобильных машин в условиях отрицательных температур окружающего воздуха.

Утилизация и аккумулирование теплоты обеспечивается за счет того, что отработавшие газы работающего ДВС проходят через газовый теплообменник и нагревают ТАМ, вызывая фазовое превращение ТАМ из твердого состояния в жидкое, при этом теплоизоляция препятствует рассеиванию тепловой энергии в окружающую среду.

Использование накопленной теплоты для разогрева ДВС перед пуском в условиях отрицательных температур осуществляется за счет прохождения по жидкостному теплообменнику охлаждающей жидкости, что вызывает кристаллизацию ТАМ, сопровождающуюся выделением теплоты фазового перехода, переносимой теплоносителем в зарубашечное пространство двигателя.

Недостатком указанного устройства является существенная разница в объемах ТАМ в жидком и твердом состояниях. Например, при использовании в качестве ТАМ солей последние могут увеличивать свой объем при плавлении более чем на 25% [2], что вынуждает существенно усиливать конструкцию устройства.

Задача, решаемая предлагаемым изобретением, сводится к замене ТАМ, позволяющей избежать существенной разницы в объемах ТАМ, находящегося в твердой и жидкой фазах, что позволяет упростить конструкцию устройства и уменьшить его массу за счет отказа от усиления конструкции.

Утилизация и аккумулирование теплоты обеспечивается за счет того, что отработавшие газы работающего ДВС проходят через газовый теплообменник и нагревают ТАМ, а слой теплоизоляции препятствует рассеиванию теплового потока в окружающую среду. При этом ТАМ претерпевает полиморфное превращение в твердой фазе, которое не вызывает существенного изменения его объема в рабочем интервале температур. При работе в режиме отдачи накопленной теплоты в жидкостный теплообменник подается жидкий теплоноситель (вода, тосол, антифриз), который нагревается за счет теплообмена с ТАМ, при этом последний претерпевает обратимое полиморфное превращение в твердой фазе и отдает определенное количество теплоты, достаточное для разогрева ДВС.

Примером такого ТАМ может быть фторид бериллия BeF2.

Указанный новый признак не выявлен из существующего уровня техники, что позволяет сделать вывод о соответствии заявляемого изобретения критерию «изобретательский уровень».

Предлагаемый ТАФП представлен на чертеже.

Он состоит из наружного 1 и внутреннего 2 корпусов, между которыми установлен слой тепловой изоляции 3 (минеральная вата). Внутри корпуса 2 размещено теплоаккумулирующее ядро, представляющее собой замкнутую полость, которая заполнена ТАМ 4 и через которую проходят трубы газового 5 и жидкостного 6 теплообменников.

На поверхности труб 5 и 6 закреплены ребра 7.

Для ликвидации между корпусами 1, 2 и трубами 5, 6 «тепловых мостов» установлены втулки 8 из материала с небольшим коэффициентом теплопроводности.

ТАФП работает следующим образом.

Зарядка аккумулятора тепловой энергией осуществляется пропусканием потока отработавших газов ДВС мобильной машины через трубу 5.

В период безгаражного хранения мобильной машины, когда ее ДВС заглушен, ТАМ 4 сохраняется при температуре, превышающей температуру полиморфного превращения за счет тепловой изоляции 3.

Подтверждением достижения поставленной задачи является следующее: применение в качестве ТАМ вещества, претерпевающего обратимые полиморфные превращения с выделением (поглощением) теплоты фазового перехода без существенного изменения объема в рабочем интервале температур позволяет упростить конструкцию ТАФП, не применяя при этом специальных поясов жесткости, а также уменьшить массу его металлоконструкции за счет того, что не требуется предусматривать увеличение прочности корпуса теплоаккумулирующего ядра вследствие тепловых расширений. Вышесказанное позволяет сделать вывод о соответствии заявленного изобретения критерию «промышленная применимость».

Тепловой аккумулятор фазового перехода, состоящий из наружного и внутреннего корпусов, между которыми установлен слой тепловой изоляции, пространство внутреннего корпуса заполнено теплоаккумулирующим материалом, способным претерпевать фазовые превращения с поглощением (выделением) теплоты фазового перехода, сквозь которой проходят газовый и жидкостный теплообменники, отличающийся тем, что пространство внутреннего корпуса заполнено теплоаккумулирующим материалом, фазовое превращение которого сводится к обратимому полиморфному превращению, например фторид, бериллия Be F2.

Источник

ТЕПЛОВОЙ АККУМУЛЯТОР ФАЗОВОГО ПЕРЕХОДА Российский патент 2000 года по МПК F02N17/00

Описание патента на изобретение RU2150603C1

Изобретение относится к двигателестроению, а именно к устройствам для разогрева двигателей внутреннего сгорания (ДВС), и может использоваться в эксплуатации строительных, дорожных, лесозаготовительных машин, автомобилей, тепловозов и других мобильных машин в условиях отрицательных температур окружающего воздуха.

Утилизация и аккумулирование теплоты обеспечивается за счет того, что отработавшие газы работающего ДВС проходят через газовый теплообменник и нагревают ТАМ, вызывая фазовое превращение ТАМ из твердого состояния в жидкое, при этом теплоизоляция препятствует рассеиванию тепловой энергии в окружающую среду.

Использование накопленной теплоты для разогрева ДВС перед пуском в условиях отрицательных температур осуществляется за счет прохождения по жидкостному теплообменнику охлаждающей жидкости, что вызывает кристаллизацию ТАМ, сопровождающуюся выделением теплоты фазового перехода, переносимой теплоносителем в зарубашечное пространство двигателя.

Недостатком указанного устройства является существенная разница в объемах ТАМ в жидком и твердом состояниях. Например, при использовании в качестве ТАМ солей последние могут увеличивать свой объем при плавлении более чем на 25% [2], что вынуждает существенно усиливать конструкцию устройства.

Задача, решаемая предлагаемым изобретением, сводится к замене ТАМ, позволяющей избежать существенной разницы в объемах ТАМ, находящегося в твердой и жидкой фазах, что позволяет упростить конструкцию устройства и уменьшить его массу за счет отказа от усиления конструкции.

Утилизация и аккумулирование теплоты обеспечивается за счет того, что отработавшие газы работающего ДВС проходят через газовый теплообменник и нагревают ТАМ, а слой теплоизоляции препятствует рассеиванию теплового потока в окружающую среду. При этом ТАМ претерпевает полиморфное превращение в твердой фазе, которое не вызывает существенного изменения его объема в рабочем интервале температур. При работе в режиме отдачи накопленной теплоты в жидкостный теплообменник подается жидкий теплоноситель (вода, тосол, антифриз), который нагревается за счет теплообмена с ТАМ, при этом последний претерпевает обратимое полиморфное превращение в твердой фазе и отдает определенное количество теплоты, достаточное для разогрева ДВС.

Примером такого ТАМ может быть фторид бериллия BeF2.

Указанный новый признак не выявлен из существующего уровня техники, что позволяет сделать вывод о соответствии заявляемого изобретения критерию «изобретательский уровень».

Предлагаемый ТАФП представлен на чертеже.

Он состоит из наружного 1 и внутреннего 2 корпусов, между которыми установлен слой тепловой изоляции 3 (минеральная вата). Внутри корпуса 2 размещено теплоаккумулирующее ядро, представляющее собой замкнутую полость, которая заполнена ТАМ 4 и через которую проходят трубы газового 5 и жидкостного 6 теплообменников.

На поверхности труб 5 и 6 закреплены ребра 7.

Для ликвидации между корпусами 1, 2 и трубами 5, 6 «тепловых мостов» установлены втулки 8 из материала с небольшим коэффициентом теплопроводности.

ТАФП работает следующим образом.

Зарядка аккумулятора тепловой энергией осуществляется пропусканием потока отработавших газов ДВС мобильной машины через трубу 5.

В период безгаражного хранения мобильной машины, когда ее ДВС заглушен, ТАМ 4 сохраняется при температуре, превышающей температуру полиморфного превращения за счет тепловой изоляции 3.

Подтверждением достижения поставленной задачи является следующее: применение в качестве ТАМ вещества, претерпевающего обратимые полиморфные превращения с выделением (поглощением) теплоты фазового перехода без существенного изменения объема в рабочем интервале температур позволяет упростить конструкцию ТАФП, не применяя при этом специальных поясов жесткости, а также уменьшить массу его металлоконструкции за счет того, что не требуется предусматривать увеличение прочности корпуса теплоаккумулирующего ядра вследствие тепловых расширений. Вышесказанное позволяет сделать вывод о соответствии заявленного изобретения критерию «промышленная применимость».

Похожие патенты RU2150603C1

Реферат патента 2000 года ТЕПЛОВОЙ АККУМУЛЯТОР ФАЗОВОГО ПЕРЕХОДА

Изобретение относится к двигателестроению, а именно к устройствам для разогрева двигателя внутреннего сгорания (ДВС) мобильных машин в условиях отрицательных температур окружающего воздуха. Тепловой аккумулятор фазового перехода (ТАФП), утилизирующий и аккумулирующий тепловую энергию отработавших газов ДВС, состоит из наружного и внутреннего корпусов, между которыми установлен слой тепловой изоляции, например минеральная вата. В замкнутой полости, ограниченной внутренним корпусом, находится теплоаккумулирующий материал (ТАМ), способный претерпевать обратимое полиморфное превращение. Теплоаккумулирующий материал пронизан двумя теплообменниками: газовым, соединенным с системой выхлопа ДВС, и жидкостным, соединенным с зарубашечным пространством двигателя. Применение в качестве ТАМ вещества, способного претерпевать обратимые полиморфные превращения с поглощением (выделением) теплоты фазового перехода без существенного изменения объема в рабочем интервале температур (например, BeF2), позволяет упростить конструкцию ТАФП и снизить его массовые показатели. 1 ил.Тепловой аккумулятор фазового перехода для авто. Смотреть фото Тепловой аккумулятор фазового перехода для авто. Смотреть картинку Тепловой аккумулятор фазового перехода для авто. Картинка про Тепловой аккумулятор фазового перехода для авто. Фото Тепловой аккумулятор фазового перехода для авто

Формула изобретения RU 2 150 603 C1

Тепловой аккумулятор фазового перехода, состоящий из наружного и внутреннего корпусов, между которыми установлен слой тепловой изоляции, пространство внутреннего корпуса заполнено теплоаккумулирующим материалом, способным претерпевать фазовые превращения с поглощением (выделением) теплоты фазового перехода, сквозь которой проходят газовый и жидкостный теплообменники, отличающийся тем, что пространство внутреннего корпуса заполнено теплоаккумулирующим материалом, фазовое превращение которого сводится к обратимому полиморфному превращению, например фторид, бериллия Be F2.

Источник

Тепловой аккумулятор фазового перехода

Тепловой аккумулятор фазового перехода для авто. Смотреть фото Тепловой аккумулятор фазового перехода для авто. Смотреть картинку Тепловой аккумулятор фазового перехода для авто. Картинка про Тепловой аккумулятор фазового перехода для авто. Фото Тепловой аккумулятор фазового перехода для авто

Изобретение относится к теплотехнике, предназначено для аккумулирования и утилизации низкопотенциального тепла жидкостей или газов, которые нельзя хранить и/или накапливать в больших объемах без специального оборудования, например едкие агрессивные вещества, дымовые газы от химических производств и т.п., и может быть использовано для отопления зданий.

Известен тепловой аккумулятор фазового перехода по патенту России №2187049, F 24 H 7/00, содержащий цилиндрический корпус, состоящий из одной камеры, блок горизонтально расположенных капсул, заполненных теплоаккумулирующим веществом, претерпевающим в интервале рабочих температур фазовое превращение, подводящий и отводящий патрубки. Капсулы выполнены из коаксиально расположенных цилиндров.

Подводящий патрубок расположен на продольной оси корпуса, а отводящий смещен относительно этой оси.

Такое расположение патрубков не обеспечивает закручивания входящей и выходящей сред, в результате чего образуются застойные зоны в нижней части корпуса. При пропускании загрязненной теплоотдающей среды пространство между блоком капсул забивается грязью, что снижает надежность устройства.

Отсутствие средств принудительного перемешивания поступающей среды снижает теплообмен и эффективность работы устройства.

Невозможно передать тепло от загрязненной среды к чистой без загрязнения последней при однокамерном корпусе из-за непосредственного контакта теплоотдающей и теплоаккумулирующей сред с одним и тем же участком аккумулирующих капсул. Это снижает эффективность работы устройства.

Недостатком является также периодичность в работе устройства, т.к. поступление теплоотдающей и теплоаккумулирующей сред происходит в разное время (поочередно) из-за отсутствия дополнительной камеры.

Кроме того, невозможно использовать низко потенциальное тепло из-за отсутствия в конструкции испарителя теплового насоса.

Такое расположение патрубков не обеспечивает закручивания входящей и выходящей сред, в результате чего образуются застойные зоны в нижней части корпуса. При пропускании загрязненной теплоотдающей среды пространство между блоком капсул забивается грязью, что снижает надежность устройства.

Отсутствие средств принудительного перемешивания поступающей среды снижает теплообмен и эффективность работы устройства.

Невозможно передать тепло от загрязненной среды к чистой без загрязнения последней при однокамерном корпусе из-за непосредственного контакта теплоотдающей и теплоаккумулирующей сред с одним и тем же участком аккумулирующих капсул. Это снижает эффективность работы устройства.

Недостатком является также периодичность в работе устройства, т.к. поступление теплоотдающей и теплоаккумулирующей сред происходит в разное время (поочередно) из-за отсутствия дополнительной камеры. Кроме того, невозможно использовать низкопотенциальное тепло из-за отсутствия в конструкции испарителя теплового насоса.

Задачей изобретения является повышение эффективности, надежности и непрерывность работы устройства.

Тепловой аккумулятор фазового перехода содержит цилиндрический корпус со сферическим днищем, блок вертикальных трубчатых капсул, заполненных теплоаккумулирующим веществом, претерпевающим в интервале рабочих температур фазовое превращение, подводящий и отводящий патрубки.

Снабжение устройства перегородкой позволяет разделить корпус на две изолированные камеры, обеспечив разделение теплоотдающей и теплоаккумулирующей сред. В результате происходит постоянный процесс теплообмена одновременно в обеих камерах.

Кроме того, эффект принудительного закручивания теплоносителя в нижней камере исключает образование застойных зон и обеспечивает надежное отделение твердой взвеси, находящейся в теплоносителе (к центру днища и удаление ее через отводящий патрубок), что повышает надежность устройства.

Выполнение трубчатого элемента в форме змеевика просто в изготовлении и позволяет удобно расположить его между рядами капсул для возможности равномерной подачи воздуха по всему объему верхней камеры.

Отверстия на поверхности обоих трубчатых элементов позволяют подать в них воздух, обеспечивающий принудительное перемешивание среды (барботаж) по всему объему каждой камеры. Это ускоряет процесс теплообмена между блоком капсул и средой, а в нижней камере способствует дополнительному закручиванию среды из-за спиральной формы трубчатого элемента. Все это увеличивает скорость движения среды, что повышает коэффициент теплопередачи и эффективность работы устройства.

Использование концентрированного раствора соли в качестве теплоаккумулирующей среды позволяет, не увеличивая габаритов устройства, накапливать большой объем тепловой энергии в относительно малом объеме раствора соли из-за скрытой теплоты фазового перехода соли из кристаллов в раствор, что необходимо для обеспечения эффективной работы насоса, т.е. для передачи тепла потребителю даже при низких температурах раствора соли.

Таким образом, все заявляемые признаки являются существенными и решают поставленную задачу.

Заявляемое устройство представлено на чертежах:

Устройство работает следующим образом.

Через подводящий патрубок 7 в нижнюю камеру 5 поступает теплоотдающая среда (теплоноситель), который закручиваясь по спирали, ускоряет свое движение и равномерно омывает испарительный участок блока капсул 6 (фиг.1,2). Одновременно с этим через отверстия в трубчатом элементе 11 подают воздух. Происходит интенсивное и равномерное перемешивание среды (барботаж). Жидкость в блоке капсул 6 начинает интенсивно кипеть и испаряться, поднимаясь в их верхнюю конденсационную часть, расположенную в верхней камере 4, где конденсируется, отдавая тепло раствору соли и накапливаясь там. Для равномерного перемешивания среды в верхнюю камеру 4 подают воздух через отверстия в трубчатом элементе 10. В результате раствор соли равномерно омывает конденсационный участок блока капсул 6 и испаритель теплового насоса 9, передавая последнему тепло. Затем через тепловой насос (не показано) тепло поступает к потребителю.

Отдавший свое тепло, охлажденный теплоноситель выходит наружу через отводящий патрубок 8, закручиваясь при этом по спирали и образуя в центре днища 12 воронку, в которую затягивается с ускорением твердая взвесь.

2. Тепловой аккумулятор фазового перехода по п.1, отличающийся тем, что в качестве теплоаккумулирующей среды, заполняющей верхнюю камеру, используют концентрированный раствор соли.

Источник

Тепловой аккумулятор фазового перехода

Изобретение относится к двигателестроению, а именно к устройствам для обогрева двигателя внутреннего сгорания строительных, дорожных, лесозаготовительных, коммунальных и других мобильных машин и автомобилей в условиях безгаражного хранения при отрицательных температурах окружающей среды. Сущность изобретения: в аккумуляторе фазового перехода, содержащем теплоизолированный вакуумированный цилиндрический корпус со съемной крышкой, имеющей входное и выходное отверстия с запрессованными в них впускной и выпускной трубами, блок капсул заполнен изменяющим агрегатное состояние в рабочем диапазоне температур теплоаккумулирующим материалом, а капсулы выполнены из коаксиально расположенных цилиндров с образованием между ними кольцевых зазоров для прохода жидкого теплоносителя. Такой аккумулятор имеет повышенную надежность вследствие исключения большого количества запаянных капсул. 2 ил.

Изобретение относится к двигателестроению, а именно к устройствам для обогрева двигателя внутреннего сгорания (ДВС) строительных, дорожных, лесозаготовительных, коммунальных и других мобильных машин и автомобилей в условиях безгаражного хранения при отрицательных температурах окружающей среды.

Известна установка воздухообогрева двигателей автомобилей, состоящая из узла нагрева и подачи воздуха, диффузора, воздуховодов и соединительных рукавов. В свою очередь узел нагрева и подачи воздуха состоит из калорифера и вентилятора, приводимого в работу от электродвигателя. При функционировании установки калорифер нагревает воздух, который с помощью вентилятора подается через диффузор, воздуховоды и соединительные рукава на радиатор или в картер обогреваемого двигателя [1].

Данная установка может применяться в стационарных условиях автотранспортного предприятия как групповое средство предпускового подогрева ДВС автомобилей при их безгаражном хранении и требует значительных затрат энергии.

Известен также жидкостный предпусковой подогреватель ДВС, предназначенный для обогрева деталей и сред двигателя и состоящий из котла, системы подачи топлива, системы подачи воздуха, жидкостного насоса, трубопроводов и устройств автоматики. При работе данного подогревателя обогрев блока и головки двигателя осуществляется жидким теплоносителем (водой, тосолом) через зарубашечное пространство, а моторное масло подогревается отработавшими газами подогревателя.

Наиболее близким аналогом [3] предлагаемого изобретения является тепловой аккумулятор фазового перехода (ТАФП), состоящий из теплоизолированного вакуумированного цилиндрического корпуса со съемной крышкой, имеющей входное и выходное отверстия, с запрессованными в них впускной и выпускной трубами, размещенного в корпусе блока из параллельно расположенных в шахматном порядке трубчатых капсул, заполненных изменяющим агрегатное состояние в рабочем диапазоне температур теплоаккумулирующим материалом (ТАМом). ТАФП подключается в систему охлаждения ДВС мобильной машины.

Накопление ТАФП тепловой энергии осуществляется при работе ДВС за счет теплообмена его охлаждающей жидкости с теплоаккумулирующим материалом, находящимся в трубчатых капсулах. При этом ТАМ нагревается в твердой фазе до температуры плавления, плавится, а затем нагревается в жидкой фазе до некоторой температуры, при которой наступает равновесие между ним и охлаждающей жидкостью.

Хранение тепловой энергии осуществляется за счет наличия в конструкции аккумулятора теплоизолированного вакуумированного корпуса.

Разогрев ДВС мобильной машины происходит за счет теплообмена охлаждающей жидкости (ОЖ) с расплавленным ТАМом, при котором последний претерпевает обратимый фазовый переход из жидкого состояния в твердое и выделяет скрытую теплоту кристаллизации. Выделяющаяся тепловая энергия переносится ОЖ и передается двигателю.

Описанный выше ТАФП состоит из большого количества трубчатых капсул, изготовление и заполнение которых представляют собой трудоемкий процесс. Более того, большое количество запаянных капсул снижает надежность конструкции аккумулятора.

Задача, стоящая перед предлагаемым изобретением, состоит в повышении надежности конструкции теплообменника теплового аккумулятора.

Тепловой аккумулятор фазового перехода состоит из теплоизолированного вакуумированного цилиндрического корпуса, съемной крышки, входного и выходного отверстий. В эти отверстия запрессованы впускная и выпускная трубы. Внутри корпуса находится теплообменник, состоящий из коаксиально расположенных цилиндрических капсул. Капсулы заполнены теплоаккумулирующим материалом. Теплообменник монтируется на съемной крышке при помощи болтового соединения и приваривается к корпусу.

Устройство работает следующим образом.

В период зарядки теплового аккумулятора поток ОЖ из зарубашечного пространства ДВС поступает во впускную трубу, проходит через кольцевые отверстия и выходит из аккумулятора в выпускную трубу. ТАМ, находящийся в цилиндрических капсулах, нагревается в твердой фазе до температуры плавления, плавится, а затем нагревается в жидкой фазе до некоторой температуры, при которой наступает тепловое равновесие между ним и ОЖ.

Хранение тепловой энергии осуществляется за счет наличия вакуумированного цилиндрического корпуса.

В период разрядки теплового аккумулятора происходит обратимый процесс, при котором ТАМ охлаждается и кристаллизуется с выделением скрытой теплоты фазового перехода, а поток ОЖ нагревается и поступает в зарубашечное пространство ДВС.

Предлагаемая конструкция теплового аккумулятора фазового перехода по сравнению с прототипом является более надежной, так как необходимая площадь теплообмена ОЖ с ТАМом реализуется меньшим количеством элементов, состоящих из коаксиально расположенных цилиндров с образованием между ними кольцевых зазоров для прохода жидкого теплоносителя. Новым в заявляемом изобретении является выполнение капсул в виде коаксиально расположенных цилиндров.

Указанный признак не выявлен из существующего уровня техники, что позволяет сделать вывод о соответствии заявляемого устройства условию патентоспособности «изобретательский уровень».

Предлагаемый тепловой аккумулятор фазового перехода представлен на фиг. 1 и 2.

Он состоит из вакуумированного корпуса 1, съемной крышки 2, имеющей входное 3 и выходное 4 отверстия, в которые запрессованы впускная 5 и выпускная 6 трубы. Внутри корпуса находится теплообменник, состоящий из коаксиально расположенных цилиндрических капсул 7 с зазорами 8 для прохода жидкости. Вся конструкция теплообменника смонтирована на съемной крышке 2, которая закреплена при помощи болтового соединения 10 к кольцу 9, приваренному к корпусу.

Данный аккумулятор включен в систему охлаждения ДВС мобильной машины. Накопление им тепловой энергии осуществляется следующим образом.

При работе ДВС поток ОЖ поступает в впускную трубу 5, затем проходит через кольцевые отверстия 8 и выходит из аккумулятора в выпускную трубу 6. При этом ТАМ, находящийся в цилиндрических капсулах 7, нагревается в твердой фазе до температуры плавления, плавится, а затем нагревается в жидкой фазе до некоторой температуры, при которой наступает тепловое равновесие между ним и ОЖ.

Вышесказанное позволяет сделать вывод о соответствии заявляемого изобретения условию патентоспособности «промышленная применимость».

3. Заявка RU 97113939/06, МПК 6 F 24 H 7/00, 1999 г.

Тепловой аккумулятор фазового перехода, содержащий теплоизолированный вакуумированный цилиндрический корпус со съемной крышкой, имеющей входное и выходное отверстия с запрессованными в них впускной и выпускной трубами, блок капсул, заполненных изменяющим агрегатное состояние в рабочем диапазоне температур теплоаккумулирующим материалом, отличающийся тем, что капсулы выполнены из коаксиально расположенных цилиндров с образованием между ними кольцевых зазоров для прохода жидкого теплоносителя.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *